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Abstract: Raman spectroscopy is a spectral analysis technique based on molecular vibration.
It has gained widespread acceptance as a practical tool for the non-invasive and rapid
characterization or identification of multiple analytes and compounds in recent years. In
fruit quality detection, Raman spectroscopy is employed to detect organic compounds,
such as pigments, phenols, and sugars, as well as to analyze the molecular structures of
specific chemical bonds or functional groups, providing valuable insights into fruit disease
detection, pesticide residue analysis, and origin identification. Consequently, Raman
spectroscopy techniques have demonstrated significant potential in agri-food analysis
across various domains. Notably, the frontier of Raman spectroscopy is experiencing a
surge in machine learning applications to enhance the resolution and quality of the resulting
spectra. This paper reviews the fundamental principles and recent advancements in Raman
spectroscopy and explores data processing techniques that use machine learning in Raman
spectroscopy, with a focus on its applications in detecting fruit diseases, analyzing pesticide
residues, and identifying origins. Finally, it highlights the challenges and future prospects
of Raman spectroscopy, offering an effective reference for fruit quality detection.

Keywords: Raman spectroscopy; machine learning; detection of fruit diseases; detection of
fruit pesticide residues; identification of fruit origin

1. Introduction
With the advancement of modern agriculture, fruits have become essential sources

of essential nutrients due to their rich content of minerals, vitamins, and dietary fibers [1].
However, fruit diseases caused by pathogenic bacteria and the use of excessive pesticides
have led to pesticide residues in fruits, posing a significant threat to human life and health,
affecting fruit sales in different regions, and presenting a major challenge to the sustainable
development of the fruit industry [2–4]. To detect and identify the quality of fruits, various
methods have been applied, including sensory evaluation, Polymerase Chain Reaction
(PCR) detection, Gas Chromatography-Mass Spectrometry (GC-MS) detection, spectral
detection, and others. Sensory evaluation is suitable for evaluating both the external and
certain internal qualities of fruits, such as freshness, ripeness, and internal defects, which
are of particular concern [5]. PCR detection, which is known for its high stability and
accuracy, is effective in identifying the DNA or RNA of pathogens and detecting gene
mutations associated with genetic diseases. Recently, real-time quantitative PCR (qPCR),
multiplex PCR (mPCR), and digital PCR (dPCR) have amplified specific DNA segments
in a shorter time, offering the potential for precise diagnosis and immediate detection [6].
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GC-MS, known for its high separation efficiency and rapid analysis, is primarily used to
detect organic pollutants in water or soil and analyze bioactive compounds in plants. Re-
cently, the adoption of triple quadrupole GC-MS and the HES 2.0 ion source has allowed
for the detection of compounds at extremely low concentration levels, which is crucial for
applications requiring exceptionally high sensitivity [7].

Spectral analysis has been extensively utilized in fruit quality detection, biomedical
identification, and environmental monitoring due to its high sensitivity, resolution, and
non-destructive nature. According to the detection wavelength and excitation source,
the types of spectroscopy applied include infrared (IR), near-infrared (NIR), and Raman
spectroscopy (RS), among others. IR and NIR spectroscopy facilitate both qualitative and
quantitative analysis of samples. The advancement of techniques, such as two-dimensional
material-polariton-enhanced infrared spectroscopy, MoO3 phonon-polariton-enhanced
infrared spectroscopy, and surface-enhanced infrared spectroscopy, has significantly am-
plified molecular vibrational absorption signals, thereby improving detection sensitiv-
ity [8,9]. Compared with IR and NIR spectroscopy, Raman spectroscopy demonstrates
strong applicability, including resistance to moisture interference and minimal consump-
tion of chemical reagents, particularly when combined with laser techniques that offer high
monochromaticity and strong directivity. High-sensitivity detectors and confocal micro-
scopes have improved their capabilities, so RS has become a widely adopted analytical
tool in the field of fruit quality detection [10]. This review focuses on the application of
Raman spectroscopy combined with machine learning for the rapid and non-destructive
analysis of fruit quality. It introduces the principles and recent advancements in Raman
spectroscopy detection techniques that use machine learning algorithms and then provides
a comprehensive overview of Raman spectroscopy applications in fruit disease, pesticide
residue detection, and origin identification. Finally, the challenges and future trends of
Raman spectroscopy for non-destructive and rapid fruit quality analysis are discussed.
This review aims to provide new perspectives and pave the way for the future application
of Raman spectroscopy in fruit quality detection.

2. Main Techniques of Raman Spectroscopy
2.1. Principle of Raman Spectroscopy Technique

In spectroscopy detection, the photons emitted by the laser interact with the electron clouds
and molecular bonds in the sample, leading to Rayleigh scattering and Raman scattering. The
excited molecules transition from the ground state to a higher-energy excited state and then
return to other vibrational levels. This process is divided into Stokes Raman scattering, in which
the photon energy decreases from hν0 to hν0 − hνm, and anti-Stokes Raman scattering, in which
the photon energy increases from hν0 to hν0 + hνm. The electron energy level transitions for
Raman and Rayleigh scattering are shown in Figure 1 [11–13]. According to the Boltzmann
distribution, molecules in the ground state are more stable in thermal equilibrium; thus, most
molecules are in this state. Because Stokes Raman scattering involves transitions from the
ground state, its probability is higher than that of anti-Stokes Raman scattering.

