
Academic Editor: Simone Priori

Received: 16 December 2024

Revised: 2 January 2025

Accepted: 14 January 2025

Published: 16 January 2025

Citation: Fang, G.; Wang, C.; Dong,

T.; Wang, Z.; Cai, C.; Chen, J.; Liu, M.;

Zhang, H. A Landscape-Clustering

Zoning Strategy to Map Multi-Crops

in Fragmented Cropland Regions

Using Sentinel-2 and Sentinel-1

Imagery with Feature Selection.

Agriculture 2025, 15, 186. https://

doi.org/10.3390/agriculture15020186

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Landscape-Clustering Zoning Strategy to Map Multi-Crops in
Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1
Imagery with Feature Selection
Guanru Fang 1 , Chen Wang 1, Taifeng Dong 2 , Ziming Wang 1, Cheng Cai 1, Jiaqi Chen 1, Mengyu Liu 1 and
Huanxue Zhang 1,*

1 College of Geography and Environment, Shandong Normal University, Jinan 250300, China;
2021020800@stu.sdnu.edu.cn (G.F.)

2 Ottawa Research and Development Centre, Agriculture and Agri-Food Canada,
Ottawa, ON K1A 0C6, Canada

* Correspondence: zhanghuanxue@sdnu.edu.cn

Abstract: Crop mapping using remote sensing is a reliable and efficient approach to ob-
taining timely and accurate crop information. Previous studies predominantly focused
on large-scale regions characterized by simple cropping structures. However, in complex
agricultural regions, such as China’s Huang-Huai-Hai region, the high crop diversity and
fragmented cropland in localized areas present significant challenges for accurate crop
mapping. To address these challenges, this study introduces a landscape-clustering zoning
strategy utilizing multi-temporal Sentinel-1 and Sentinel-2 imagery. First, crop hetero-
geneity zones (CHZs) are delineated using landscape metrics that capture crop diversity
and cropland fragmentation. Subsequently, four types of features (spectral, phenological,
textural and radar features) are combined in various configurations to create different
classification schemes. These schemes are then optimized for each CHZ using a random
forest classifier. The results demonstrate that the landscape-clustering zoning strategy
achieves an overall accuracy of 93.52% and a kappa coefficient of 92.67%, outperforming
the no-zoning method by 2.9% and 3.82%, respectively. Furthermore, the crop mapping
results from this strategy closely align with agricultural statistics at the county level, with
an R2 value of 0.9006. In comparison with other traditional zoning strategies, such as
topographic zoning and administrative unit zoning, the proposed strategy proves to be
superior. These findings suggest that the landscape-clustering zoning strategy offers a
robust reference method for crop mapping in complex agricultural landscapes.

Keywords: crop mapping; landscape heterogeneity; feature selection; crop heterogeneity
zone; complex agricultural regions

1. Introduction
China is one of the largest agricultural producers in the world, with vast areas under

cultivation and a wide variety of food and cash crops, resulting in a highly diverse planting
structure. Acquiring timely and accurate information on crop cultivation is therefore
essential for ensuring food security, monitoring crop production, and supporting policy-
making efforts [1,2]. Traditional methods such as sample statistics and manual surveys are
labor-intensive and resource-demanding. By contrast, remote sensing offers the ability to
perform frequent monitoring over short periods and to capture crop dynamics on a large
scale [3,4]. With advancements in classification algorithms and the increasing availability
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of open-source satellite data (e.g., Landsat and Sentinel), remote sensing has emerged as
a widely adopted and effective method for monitoring crop conditions and estimating
yields [5,6].

Currently, although numerous relatively mature remote sensing-based crop products
have been developed in several developed countries and provincial regions in China—such
as the Cropland Data Layer (CDL) in the USA and cotton mapping in Xinjiang, China [7,8]—
these efforts primarily target areas with large-scale automated cultivation and relatively
simple cropping structures. By contrast, regions characterized by complex agricultural
landscapes, such as the central region of the Huang-Huai-Hai regions of China, present
challenges due to their highly diversified crops and fragmented cropland patches. The crop
conditions and natural environments in these regions are often insufficiently represented
in large-scale studies, making their findings less universally applicable. Moreover, research
has shown that crop diversity and cropland fragmentation significantly influence the
accuracy of crop mapping [9–11]. For example, Chen et al. achieved a higher overall
accuracy (OA) in areas with lower crop diversity and evenness in crop classification using
phenology metrics derived from MODIS data [12]. Han et al. reported an 11% disparity
in OA for rapeseed identification between fragmented and non-fragmented areas using
features derived from Landsat 8 and Sentinel-1 satellites [13]. These findings highlight the
need to refine crop mapping models to improve their applicability in regions with diverse
crops and fragmented croplands.