The intensity of the Raman signal depends on the concentration, enabling quantitative
analysis [14]. The relation between these parameters can be expressed as

IR ∝ v4 I0N
(

∂α

∂ϕ

)2
(1)

where ν is the frequency of the incident laser radiation, I0 is the intensity of the incident laser
radiation, N is the number of scattering molecules in a given state, α is the polarizability of
the molecules, and ϕ is the amplitude of the molecular vibration.

During Raman scattering, changes in photon energy produce Raman shifts that arise
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from alterations in molecular vibrations or spin states. Correspondingly, the stretching
vibrations and spin states of molecular chemical bonds can be analyzed using Raman
spectroscopy. Initially, Raman spectroscopy was applied to detect hydrogen bonds but
has since been advanced to identify covalent bonds, such as C – C, – C –– C – , N – O, and
C – H bonds [15]. For instance, carotenoids in citrus fruits exhibit three prominent Raman
characteristic peaks at Raman shifts of 1003 cm−1, 1155 cm-1, and 1520 cm−1, corresponding
to – C –– C – bond stretching vibration, C – C bond stretching vibration, and in-plane CH3

vibrations, respectively, as shown in Figure 2 [16]. Changes in the content of organic
compounds can be assessed by analyzing the position and intensity vibrations at these
peaks. During the acquisition of Raman spectra, interference from ambient light and
temperature variations significantly affects the results. Ambient light introduces additional
signals to the detector, which are superimposed on the true Raman spectrum, leading to
increased background noise and a reduced signal-to-noise ratio. Therefore, background
light sources should be shielded during measurements and eliminate the interference
of background light in the spectrum. The optical components of spectrometers should
be operated at their designed working temperature. Temperature variations affect the
refractive index of optical elements, the optical path, and focusing performance. Thus, it
is essential to acquire spectra under constant temperature conditions [17,18]. The Raman
signal generation process involves photons emitted by the laser being refracted onto the
sample through a dichroic mirror. The scattered light is then filtered and transmitted to
the spectrometer through a dichroic mirror and a filter. Finally, the beam is focused on
the detector, where the collected signal is converted into an electrical signal [19]. The
configuration of the Raman spectrometer is illustrated in Figure 3.

Figure 1. Electron energy level diagram illustrating Rayleigh scattering and Raman scattering
processes.

Figure 2. Raman spectrum of citrus peels.
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Figure 3. Structure diagram of Raman spectrometer.

The intensity of the Raman spectral signal is very low in the absence of an enhancement
mechanism; thus, it is especially difficult to obtain Raman spectral information from the
interior of the sample, as Raman spectra are typically generated when the surface interacts with
incident light. In addition, the scattering cross-section of most molecules is very small, and they
can produce a strong fluorescence background under laser irradiation, which interferes with
the Raman signal and makes it more difficult to capture [20]. To overcome these challenges
in Raman spectroscopy, advanced spectral techniques, such as Surface-Enhanced Raman
Spectroscopy (SERS), Confocal Micro-Raman Spectroscopy (CM-RS), and Spatially Offset
Raman Spectroscopy (SORS), have been increasingly adopted [21].

2.2. Surface-Enhanced Raman Spectroscopy

To enhance the intensity of the Raman signal, target molecules are adsorbed onto
the substrate surface of metal nanoparticles (NPs) due to the surface plasmon resonance
effect of metal NPs and the charge transfer between molecules and metals, as shown in
Figure 4, in which both physical and chemical enhancement mechanisms amplify the Ra-
man scattering intensity by up to 1014-fold. However, the intensity is amplified only 104- to
106-fold in the absence of NPs [22,23]. Table 1 presents the optimal types and morphologies
of metal substrates for detecting fruit compounds utilizing the SERS technique. Metal
substrates play a crucial role in SERS, so the preparation of metal substrates is essential
for achieving Raman signal enhancement. Usually, substrates can be prepared using meth-
ods such as electrochemical deposition, vacuum evaporation, and metal colloids [24–26].
When prepared using electrochemical deposition, such substrates are suitable for the de-
tection of pollutants and non-adsorbent analytes in air, soil, and water, but they often
exhibit uneven distribution and limited flexibility. The metal film deposited by vacuum
evaporation for SERS substrates is suitable for materials such as Polymethylmethacrylate
(PMMA), Polyvinylidene Fluoride (PVDF), Polydimethylsiloxane (PDMS), Polyethylene
Terephthalate (PET), and proteins. Alternatively, the periodic folded gold nanostructure
SERS substrates and flexible SERS substrates prepared using metal colloids are suitable for
detecting additives, pesticide residues, mycotoxins, and other contaminants in food.

The preparation of periodic folded nanosubstrates utilizes AFM dynamic lithography
and nano-cutting techniques to precisely control the periods and nanogap widths of the
folded nanostructures, thereby optimizing the surface plasmon resonance effect to enhance
the Raman signal. The SERS technique based on periodic folded gold nanoparticles has
been applied in the detection of organic compounds in the substrate. Ye et al. [27] de-
signed periodic folded gold nanostructure substrates that exhibit the three-dimensional
nano-focusing effect, hotspot effect, and standing wave effect, creating an extremely high



Agriculture 2025, 15, 195 5 of 34

electromagnetic field to enhance the Raman signal. The minimum detection limit for
paminothiophenol (PATP) in the substrate reached 10–9 M. When this substrate was not
applied, Zhang et al. [28] employed the SERS technique using IP6@Au with Fe3+ as a
reinforcing agent. The minimum detection limit of 10−7 M for PATP on the substrate
was achieved.