To address the challenges posed by spatial heterogeneity, zoning strategies that divide
entire regions into homogeneous subzones have been widely explored and assessed [14–16].
Some studies have divided the study area into a set of ortho-hexagonal units or administra-
tive units [17,18]; however, these studies do not take into account the spatial heterogeneity
between units and need large sample sizes. Some studies have employed agro-ecological
or climatic factors to delineate subzones in large-scale regions [19,20]. However, in lo-
calized complex agricultural regions, these strategies are often difficult to refine due to
the similarity of cropping environments across the area. In addition, some studies have
utilized environmental variables, such as digital elevation models (DEMs) and tempera-
ture, for partitioning [21,22]. For instance, Ren et al. used DEM data to partition a study
area with significant topographical variation into subzones with relatively homogeneous
spatial distributions of crops. Sentinel-1/2 imagery was then applied within each subzone
to map crops, achieving an overall accuracy (OA) of approximately 90% [23]. Similarly,
Donmez et al. employed ERA-5 temperature data to delineate multi-crop areas, achieving
an OA of about 92% by accounting for the strong correlation between crop phenology
and temperature in the study area [24]. These strategies integrated key environmental
influences to delineate subzones tailored to the study area’s characteristics. However, they
face limitations in complex agricultural regions with high crop diversity and fragmented
cropland because such areas are influenced by multiple environmental factors.

In landscape ecology, crop diversity and cropland fragmentation in agricultural areas
correspond to the compositional and configurational heterogeneity of crop heterogene-
ity [25] (as shown in Figure 1). Crop heterogeneity can be effectively quantified using
landscape metrics, which serve as analytical tools for describing the spatial characteristics
of complex agricultural landscapes [26,27]. Significant correlations have also been identified
between agricultural landscape characteristics, as quantified by landscape metrics, and the
accuracy of crop classification. For instance, Zhang et al. quantified fragmented cropland
using the Splitting Index (SPLIT) and demonstrated that incorporating spectral and textural
features derived from Sentinel-2 data effectively mitigated reductions in crop mapping
accuracy caused by cropland fragmentation [11]. Mondal and Jeganathan extracted agricul-
tural land using MODIS imagery and a spectral similarity index calculated by Euclidean
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distance. Their study revealed that increases in the Number of Cropland Patches (NP) and
decreases in the Mean Patch Size (MPS) of cropland both contributed to higher omission
errors in crop classification. These findings underscore the utility of landscape metrics in
providing critical reference information for crop mapping [9]. However, due to limitations
in data sources, the above studies calculated landscape metrics based on pre-acquired
mapping results, focusing on exploring the effects of crop heterogeneity on crop mapping
accuracy. Few studies directly integrate ancillary data to quantify crop heterogeneity and
improve crop mapping approaches. This gap highlights the need for further research to
expand the application of landscape metrics in complex agricultural regions.
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different crop types within the landscape. (a) to (b) and (c) to (d) indicate increases in the fragmenta-
tion of cropland (configurational heterogeneity). (c) to (a) and (d) to (b) indicate increases in crop
diversity (compositional heterogeneity).

Given the high crop diversity and cropland fragmentation in local areas of the Huang-
Huai-Hai regions of China, this study selected several representative cities from the inter-
twined mountainous plains of central Shandong Province. A landscape-clustering zoning
strategy considering crop heterogeneity based on Sentinel-1 and Sentinel-2 satellite data
was proposed to address these complexities.

The study focused on three specific processes:
Quantitatively describe complex agricultural regions using landscape metrics based

on crop heterogeneity.
Divide complex planting regions into Crop Heterogeneity Zones (CHZs) and deter-

mine optimal classification schemes.
Evaluate the precision of the proposed landscape-clustering zoning strategy.

2. Materials
2.1. Study Areas

Shandong Province is located in the eastern part of the Huang-Huai-Hai Plain
(34◦22′–38◦23′ N, 114◦47′–122◦42′ E) and features a warm temperate monsoon climate.
Summers are rainy, while winters are relatively dry. The province’s topography consists of
central and eastern mountainous areas, plains in the northwest and southwest, and coastal
hills, creating significant topographic variation. Shandong is also characterized by complex
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water systems, including the Yellow River as the primary system and the Huaihe and Haihe
River systems located in the southern and northern parts of the province.

In this study, Jining City, Tai’an City, and Linyi City, located in central Shandong,
were selected as the study areas (Figure 2A). The climate in these areas exhibits a similar
distribution of rainfall and heat throughout the year, with a mean annual temperature
of 16 ◦C and a mean annual precipitation of 701 mm. The terrain in this region includes
plains in the west and east, as well as mountainous and hilly areas in the center, with
elevations ranging from 32 m to 1545 m. The plains in the western and eastern parts
are rich in water resources, including Weishan Lake and the Yi River, while the central
region is dominated by Mount Tai and Mount Yimeng, surrounded by hills. Due to the
influence of various natural environments, the study area is characterized by fragmentation
of arable land and crop diversification. The study area encompasses 14,227.9 km2 of arable
land, primarily cultivating corn, soybean, rice, cotton, peanuts, and potatoes. Maize and
soybean are widely distributed in the plains, while rice and cotton, which require abundant
water, are concentrated in areas with extensive water systems. Peanuts and potatoes are
grown in hilly areas because of their drought tolerance. Most crops have a growing period
from mid-May to mid-October. Potatoes have a shorter growing season, lasting only from
mid-August to mid-October (Table 1).
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Table 1. Crop phenological stages in the study areas.

Crop Types
Apr. May Jun. Jul. Aug. Sept. Oct.

E M L E M L E M L E M L E M L E M L E M L
Maize

Soybean
Peanut
Cotton

Rice
Potato

Note: Each month is split into three phases: early (E), middle (M), and late (L). Pink regions denote the sowing
and seeding/flooding stages, green regions signify the reviving and tillering/flowering stages, and brown regions
represent the maturity and harvest stages.