The preparation of flexible substrates deposits plasma nanomaterials onto the surface
of supporting materials, such as polyvinyl alcohol, cellulose, and biofilm. When the sub-
strate is bent and folded, the flexibility and thermal stability remain excellent, allowing it
to be applied in various shapes. SERS based on flexible materials has been widely applied
in the detection of food-borne pathogens and vitamins in food. Due to the abundance
of hydroxyl groups on cellulose, silver nanoparticles easily bind to celluloses, forming a
bendable SERS chip. Pham et al. utilized this SERS chip to detect thiram residues in apples,
achieving a minimum detection limit of 1.01 × 10−8 M. As the concentration decreases from
1.0 × 10−3 M to 1.0 × 10−9 M, the peak intensity gradually diminishes on rigid substrates,
whereas the peak intensity of flexible substrates remains clearly observable within this
range. The corresponding Raman spectra are shown in Figure 5 [29]. SERS can achieve
single-molecule detection, with detection limits as low as 1.0 × 10−9 M or even lower in
certain cases, making it highly suitable for applications in biomedical and food safety
detection.

Figure 4. Enhancement mechanism of SERS.

Figure 5. (a) SERS spectra of thiram solution at different concentrations on rigid Ag/Al substrate,
(b) SERS spectra of thiram solution at different concentrations on flexible PVA/cellulose/Ag chips.
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Table 1. Optimal types and morphologies of metal substrates for SERS detection of various fruit
compounds.

Sample Internal Compounds Metal Substrate Type Substrate Morphology

Citrus
Hesperidin, Tangeretin Au Nanoparticles

Coumarin, D-Limonene,
β-Carotene Ag Nanotrees

Apple

Quercetin, Malic Acid,
Citric Acid Au Nanoparticles

Fructose, Glucose, Sucrose,
Vitamin C Ag Nanoparticles

Tomato
Benzo-a-pyrene Au Nanofilms

Coumarin, D-Limonene,
β-Carotene Ag Nanofilms

Grapefruit
Ethy1 Acetate, Naringin Au Nanoparticles

Limonene, Sucrose,
β-Carotene Ag Nanotrees

Cherry

phenethyl alcohol,
Ethyl Acetate Au Nanoparticles

Anthocyanin, Citric Acid,
Glucose, Fructose Ag Nanoparticles

Pear Hexanal, Ethyl Acetate Au Nanoparticles
Fructose, Glucose,

Malic Acid Ag Nanoparticles

Lemon Hesperetin, Limonene Au Nanoparticles
Citric Acid, Vitamin C Ag Nanoparticles

Strawberry

Anthocyanin, Quercetin,
Hexyl Acetate Au Nanoparticles

Fructose, Glucose, Citric
Acid, Vitamin C Ag Nanoparticles

Grape
Quercetin, Hexyl Acetate Au Nanospheres

Fructose, Glucose,
Tartaric Acid Ag Nanospheres

2.3. Confocal Micro-Raman Spectroscopy

Confocal Micro-Raman Spectroscopy (CM-RS) combines the high-resolution imaging
capability of confocal microscopy with the chemical analysis capability of Raman spec-
troscopy by aligning the laser light source, sample, and detector to effectively filter out stray
light from the defocused regions of the sample. Initially, CM-RS had a spatial resolution
in the range of 0.5 to 1 µm. With the introduction of methods such as near-field Raman
spectroscopy (NRS) and time-resolved Raman spectroscopy (TRS), the spatial resolution
of micro-Raman spectrometers has been significantly enhanced, reaching levels as low
as several nanometers and even achieving tens of nanometers [30], with the structure of
the spectrometer illustrated in Figure 6 [31]. Due to the limited polarization capability of
the CM-RS spectrometer, a spectrometer with polarization capability provides symmetry
information of molecular vibrations within the Raman spectra, aiding in the identification
and characterization of molecular structures.

Acher et al. enhanced the microscope with a polarization analysis capability, as shown
in Figure 7. In Raman polarization experiments conducted on silicon, they observed an
IX-Pol/ICo-Pol ratio of 0.61 with a standard deviation of 2%. This device enables simultane-
ous measurement of both co-polarization and cross-polarization Raman spectra, allowing
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for the acquisition of “unpolarized” Raman spectra alongside polarization information.
This capability is particularly valuable for studying the crystal orientation and stress state
of anisotropic samples [32].

Figure 6. Structure diagram of a confocal micro-Raman spectrometer.

Figure 7. Structure diagram of Raman microscope with polarization analysis capability.

2.4. Spatially Offset Raman Spectroscopy

To detect Raman signals in the interior of a sample, Spatially Offset Raman Spectroscopy
(SORS) acquires molecular structure information at depth by adjusting the spatial offset be-
tween the laser source focal point and the lens focal point, as shown in Figure 8. The first
recorded depth for SORS was 3 mm. Recent advancements in the technique have demonstrated
that the detection depth can now reach up to 5 cm. SORS can detect information in the interior
of a sample without contacting it but cannot enhance the Raman signal [33–35]. In contrast,
Inverse Spatially Offset Raman Spectroscopy (ISORS) applies a conical lens to generate a
ring-shaped beam, with the ring radius precisely controlled by varying the distance between
the lens and the sample, achieving Raman signal enhancement.

McMillan et al. applied the ISORS technique to offset the collection point of the Raman
spectra away from the laser incident point, effectively reducing fluorescence background
interference, as shown in Figure 9 [36]. Utilizing this technique, the Raman signal intensity
and signal-to-noise ratio for samples obstructed by glass bottles were increased threefold
compared to the original method. The SORS technique enables the detection of Raman
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information from deeper layers within samples, making it suitable for applications in
biomedical research and agricultural product analysis.

Figure 8. Structure diagram of a spatially offset Raman spectrometer.

Figure 9. Raman spectrum device diagram of a sample in a glass bottle collected by ISORS.

In addition, Fourier-Transform Raman Spectroscopy, Tip-Enhanced Raman Spec-
troscopy, and Stimulated Raman Spectroscopy improve the signal-to-noise ratio, enhance
Raman signal intensity, and achieve high spatial resolution. In recent years, various models
of Raman spectrometers have been developed, and suitable Raman spectrometers can be
selected according to the chemical composition of the sample, spectral resolution, and
experimental conditions. Consequently, various Raman spectrometers, as non-destructive,
highly sensitive, and versatile analytical tools, have been extensively applied across fields
such as food safety, materials science, and life sciences. Table 2 presents several Raman-
related technical principles and applications. Table 3 presents the excitation wavelengths,
spectral ranges, and resolutions of different Raman spectrometers.

Different excitation source wavelengths are applied in Raman spectrometers, which
range from ultraviolet (UV) to near-infrared (NIR) and even further. According to the
sample absorption characteristics and spectral resolution, different excitation wavelengths
should be applied. The light scattering intensity, background fluorescence, and acquisi-
tion time are affected by the excitation wavelength. For example, ultraviolet excitation
wavelengths range from 100 to 400 nm. They have strong Raman scattering and are suit-
able for organic biological samples, such as proteins, nucleic acids, and biofilms, due to
their resonance with ultraviolet excited light to enhance the Raman signal [37].
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Table 2. Summary and comparison of Raman-related techniques.

Raman Related
Technique Principle Advantages and

Disadvantages Application References

Traditional Raman
Spectroscopy

The frequency of the
scattered photon is

different from that of
the incident photon.

Non-moisture
interference;

non-destructive.
Raman signal is

weak and susceptible
to fluorescence

interference.

Materials science, life
sciences, criminal

investigation,
forensic science

[11–13]

Surface-Enhanced
Raman Spectroscopy

Uses interactions
between molecules
and coarse metal
nanoparticles to
enhance Raman

signals.

High sensitivity;
enhanced Raman
signal. Substrate-

dependent;
susceptible to
fluorescence
interference

Food safety testing,
nanoscale

manufacturing
technology

[22,23]

Confocal
Micro-Raman
Spectroscopy

Combines the spatial
resolution of the

microscope with the
molecular

vibrational power of
Raman spectroscopy.

High spatial
resolution; no

interference from
fluorescent

background. High
sample preparation

requirements.

Biomedical,
geological,

mineralogical
[30,31]

Spatially
Offset Raman
Spectroscopy

The scattered light at
different depths of

the sample produces
different shifts.

Deep signal
detection; remote
control. Technical

complexity.

Medical diagnosis,
environmental

monitoring
[33–35]

Fourier-Transform
Raman Spectroscopy

Converts the signal
in the time domain

to the frequency
domain.

High signal-to-noise
ratio; wide

measurement band.
Sample

photosensitivity.

Chemical analysis,
pharmaceutical

research
[38,39]

Tip-Enhanced
Raman Spectroscopy

An intensity
electromagnetic field
generated near the

tip of a metal
nanostructure is

utilized.

High sensitivity;
strong applicability.
High precision of

needle tip
preparation.

Electrochemical
interface, biological

interface
[40,41]

Stimulated Raman
Spectroscopy

Nonlinear
interactions between
molecules and lasers.

High chemical
specificity. Expensive

equipment.

Materials science,
medical diagnostics [42,43]

Table 3. Summary and comparison of different models of Raman spectrometers.

Model Company and
Location

Excitation
Wavelength (nm)

Spectral Range
(cm−1) Resolution (cm−1)

Progeny Rigaku; Japan 1064 200–2500 8–11

BRAVO Bruker; Germany 785, 852 300–3200 10–12

Resolve Agilent; America 830 300–3200 5–10

Virsatm Renishaw; Britain 532, 785 50–4000 <250
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Table 3. Cont.

Model Company and
Location

Excitation
Wavelength (nm)

Spectral Range
(cm−1) Resolution (cm−1)

ReactRaman 802L Mettler Toledo;
Switzerland 785 150–3400 4–6

i-Raman Prime 785H Metrohm AG;
Switzerland 785 150–2800 <6

NRS-5000/7000 Jasco; Japan 532, 785, 1064 5–8000 0.3–0.4

MINI CCT+ Horiba Scientific;
France 532, 660, 785 210–3500 8–12

B&W TEK I-RAMAN
Spectra Research

Corporation;
America

532, 785 65–4000 3.5–4.5

Cora 5001 Anton Paar GmbH;
Austria 532, 785, 1064 100–3500 6–9

3. Data Processing and Analysis
The molecular structural information obtained from Raman spectral data facilitates

structural characterization and substance identification, which are beneficial for both quan-
titative and qualitative analysis. Data preprocessing improves the quality of the spectra,
while post-processing emphasizes feature extraction and modeling with the preprocessed
data, reducing computational complexity and enhancing analytical efficiency [44].