2.2. Image Data

The Sentinel-2 satellite system, comprising A and B sensors, offers a revisit cycle of
5 days. Its imagery consists of 13 spectral bands, covering wavelengths from visible to
shortwave infrared, with spatial resolutions ranging from 10 to 60 m. In this study, Sentinel-
2 Level-2A surface reflectance (SR) images were acquired and pre-processed using Google
Earth Engine (GEE), and ten bands were used with a resolution of 10 m and 20 m for crop
mapping. Considering the growing seasons of the main crops in the study area, images
from 10 May to 10 October 2019 were selected. To minimize the cloud contamination
effects, only images with less than 25% cloud cover were retained, and cloud removal was
performed using the QA60 band, which contains cloud mask information. To address gaps
caused by clouds and maintain consistent temporal resolution [28], monthly composite
images were generated by averaging available image values for each month.

In this study, Sentinel-1 Ground Range Detected (GRD) images were used to supple-
ment crop cultivation information. Sentinel-1 images in Interferometric Wide (IW) mode
were selected due to their ability to maintain a revisit performance of 6 days and provide
extensive land surface coverage with spatial resolutions ranging from 5 to 40 m. This
mode includes two polar-orbiting satellites equipped with C-band Synthetic Aperture
Radar (SAR) instruments operating in dual polarization (VV and VH). All Sentinel-1 im-
ages obtained from the GEE had undergone pre-processing steps such as thermal noise
removal, radiometric calibration, and terrain correction. To further reduce image speckle
noise, a refined Lee filter with a 7 × 7 window was applied in this study. Finally, the
images were composited into monthly averages to ensure temporal consistency with the
Sentinel-2 imagery.

2.3. Classification Features

To reduce the impact of spectral similarity on crop classification caused by the diverse
crop types in the study areas, multiple feature types derived from multi-temporal Sentinel-2
and Sentinel-1 images were utilized (Table 2). Spectral features, which include spectral
bands and indices, provide information on crop reflectance at short times during the
growing season. These features are closely related to crop growth traits such as vegetation
canopy and leaf chlorophyll [29]. Phenological features capture the temporal dynamics of
crops over the entire growing period, such as the timing of growth onset and cessation.
To represent these dynamics, a double logistic regression function [30] was applied to fit
the Enhanced Vegetation Index (EVI) time series imagery, effectively modeling changes in
crop growth patterns (Figure 3). Radar features [31], including backscattering coefficients
and their combinations, are sensitive to structural attributes like vegetation height and
density. These features supplement the spectral data by providing additional insight into
crop morphology. Texture features describe the spatial distribution of crops by analyzing
the gray-scale relationships between image pixels. In this study, texture features based
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on the Gray-Level Co-occurrence Matrix (GLCM) were employed to enhance the spatial
representation of crop distributions [32].

Table 2. Overview of the feature types utilized in the study.

Feature Types Features Description

Spectral features
(1) Spectral bands Sentinel-2 bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12

Spectral features Enhanced Vegetation Index (EVI) 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1)

(2) Spectral indices MERIS Terrestrial Chlorophyll Index
(MTCI) (B6 − B5)/(B5 − B4)

Chlorophyll Absorption in Reflectance
Index (CARI) (B5/B2)− 1

Land Surface Water Index (LSWI) (B8 − B11)/(B8 + B11)

Wide Dynamic Range Vegetation Index
(WDRVI) (0.2 × B8 − B4)/(0.2 × B8 + B4)

Green Normalized Difference Vegetation
Index (GNDVI) (B8 − B3)/(B8 + B3)

Sentinel-2 Red Edge Position Index (S2REP) 705 + 35 × (((B4 + B7)/2)− B5)/(B6 − B5)

Renormalized Difference Vegetation Index
(RDVI) (B8 − B4)/((B8 + B4)ˆ 0.5)

Phenological features SOS The date in the green-up phase when the rate of
increase in the first derivative of EVI reaches its peak.

Integral The cumulative EVI across the crop season.

EOS The senescence phase date when the first derivative of
EVI shows the steepest decline.

LOS The time span between the season’s end (EOS) and
start (SOS).

BL The lowest EVI observed during the crop season.

MOS The date of the maximum EVI value during the crop
growing season.

value_SOS The EVI value at the start of the season (SOS).

value_EOS The EVI value at the end of the season (EOS).

value_MOS The EVI value at the peak of the season (MOS).

SA EVI values throughout the crop season.

Radar features Backscattering coefficient and their
combinations

VV, VH, VV − VH, VV + VH, (VH − VV)/(VV + VH),
VV/VH

Textural features

Contrast (CON), Variance (VAR),
Homogeneity (IDM), Correlation (CORR),

Entropy (ENT), and Angular Second
Moment (ASM)

Calculated from the Red Edge (B5), NIR (B8), and
SWIR (B11) based on GLCM with a 3 × 3 window.

Note: Spectral features, radar features, and textural features are extracted using images from May to October.

The initial features from different growth stages might have strong intercorrelations,
making them ineffective for crop identification. Here, a data reduction approach based on
the JM distance (Equations (1) and (2)) was used to compress the initial features and select
the optimal features [33].