3.1. Spectral Pretreatment

The fluorescent backgrounds and cosmic spikes caused by optical effects and the
detector response characteristics of the Raman spectrometer lead to multiple overlaps or
similar spectral features. Therefore, raw Raman spectra require preprocessing, such as
spike correction, baseline correction, and smoothing, to ensure accurate identification of
the analyte [45,46].

3.1.1. Spike Correction

The detector in a Raman spectrometer is a charge-coupled device (CCD) that can detect
high-energy charged particles from outer space while capturing scattered light. This results in
Raman spectra with random, unidirectional, narrow, and sharp peaks, which are misinterpreted
as true Raman peaks. Therefore, a spike correction for the Raman spectra is necessary [47].
Spike correction is divided into three categories. The first category involves repetitive collection,
such as robust summation and upper-bound spectra, which require at least two spectra to
be collected and are unsuitable for dynamic detection [48]. The second category focuses
on hardware improvements to enhance the performance of optical detection devices, and,
compared to theoretical methods, these approaches are more complex and costly [49]. The
final category is single-spectral detection, including techniques such as median filtering and
interpolation filtering.

Median filtering and interpolation filtering replace the peaks of the Raman signals with the
median or interpolated values of the points, within a specified interval centered on the target
point, to eliminate noise. Median filtering effectively removes impulse noise, as its working
principle aligns with the characteristics of impulse noise; however, it falls short in preserving
image edge details. In contrast, interpolation filtering preserves image details by increasing
pixel points without altering the features of the image, addressing random pulse interference
and other types of noise with greater flexibility [50]. Mosafapour et al. [46] performed
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preprocessing on the Raman spectra of six substances, including ethanol and acetonitrile. The
average values and standard deviations of the spectra processed with interpolation filtering
were lower than those of the raw spectra, and the classification accuracy of the six substances
reached 100% by establishing a PCA-LDA model.

3.1.2. Baseline Correction

When laser light irradiates a sample, fluorescent materials within the sample absorb
photons and emit fluorescence, causing baseline drift in the Raman spectrum. Fluorescent
interference obscures the correct spectral distribution, affecting the identification and analysis
of Raman peaks. Baseline correction is employed to restore the raw spectrum, with common
approaches including polynomial fitting and multivariate scatter correction [51,52].

Polynomial fitting and multivariate scatter correction remove the baseline through mathe-
matical calculations [53,54]. However, when the fluorescence signal is excessively strong, the
fluorescence background may overlap with the Raman signal, making it challenging to separate
the two, and mathematical approaches alone may not be sufficient to remove the baseline.
In such cases, optimization of the detection instrument must be performed before spectral
collection. Optimization techniques include time-gated Raman spectroscopy [55], modulated
Raman spectroscopy [56], and shifted excitation Raman difference spectroscopy (SERDS) [57].
All three optimization techniques improve the signal-to-noise ratio, but there are differences:
time-gated Raman spectroscopy reduces fluorescence interference by utilizing time differences,
modulated Raman spectroscopy enhances the Raman signal by modulating the light source,
and SERDS adjusts the wavelength shift to eliminate the fluorescence background.

3.1.3. Smoothing

Fixed noise, emission noise, and background noise in the spectrometer cause random
fluctuations in the Raman signal, affecting peak shapes and data accuracy [58]. Spectral
smoothing can reduce signal fluctuations and ensure the continuity of the signal. Common
smoothing approaches include moving-window averaging, the wavelet transform (WT),
and the Savitzky–Golay (SG) algorithm.

Moving-window averaging requires setting a window that moves from the far left to
the far right of the spectral curve. However, this method is subjective in determining the
window size, and edge effects occur during the window movement, leading to inconsistent
smoothing results [59]. The wavelet transform (WT) is a time-frequency analysis technique
in which wavelet functions decompose the signal into wavelet coefficients, allowing the
capture and reconstruction of signal features [49]. The WT is particularly effective at handling
complex noise. For instance, Pan et al. [60] applied a WT-DCNN classifier to mixed noise data
containing Gaussian noise and baseline noise, achieving the highest classification accuracy,
outperforming the KNN and SVM models. The SG algorithm requires setting the polynomial
order and window size. It performs least-squares fitting based on a polynomial function within
the filtering window, smoothing the spectral data point by point [61]. Yuan et al. [62] developed
a KNN classification model for plastics, where accuracy improved from 79.83% to 88.15% after
applying SG smoothing to the data.