JM = 2
(

1 − e−Bij
)

(1)

Bij =
1
8
(mi − mj)

2
σ2

i + σ2
j
+

1
2

ln(
σ2

i + σ2
j

2σiσj
) (2)
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where B denotes the Bhattacharyya distance; JM represents the JM distance between classes
i and j; mi and mj are the means of the feature vectors for the samples; and σi and σj are the
standard deviations of the feature vectors for the samples.
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(d) BL, (e) MOS, (f) value_MOS, (g) SA, (h) Integral, (i) Value_SOS, and (j) Value_EOS, with detailed
descriptions in Table 2.

In the study, the JM distance was calculated using 30 crop samples between any two
crop types (i.e., maize, soybean, peanut, cotton, and rice). These 30 crop samples were
collected from regions with varying levels of crop diversification and cropland fragmen-
tation across the entire study area. This approach ensured that the selected features were
applicable to all CHZs. Features with a JM distance > 1 were selected as candidate features
for crop classification [34].

2.4. Auxiliary Data
2.4.1. Ground Truth Data

Ground truth data were collected during the 2019 cropping season in the study area.
The survey recorded detailed information on representative crop types, including maize,
soybean, peanut, cotton, rice, and other crops. Geo-locations for part of the samples were
recorded using a handheld GPS with a positional accuracy of 5 m. Additionally, other
sample locations were identified through visual interpretation of multi-temporal Sentinel-2
images (Figure 2). The dataset comprised 990 maize samples (232 from the handheld GPS),
627 soybean samples (185 from the handheld GPS), 748 peanut samples (262 from the
handheld GPS), 363 cotton samples (102 from the handheld GPS), 251 rice samples (156
from the handheld GPS), and 321 potato samples (172 from the handheld GPS). To ensure
robust analysis, all collected samples were randomly split into 70% training data and 30%
validation data.

2.4.2. Agricultural Statistical Data

County-level crop statistics for 2019 were obtained from local municipal statistical
yearbooks (Figure 4). These statistics were used to calculate county-level compositional
heterogeneity metrics (i.e., crop diversity). Additionally, the statistical crop areas were
compared with the monitored areas derived from the crop mapping results to assess the
performance of the landscape-clustering zoning strategy.
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2.4.3. Land Use Data

The ESA WorldCover 2020 product at 10 m spatial resolution has 11 land use cate-
gories [35]. The distribution of cropland in the product (coded as 40) was used to remove
non-crop areas.

3. Methods
The workflow of this study is illustrated in Figure 5. First, CHZs, representing rela-

tively homogeneous areas, were clustered using comprehensive landscape metrics. Second,
diverse feature combinations were paired with a Random Forest (RF) classifier within
each CHZ, and the optimal feature combination for each CHZ was selected. Finally, the
proposed landscape-clustering zoning strategy was employed to map multiple crop types
in fragmented areas, and its performance was evaluated.

3.1. The Landscape-Clustering Zoning Strategy

This section mainly describes the landscape-clustering process. Comprehensive land-
scape metrics and CHZs were obtained in Sections 3.1.1 and 3.1.2, respectively. The optimal
feature combination in each CHZ was selected in Section 3.1.3.

3.1.1. Obtaining Comprehensive Landscape Metrics
Cropland Extraction

To accurately capture features of cropland fragmentation, a hierarchical extraction
method was employed to identify cropland patches. The process utilized Sentinel-2 August
mean composite images (Figure 6) and a series of filtering rules. First, water bodies were
removed using the NDWI (Normalized Difference Water Index) with an appropriate thresh-
old (Equation (3)). Next, artificial objects such as bare ground, buildings, and road networks
were excluded based on the NDBI (Normalized Difference Built-up Index) (Equation (4)).
Finally, trees were filtered out using the B8 (NIR) band to produce preliminary results. To
ensure the exclusion of non-cultivated image elements, the preliminary results were refined
by clipping them with the cultivated map derived from the ESA WorldCover 2020 product.
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This process produced a final cropland mask, which was subsequently used to calculate the
configuration heterogeneity metrics and exclude non-cropland objects in the classification.

NDWI = (B3 + B8)/(B3 − B8) (3)

NDBI = (B11 + B8)/(B11 − B8) (4)
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Crop Heterogeneity Metrics Calculation

Six landscape metrics expressing crop heterogeneity were selected for this study
because they were widely used in previous research [9,12]. These metrics were catego-
rized into two groups based on crop heterogeneity: configurational heterogeneity, which
represents cropland fragmentation, and compositional heterogeneity, which reflects crop
diversity. The landscape metrics were derived from various dimensions, including the
aggregation and shape of cultivated patches and the diversity of crops (Table 3). All metrics
were calculated at the county scale. Configurational heterogeneity metrics were derived
from the cultivated patches described in Section Cropland Extraction, while compositional
heterogeneity metrics were calculated using agricultural statistics detailed in Section 2.4.2.

Table 3. Selection of crop heterogeneity metrics.

Type Subtype Detail Metrics Description

Configurational
heterogeneity

Aggregation metrics

Patch density
The aggregation of fine

cropland
(PD)

Mean patch size
(AREA_MN)

Shape metrics

Area-weighted mean shape metric
The complexity of shape of

arable land
(SHAPE_AM)

Area-weighted mean fractal dimension metric
(FRAC_AM)

Compositional
heterogeneity

Diversity metrics

Shannon’s Diversity index

Crop diversity and evenness(SHDI)
Shannon’s Evenness index

(SHEI)

Principal Component Analysis

To reduce redundancy between landscape metrics, Principal Component Analysis
(PCA) was applied to condense the initial metrics into comprehensive landscape metrics.
The process involved three main steps. First, the six initial landscape metrics were stan-
dardized using Z-score normalization. Second, the component matrix was rotated using the
varimax rotation method to calculate the eigenvalues of the components and the loadings
of the landscape metrics. Eigenvalues represent the amount of information contained in the
corresponding principal components, with higher values indicating greater significance.
Using these eigenvalues, the variance contribution rate was calculated to determine the
proportion of information each principal component contributed to the total variance of
all components. Loadings revealed the correlation between individual landscape metrics
and their associated principal components. Finally, components with eigenvalues greater
than one were retained as comprehensive landscape metrics [36]. The attributes of these
comprehensive metrics were then interpreted based on the loadings.

Each composite component explained multiple landscape indices and could be ex-
pressed as values in the pattern matrix (Equation (5)), as follows:

Fi = aie ∗ xie + ai f ∗ xi f + . . . + ain ∗ xin (5)

where aie, ai f , and ain refer to the coefficients corresponding to the chosen landscape metrics
xie, xi f , and xin in factor Fi, respectively.

3.1.2. Generating CHZs

K-means is an unsupervised clustering technique that assigns data points to the
nearest centroids, minimizing the sum of squared deviations within each cluster [37]. In
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this study, the K-means algorithm was applied to group comprehensive landscape metrics
into relatively homogeneous areas. To evaluate the effectiveness of the clustering, the
silhouette coefficient (S(k)) was calculated. This metric combines measures of cohesion and
separation to assess cluster quality (Equation (6)). The average silhouette coefficient was
computed for numbers of clusters, k, ranging from 2 to 10. The optimal number of CHZs
was set as the k with the highest average silhouette coefficient, as follows:

S(k) =
b(k)− a(k)

max{a(i), b(i)} (6)

where a(k) represents the mean distance between vector k and all other points in its cluster,
and b(k) represents the smallest mean distance between vector k and points in the nearest
neighboring cluster. S(k) ranges from −1 to 1, with values closer to 1 indicating higher
clustering quality.

3.1.3. Designing and Selecting Classification Schemes

The optimal features for crop classification vary across regions due to differences in
crop heterogeneity [11,38]. And selecting appropriate feature combinations can mitigate
classification confusions [39]. Conversely, using excessive feature types indiscriminately
without considering crop heterogeneity can cause overfitting. Therefore, seven classification
schemes were developed with different feature combinations (Table 4) and paired with a
Random Forest (RF) classifier. The first three schemes (S1–S3) combined spectral features
with one additional feature type, while S4, S5, and S6 combined spectral features with two
distinct feature types. The S7 scheme incorporated all four feature types.

Table 4. Description of feature combinations.

Classification Scheme Feature Combinations

Scheme 1 (S1) Spectral features + Phenological features
Scheme 2 (S2) Spectral features + Radar backscattering features
Scheme 3 (S3) Spectral features + Textural features
Scheme 4 (S4) Spectral features + Phenological features + Radar backscattering features
Scheme 5 (S5) Spectral features + Phenological features + Textural features
Scheme 6 (S6) Spectral features + Radar features + Textural features
Scheme 7 (S7) Spectral features + Phenological features + Radar features + Textural features

The RF classifier is well-suited for high-dimensional data and demonstrates reduced
susceptibility to overfitting [40]. In this study, two adjustable parameters—number of
trees and number of variables per split—were configured. For the number of trees, values
were tested incrementally from 50 to 500 in steps of 10, and the parameter was set at the
point where the overall accuracy (OA) no longer improved. The number of variables per
split was set to the square root of the total number of input variables. Finally, the optimal
classification scheme for each CHZ was selected as the one with the highest OA among the
seven schemes.

3.2. Accuracy Evaluation

We randomly used 70% of the samples for training and the remaining 30% for vali-
dation. For the validation, the OA and kappa was used to assess the overall classification
performance and consistency, while user’s accuracy (UA) and producer’s accuracy (PA)
were used to evaluate the accuracy of specific crop categories [41]. The F1-score (F1) pro-
vides a balanced consideration of both UA and PA, as it is the harmonic mean of UA and PA.
Additionally, the mapped crop areas were compared with county-level statistics derived
from statistical yearbook data to further validate the classification results.
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4. Results and Analysis
4.1. Acquisition and Analysis of Comprehensive Landscape Metrics

PCA yielded six components from the landscape metrics (Figure 7a). Among these,
the first three components, with eigenvalues greater than 1, accounted for 94.36% of the
accumulated variance contribution rate (Figure 7b). This result indicate that these three
components captured the majority of the information from the original metrics and were
retained to analyze in the next step.
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To determine the characteristics of these three components, the loading coefficients of
the landscape metrics were calculated (Figure 8), describing the correlation between each
principal component and the landscape metrics. Component 1 showed strong positive
correlations with shape metrics (Table 3), specifically SHAPE_AM and FRAC_AM (load-
ings: 0.92 and 0.98, respectively), representing cropland shape complexity. Component
2 was closely associated with aggregation metrics, exhibiting a negative correlation with
AREA_MN (loading: −0.96) and a positive correlation with PD (loading: 0.95), reflecting
the degree of fragmented cropland patch aggregation. Component 3 correlated positively
with diversity metrics, including SHDI and SHEI (loadings: 0.9 and 0.86), indicating
crop diversity.