3.2. Data Post-Processing

Data post-processing extracts the characteristics and information affecting the change
in the spectral intensity from the preprocessed data and establishes a qualitative or quan-
titative analysis model. Machine learning can learn patterns and associations from data,
adapting to complex and ever-changing data environments, so it performs data post-
processing processes efficiently.
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3.2.1. Feature Extraction

The preprocessed spectral data typically exhibit high dimensionality and contain
irrelevant information. Raman spectral feature extraction algorithms can identify changes
in Raman intensity within characteristic bands, significantly reducing data redundancy and
improving the signal-to-noise ratio [63]. Commonly used Raman spectral feature extraction
methods include Principal Component Analysis (PCA), Successive Projections Algorithm
(SPA), and Competitive Adaptive Reweighted Sampling (CARS) [64]. Table 4 presents a
summary and comparison of these three Raman feature extraction algorithms, which are
described as follows:

• Principal Component Analysis Algorithm

PCA is an unsupervised feature extraction algorithm that projects high-dimensional data
matrices onto a lower-dimensional space, selecting independent variables with the greatest
variance contribution as the principal components. This algorithm reduces dimensionality
while retaining information from the original data [65]. In the detection of apple valsa canker,
Zhao et al. [66] utilized the PCA algorithm to perform a linear combination of independent
variables from the raw Raman spectral data and ranked them based on their variance con-
tribution rates. The first two principal components achieved a cumulative contribution rate
of 99.38%. By analyzing the correlation between the principal components and the original
variables (x-loadings), the Raman spectral feature wavenumbers were reduced from 994 to
5, thereby extracting wavenumbers closely related to the disease. This reduction in data di-
mensionality not only avoided model overfitting but also improved the model’s generalization
ability and accuracy. However, when the data contain noise or the dataset is large, PCA’s ability
to calculate variance is affected, leading to increased computational costs.

The Robust PCA (RPCA) algorithm recovers low-rank data from the original data and
is used to process noisy data. Pulpito et al. applied this algorithm to the online detection
of moving targets in noisy ocean scenes. When the recall rate was 80%, the accuracy of
the S-OMW-RPCA algorithm surpassed that of the original OMW-RPCA algorithm [67].
For large datasets, the 2DPCA algorithm operates in the two-dimensional space of the
data without converting the data matrix into a one-dimensional vector. Jiang et al. [68]
utilized the 2DPCA algorithm to reduce the dimensionality of large-scale face recognition
images. The results indicated that the image quality processed with the 2DPCA algorithm
was significantly higher than that processed with the standard PCA algorithm.

• Successive Projections Algorithm

SPA is a feature extraction algorithm based on forward iterative search, where in
each iteration, the wavelength with the maximum projection value is selected as the new
variable until the number of selected variables reaches the predefined value [69]. The SPA
algorithm performs well in handling large datasets and reducing redundant information.
However, as it performs only a single-layer projection, it is insufficient for optimizing the
model’s prediction performance.

The DLV-SPA algorithm analyzes independent and dependent variables at the latent
variable projection layer, minimizing the independence or linear correlation between two
adjacent wavelengths, thereby improving model performance. Chen et al. [70] applied
the DLV-SPA algorithm to a quantitative detection model of fish meal ash, and the results
showed that the standard deviation of the model was 1.78, compared to 2.82 for the
traditional chemical method.

• Competitive Adaptive Reweighting Sampling Algorithm

CARS is a feature variable extraction algorithm that combines Monte Carlo sampling
with Partial Least Squares (PLS) regression coefficients. It employs an exponential decay
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function and adaptive reweighted sampling to select the optimal subset of characteristic
wavelengths, minimizing cross-validation error. The CARS algorithm can eliminate non-
informative and collinear overlapping variables, improving the predictive capability and
interpretability of the model [71]. However, data processed with this algorithm are affected
by non-resonant background interference.

The Learning Discrete Hilbert Transform (LeDHT) generates analytic signals from real-
valued signals. Adjusting the signal phase in the frequency domain resolves the discrepancies
between the measured and actual values caused by distortion. Camp et al. [72] applied the
LeDHT to the Raman retrieval problem for representative Dawson function spectra, and the
results showed that the Mean Squared Error (MSE) of the LeDHT algorithm was 10−8 au,
which was lower than that of the traditional DHT Pad and DHT algorithms.

Table 4. A summary and comparison of the three Raman feature extraction algorithms.

Algorithm Principle
Advantages

and Disadvan-
tages

Computational
Complexity Stability Interpretability

PCA

Utilizes linear
transformation

to convert
original variables
into uncorrelated

variables
(principal

components),
ranked by
variance

contribution.

Does not require
label

information;
simple

computation.
Sensitive to

noise; requires
manual

determination of
the number of
components.

Low High Low

SPA

Selects variables
step by step

by projection to
maximize

independence
between

variables.

Highly
adaptable.

Computationally
intensive;

dependent on
model selection.

Medium High Low

CARS

Combines Monte
Carlo sampling

and PLS
regression

coefficients to
adaptively

reweight and
select variables.

Handles
nonlinear

relationships;
suitable for large

datasets.
Computationally

complex;
complex

parameter
selection.

High High Low

3.2.2. Model Establishment

Due to the interactions between sample components, the acquired spectra are not
superpositions of the individual component spectra, making the spectral data difficult to
classify and regress. Machine learning unveils patterns and relationships within the data,
encompassing three learning paradigms: supervised, unsupervised, and semi-supervised
learning. The machine learning algorithms utilized to establish the model include Linear
Discriminant Analysis (LDA), partial least squares discriminant analysis (PLS-DA), and
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Support Vector Machine (SVM), among others [73]. Table 5 presents a summary and
comparison of these three model-establishing algorithms, which are described as follows:

• Linear Discriminant Analysis Algorithm

LDA is a supervised classification algorithm that divides the feature space into two
regions and projects the training set onto a linear discriminant function, maximizing
inter-group differences while minimizing intra-group differences, thereby achieving dimen-
sionality reduction and data classification [74]. However, as the complexity of integrated
circuits increases, the LDA algorithm does not optimize testing time or costs.