Components 1, 2, and 3 were selected as comprehensive landscape metrics and re-
named as ‘Shape’, ‘Aggregation’, and ‘Diversity’, respectively, based on their dominant
characteristics. These renamed components are consistently applied throughout the re-
mainder of the paper for clarity of understanding.

4.2. CHZ Generation

Five CHZs were identified through clustering based on the three comprehensive
landscape metrics. The intermediate steps for determining the number of partitions are
shown in Figure 9a. The optimal number of clusters was determined to be five, as indicated
by the highest silhouette coefficient (S(5) = 0.702).

Figure 9b presents the overall crop heterogeneity for each CHZ, while Figure 10
illustrates the spatial distribution of the CHZs, with Figure 10(a1–a5) providing details
on cropland fragmentation. The degree of geomorphology and cropland fragmentation
was analyzed for each CHZ to understand its unique characteristics. CHZs 1 and 3
exhibited low shape complexity and high aggregation (Figure 9b), appearing as large,
regular cropland patches in Figure 10(a1,a3). These zones were primarily plains, where
cropland patches were minimally influenced by topographic factors. CHZs 2 and 4 showed
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high aggregation of cropland patches characterized by regular shapes and numerous small
patches (Figure 10(a2,a4)). While these zones were also dominated by plains, they were
enriched with water resources, such as Weishan Lake and Yi River. The availability of water
promotes irrigation-based cultivation along waterways, leading to the proliferation of small
cropland patches in these areas. CHZ 5 was distinguished by fine cropland patches with
intricate shapes due to the presence of rugged mountains, such as Mount Tai and Mount
Yimeng, and the surrounding hills. These geographic features fragmented the cropland
patches, as seen in Figure 10(a5).
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images are derived from Sentinel 2 August mean composite images, and the cropland maps are from
Section Cropland Extraction.

To analyze crop diversity in each CHZ, the crop statistics for each CHZ were surveyed
(Figure 11). CHZ 1 and CHZ 2 were primarily dominated by maize, with maize accounting
for 71% and 66% of the area, respectively. Other crops were cultivated to a lesser extent,
contributing to the low crop diversity shown in Figure 9b. CHZ 3 had a more varied crop
composition, with rice, cotton, maize, and soybean as the dominant crops, representing 31%,
36%, 16%, and 17% of the area, respectively. The even distribution of these crops within
CHZ 3 resulted in a high crop diversity. CHZ 4 was predominantly planted with maize,
with rice as a secondary crop, while CHZ 5 was also maize-dominated but had peanuts
and potatoes as secondary crops. These two subzones shared similar crop proportions and
crop diversity structures.

The above findings suggested that crop diversity and cropland fragmentation were
significantly different between CHZs, highlighting the potential for CHZs in crop map-
ping applications.

4.3. Optimal Classification Schemes Selection

The overall accuracies (OAs) of the seven classification schemes, which incorporated
different feature combinations for each CHZ, are shown in Figure 12. In CHZ 1 and CHZ 2,
S1 to S7 achieved OAs greater than 90%. The highest OA schemes were S3 and S6, with OAs
of 96.23% and 94.66%, respectively. However, these schemes only demonstrated minimal
improvements of 1.32% and 1.35% (average value of enhancements compared to other
schemes), respectively. This limited enhancement may have been due to the relatively low
crop heterogeneity in CHZ 1 and CHZ 2. By contrast, CHZ 3 (with the highest crop diversity
in Figure 9b), CHZ 4 (with the highest fragmented cropland aggregation), and CHZ 5 (with
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the highest shape complexity) exhibited higher crop heterogeneity. The schemes with the
highest OAs in these zones were S7, S4, and S6, with OAs of 89.14%, 89.87%, and 93.24%,
respectively. These schemes showed significant average improvements of 4.12%, 5.97%,
and 4.20% over the other schemes, respectively. These results suggested that the selection
of classification schemes could effectively compensate for the accuracy loss caused by high
crop heterogeneity in these regions.
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4.4. Crop Mapping Results

Figure 13 shows the distribution of six crops in the cities of Tai’an, Jining, and Linyi.
Maize and soybean are widely distributed across the plains and are the primary crops in all
three cities. Cotton and rice are predominantly found in the southern part of the study area,
where abundant water resources, such as Weishan Lake and the Yi River, and flat terrain
provide favorable conditions for their cultivation. In the central part of the study area,
peanuts and potatoes are the main crop types due to the hilly and mountainous terrain and
dry climate.
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4.5. Assessment of Crop Mapping
4.5.1. Comparison with No-Zoning Methods

The comparison of confusion matrices for crop mapping between the landscape-
clustering zoning method and the no-zoning method is shown in Table 5. The no-zoning
method used S7, which integrated all available feature types in Table 4. The landscape-
clustering zoning method achieved an OA of 93.52%, reflecting a 2.9% improvement over
the no-zoning method. Similarly, the Kappa coefficient increased to 92.67%, representing a
3.82% improvement.

Regarding the accuracy of different crop types, the landscape-clustering zoning
method achieved F1 scores exceeding 90% for all crops except potato, with an F1 of 88.74%.
Compared to the no-zoning method, the landscape-clustering zoning method exhibited
consistent improvements in F1 across all crops, especially for peanut and cotton, which
increased by 4.42% and 5.56%, reaching F1 scores of 90.17% and 92.03%, respectively. The
landscape-clustering zoning method also demonstrated balanced performance in UA and
PA for all crop types. For maize, the most widely distributed crop in the study area, UA
and PA exceeded 94%, while other crop types showed values around 90%. By contrast,
in the no-zoning method, peanut exhibited significantly higher PA than UA and cotton
exhibited higher UA than PA. This discrepancy could be attributed to spatial characteristics:
peanuts are typically grown in hilly areas with fragmented arable land, while cotton is often
cultivated in regions with diverse crop types. The landscape-clustering zoning method
was divided into CHZ 3 and CHZ 5 based on these spatial characteristics, as detailed in
Section 4.2. This zoning approach reduced the influence of crop heterogeneity on crop
mapping and enhanced the accuracy of classification.
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Table 5. Crop mapping accuracy for different methods.

Landscape-Clustering Zoning Non-Zoning with S7 Improvement

PA (%) Maize 95.80 94.59 1.21
Soybean 93.43 92.65 0.78
Peanut 89.64 88.46 1.18
Cotton 91.60 82.23 1.72

Rice 92.72 91.62 0.10
Potato 89.23 86.65 2.58

UA (%) Maize 94.57 94.41 −0.02
Soybean 92.61 91.35 0.66
Peanut 90.70 83.2 7.50
Cotton 92.46 89.88 9.15

Rice 91.45 89.77 3.68
Potato 88.25 87.64 0.61

F1(%) Maize 94.16 94.04 0.12
Soybean 92.71 92.00 0.72
Peanut 90.17 85.75 4.42
Cotton 92.03 86.47 5.56

Rice 95.08 93.17 1.91
Potato 88.74 87.14 1.60

OA (%) 93.52 90.62 2.9
Kappa (%) 92.67 88.85 3.82

To further illustrate the advantages of the landscape-clustering zoning method for
crop mapping in complex agricultural regions, we analyzed representative crop mapping
results across five CHZs (Figure 14). In CHZ 1 and CHZ 2 (Figure 14a,b), characterized by
regular cropland patches with low crop diversity, the landscape-clustering zoning method
produced similar crop mapping results to the no-zoning approach. In CHZ 3 (Figure 14c),
the landscape-clustering zoning method reduced the misclassification of cotton as maize
compared to the no-zoning method. In CHZ 4 and CHZ 5 (Figure 14d,e), the landscape-
clustering zoning method effectively resisted pepper noise and improved classification
accuracy. These findings confirmed that the landscape-clustering zoning method yielded
more accurate classification results.

4.5.2. Comparison with Agricultural Statistical Data

The crop areas derived from the crop maps were compared with county-level statistical
data. Because rice and cotton are distributed in only a small number of counties, the areas
of all crop types were combined into a single equation to evaluate the overall fit. Figure 15
shows a strong consistency between the mapped crop area and the census data, with an
R2 value of 0.9006. Most points are evenly distributed around the 1:1 line, with only a
very small number of counties showing a higher mapped crop area than the agricultural
statistics. These results underscored the reliability and accuracy of the area estimates of the
landscape-clustering zoning method.
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5. Discussion
5.1. The Advantages of the Landscape-Clustering Zoning Strategy in Crop Mapping

Most previous studies on crop mapping have focused on large-scale regions with
relatively simple crop cultivation structures [42,43]. However, the Huang-Huai-Hai region,
with its complex agricultural landscape characterized by diverse crops and fragmented
arable land, presents unique cropping conditions and a natural environment that are not
representative of these earlier studies. Although zoning methods such as climate and
topography have been proposed to address spatial heterogeneity in crop mapping [20,23],
these zoning strategies are not applicable because complex agricultural landscapes are
affected by multiple environmental factors.

In this study, we propose a landscape-clustering zoning strategy that divides the
study area by quantifying crop diversity and cropland fragmentation through multidimen-
sional landscape metrics. Based on this zoning, classification schemes tailored to different
CHZs were selected to map crops in the Huang-Huai-Hai region’s complex agricultural
landscapes. To evaluate the effectiveness of the landscape-clustering zoning strategy, we
compared it with two traditional zoning methods, including a topographic zoning strat-
egy [44] based on elevation and a county-level administrative zoning strategy [17]. Each
classification experiment was repeated 10 times and the mean and standard deviation of
the classification accuracies are presented in Figure 16.