By reducing the eigenvalues, ranking the eigenvectors, and selecting those associated
with significant eigenvalues as inputs, both the testing time and costs are reduced. When
detecting large-scale integrated circuits, Huang et al. applied this strategy to the LDA algo-
rithm, utilizing polynomial regression functions to select effective test patterns, resulting in
a 1.75-fold reduction in testing time compared to traditional methods [75].

• Partial Least Squares Discriminant Analysis Algorithm

PLS-DA is a supervised classification algorithm based on Partial Least Squares Re-
gression (PLSR). It centralizes and standardizes the original data to obtain independent
variables and categories, and then extracts principal components by variable mapping. The
PLS-DA algorithm is widely used for the classification and prediction of high-dimensional
data [76].

In recent years, Sparse Least Squares Discriminant Analysis (SLS-DA) has been em-
ployed to select the most predictive or discriminative features from the data. By applying
soft-threshold optimization for feature selection, SLS-DA improves classification accu-
racy and reduces runtime. Afshar et al. [77] applied the SLS-DA algorithm to analyze
six genomic datasets, effectively identifying and removing irrelevant features, thereby
significantly reducing runtime.

• Support Vector Machine Algorithm

SVM is a supervised binary linear classification algorithm that maps linear data to a
higher-dimensional space and identifies the optimal hyperplane for data classification in
the original feature space. For nonlinear data, the hyperplane is typically determined using
linear, polynomial, or radial basis kernel functions, which allow data classification [78].
However, the SVM algorithm finds the optimal solution under specific constraints, which
limits its application in everyday problems.

The Smooth Support Vector Machine (SSVM) algorithm determines model parameters
by solving a quadratic programming problem, simplifying the solution process for practical
applications. In an attempt to address the issue of excessive constraints in early warning
systems of financial crises, Yuan et al. [79] applied PCA to reduce dimensionality and
established an SSVM prediction model. The accuracy rate reached 95%, outperforming the
original SVM prediction model.

Table 5. A summary and comparison of the three model-establishing algorithms.

Algorithm Principle Advantages
and Disadvantages

Computational
Complexity Stability Interpretability

LDA

Maximizes inter-class
variance and minimizes
intra-class variance to

cluster data of the same
class while separating

different classes.

Simple computation;
suitable for

multi-class problems.
Performs poorly on

nonlinear data;
sensitive to noise.

Low High High
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Table 5. Cont.

Algorithm Principle Advantages and
Disadvantages

Computational
Complexity Stability Interpretability

PLS-DA

Establishes a linear
model between

independent variables
and response variables,
maximizing differences
between classes while
minimizing intra-class

differences.

Simple data structure.
Complex parameter
selection; sensitive

to noise.

Medium High Medium

SVM

Finds an optimal
hyperplane to

maximize the margin
between samples of

different classes.

Handles nonlinear
data; strong

generalization ability.
Computationally

intensive; requires
appropriate kernel
function selection.

High High Low

4. Application of Raman Spectroscopy in Fruit Quality Detection
There are significant differences in the types of nutritional components and pesticide

residue levels between healthy and abnormal fruits. Raman spectroscopy can detect these
differences based on molecular vibrations, enabling high-precision detection and identi-
fication [80]. The application of Raman spectroscopy in fruit quality detection primarily
includes fruit disease detection, pesticide residue analysis, and origin identification.

4.1. Application of Raman Spectroscopy in Fruit Disease Detection

Fruits infected by conidial spores of pathogens cause severe disease issues. The conidia
carried by infected fruits spread in the air, increasing the risk of fruit disease. The early
detection of fruit diseases ensures fruit quality and improves yield [81]. For instance, canker
and Huanglongbing (HLB) have become prevalent crop diseases in citrus, grapefruit, apples,
and tomatoes. High temperatures and high humidity accelerate the transmission of disease,
resulting in significant yield losses and widespread crop death [82,83]. The molecular structure
and composition of infected crops undergo changes, and Raman spectroscopy can detect these
changes. Therefore, Raman spectroscopy is widely applied in the early detection of crop canker
and Huanglongbing.

4.1.1. Early Detection of Citrus Huanglongbing by Raman Spectroscopy

HLB is a devastating disease caused by a Gram-negative bacterium. Infected citrus
crops experience a rapid decline in growth, a significant reduction in fruit yield, and, in
some cases, tree death. The early detection of Huanglongbing can improve citrus yield and
minimize losses caused by the disease [84]. Table 6 highlights that Raman spectroscopy
has garnered significant attention for detecting citrus Huanglongbing. The characteristic
band distributions for certain fruits and pesticides are shown in Tables 7 and 8.