The landscape-clustering zoning strategy achieved the highest OA at 93.25 ± 0.52%,
followed by the topographic zoning strategy at 91.03 ± 0.26%, and the administrative unit
zoning strategy at 88.63 ± 1.3%. The landscape-clustering zoning strategy was obviously
superior to the other two strategies. In addition, the PA and UA of the landscape-clustering
zoning strategy generally outperformed those of the other strategies. For peanut and potato,
the PA and UA were similar to those of the topographic zoning strategy, as these crops
are predominantly grown in hilly areas where topographic zoning helps to reduce spatial
heterogeneity. However, for cotton, the UA and PA in the topographic zoning strategy
were significantly lower than in the landscape-clustering zoning strategy, likely because
the topographic zoning strategy failed to delineate the high crop diversity areas in the
plains. The administrative unit zoning strategy had the lowest accuracy and the highest
standard deviation for each crop type, which could be attributed to the limited number of
training samples within each unit. This limitation hindered the model’s ability to capture
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crop-specific characteristics, resulting in underfitting, and yielded the lowest PA and UA
among the three strategies, along with significantly higher errors.
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We also analyzed the spatial distribution similarities and differences of subzones
between the landscape-clustering and topographic zoning strategies (Figure 17). Both
methods effectively delineated the mixed hilly and mountainous areas in the central part
of the study region. In the landscape-clustering zoning strategy, this central region was
classified as CHZ5, characterized by complex and finely fragmented cropland patches
divided by hills and mountains (Figure 10(a5)). The topographic zoning strategy further
subdivided this central region into smaller hilly and mountainous subzones. However,
due to harsh environmental conditions, such as steep slopes and poor soil quality in the
mountainous areas, crop cultivation in these regions is minimal. Additionally, the cropland
mask applied in this study excluded the influence of mountainous land features, thereby
providing limited benefits for crop classification. In the plains, the landscape-clustering
zoning strategy demonstrated greater capability by dividing the area into four subzones
(CHZ1–CHZ4) based on the degree of crop diversity and cropland fragmentation. By
contrast, the topographic zoning strategy was limited to delineating a single plain subzone.

5.2. The Effect of Classifiers on Crop Mapping in the Landscape-Clustering Zoning Strategy

Classifiers used in crop mapping can be significantly influenced by spatial heterogene-
ity [45,46]. In this study, we compared the adaptability of Random Forest (RF) and other
classifiers, including Gradient Boosting Decision Tree (GBDT), Support Vector Machine
(SVM), and Classification and Regression Tree (CART), within the landscape-clustering zon-
ing strategy, based on the optimal classification scheme for CHZs determined in Section 4.3.
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The parameters for the classifiers were optimized using the grid search method (using a
brute-force method to filter the optimal parameters of a classifier). The OA for the entire
study area is presented in Figure 18a, where RF achieved the highest OA (93.52%), followed
by GBDT (92.12%), while both SVM and CART had OA values below 90%.
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The accuracy of the classifiers for each CHZ was also analyzed (Figure 18b). In CHZ 1
and CHZ 2, which had low crop heterogeneity, all four classifiers achieved OAs greater
than 90% and displayed similar accuracy levels, indicating that all classifiers adapted
well in areas with low crop heterogeneity. However, in CHZ 3, CHZ 4, and CHZ 5,
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which exhibited higher crop heterogeneity, RF demonstrated slightly higher OAs than
GBDT and significantly outperformed SVM and CART. These results highlighted RF’s
superior robustness in regions with high crop heterogeneity, followed by GBDT, whereas
SVM and CART were less effective in addressing the challenges posed by heterogeneous
crop landscapes.

5.3. Limitations

The landscape-clustering zoning strategy proposed in this study has demonstrated its
usefulness, but several challenges remain. First, because the smallest statistical scale for
agricultural statistics is at the county level, landscape metrics could only be calculated at
this scale. However, we observed differences in the spatial distribution of crop diversity and
cropland fragmentation within counties. Although county-level zoning yielded satisfactory
results in this study, there remains room for improvement. Future studies could integrate
multi-source remote sensing and statistical data to downscale agricultural statistics to finer
grids (e.g., [15]). Second, this study used 10 m spatial resolution images but did not account
for the mixed pixel effect. The mixed pixel effect not only influences classification accuracy
but also impacts crop area statistics, especially in fragmented agricultural landscapes. The
comparison between mapped areas and statistical data in this study can only be interpreted
as a reference rather than a strict validation [18]. Hybrid pixel decomposition methods,
such as linear hybrid models, may offer a potential solution to address the mixed pixel
effect [47]. However, challenges in selecting end-members and the high computational
requirements limited their application in this study. Third, the study considered only crop
diversity and cropland fragmentation as factors influencing crop mapping but did not
include crop phenology. When scaling up to larger study areas, the inconsistency of crop
phenology across regions should be further analyzed. Finally, investigating the application
of deep learning models within the landscape-clustering zoning strategy could offer better
adaptability and reduce the impact of crop heterogeneity on crop mapping in future studies.

6. Conclusions
This study proposes a landscape-clustering zoning strategy to map crops in frag-

mented cropland regions using feature combinations. The comprehensive landscape
metrics obtained could effectively quantify the localized complex agricultural areas in the
Huang-Huai-Hai region from multiple dimensions (including cropland patch shape, aggre-
gation, and crop diversity) and reflected the association of complex natural environments
with crop diversity and cropland fragmentation. The generated CHZs divided the whole
study area into different homogeneous units and selecting feature combinations tailored
to each CHZ effectively compensated for accuracy losses caused by crop heterogeneity,
particularly in high crop heterogeneity regions. Compared to no-zoning and other zoning
strategies, the landscape-clustering zoning strategy demonstrated superior accuracy and
great consistency with agricultural statistics. Unlike previous methods that rely solely
on pre-acquired mapping results for calculating landscape metrics, this strategy directly
computes metrics using auxiliary data, providing a methodological reference for the a priori
quantification of complex agricultural landscapes. Additionally, the zoning-based feature
combination approach offers a novel perspective for enhancing crop mapping accuracy
in these regions. With promising results, the landscape-clustering zoning strategy shows
potential for application in large-scale regions and diverse cropping environments. Future
studies will evaluate its integration with sample generation strategies to further refine its
utility and scalability.
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