Traditional Raman spectroscopy is used for the early detection of citrus Huanglong-
bing (HLB), but it is prone to interference from fluorescent substances in the citrus peel,
resulting in complex noise in the Raman spectra. In contrast, Confocal Micro-Raman
Spectroscopy and Fourier Raman spectroscopy can effectively eliminate fluorescence back-
ground interference, accelerating disease detection. Kong et al. [85] collected Raman spectra
of healthy (HE), HLB asymptomatic (HA), and HLB symptomatic (HS) citrus samples, as
shown in Figure 10, with the characteristic Raman bands corresponding to those listed in
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Table 7. They preprocessed the spectra using quintic polynomial fitting and normalization
and developed PCA-PLS and PCA-SVM early detection models for HLB. The diagnostic
accuracy for the HE, HA, and HS prediction sets exceeded 90%, while the accuracy of
traditional random detection methods ranged from only 50% to 70%. The PLS-DA algo-
rithm effectively processed high-dimensional data and identified key variables, making
it suitable for the early detection of citrus HLB. Dai et al. [86] employed cubic spline
interpolation and polynomial fitting to separate spontaneous fluorescence spectra from
Raman spectra in mixed spectra, establishing a PLS-DA model for citrus HLB detection and
achieving accuracies of 86.08%, 98.17%, and 64.75%, respectively. Among these spectra, the
Raman spectra demonstrated superior qualitative analysis. Quadratic polynomial fitting
can select data points from non-peak regions, improving spectral quality. Liu et al. [87] uti-
lized data processed with quadratic polynomial fitting and developed a PLS-DA detection
model, achieving 100% accuracy. A decision diagram of the optimal number of principal
components (PCs) and a scatter plot of the model are shown in Figure 11.

Figure 10. Raman spectra of HE, HA, and HS citrus leaves respectively.

Figure 11. Results of the best PLS-DA model: (a) decision diagram of the optimal number of PCs,
(b) scatter plot of the model.

Table 6. Application of Raman spectroscopy in the detection of citrus HLB.

Sample Application Algorithms Main Result Reference

Citrus Huanglongbing

PCA, PLS-DA,
BP-ANN Accuracy of 97.2%, R2 = 0.9598; RMSE = 0.0616 [88]

PCA-PLS, PCA-SVM Accuracies of 94.07% (PCA-PLS) and 95.56%
(PCA-SVM) [85]

OPLS-DA Accuracy of 89.4% [89]
PCA, LDA Accuracy of 89.2% [90]
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4.1.2. Early Detection of Grapefruit Huanglongbing by Raman Spectroscopy

Grapefruit Huanglongbing is a bacterial disease transmitted primarily by insects. In-
sects spread the pathogen to healthy trees, causing new infections. Grapefruit trees affected
by HLB exhibit yellowing of the leaves and root rot, severely threatening the grapefruit
industry. Therefore, the early detection of HLB in grapefruit is essential [91].

Grapefruit has a large volume, and the storage platform of traditional Raman spectrom-
eters cannot accommodate the entire fruit, preventing the collection of the complete Raman
signal from the whole fruit. However, handheld Raman spectrometers, which allow for quick
scanning of samples with a handheld laser probe, can rapidly collect Raman spectra. Therefore,
handheld Raman spectrometers are employed for the early detection of Huanglongbing in
grapefruit. Based on the Raman spectra of standard substances, Sanchez et al. [92] observed
that the intensity variation in Raman characteristic peaks of organic compounds in grapefruit
is influenced by HLB. By developing an orthogonal partial least squares discriminant analysis
(OPLS-DA) detection model, the detection accuracy of HLB reached 96.7%, surpassing that
of the PCR method. A diagram of the Raman spectra and OPLS-DA model of grapefruit
under different states is shown in Figure 12, while the Raman characteristic bands of grapefruit
are listed in Table 7. Disease detection serves as the foundation for disease classification and
provides a scientific basis for the management of plant diseases. Utilizing the Raman data
of grapefruit, the research team developed an OPLS-DA model, which achieved 98% accu-
racy in distinguishing healthy grapefruit from HLB-infected grapefruit and 100% accuracy in
differentiating early and late-stage HLB infections [93].

Figure 12. OPLS-DA (a) loadings plot and Raman spectra (b) of grapefruit leaves in greenhouse (green),
in-feld ‘healthy’ (yellow), nutrient defcits (blue) and asymptomatic HLB infection (red). Spectra are
normalized on the CH2 vibrational band that is present in nearly all classes in biological molecules
(marked by asterisks (*)).

4.1.3. Early Detection of Apple and Tomato Canker by Raman Spectroscopy

Apple canker, caused by Nectria galligena, results in wilting or even death of infected
plant branches. This pathogen has a broad host range and infects various woody plants,
such as peaches, cherries, and tomatoes, leading to a decrease in the yields of various
fruits [94]. The early detection of canker disease helps prevent the spread of pathogenic
conidia and improves fruit yield.
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Due to the significant physiological and biochemical differences among various fruits, as
well as the varying stages of disease progression, the detection of fruit diseases caused by the
same pathogen in different samples presents a challenge. Raman spectroscopy can capture
and identify biochemical information related to chemical bonds, molecular symmetry, and
other parameters, enabling the early detection of fruit diseases caused by the same pathogen in
different samples. Zhao et al. [66] applied PCA to extract spectral bands from data preprocessed
by the air-PLS algorithm, with the scores of the first three principal components shown in
Figure 13. The results indicated that the Least-Squares SVM model developed for the detection
of apple canker achieved an accuracy of 89.33%. SERS improves the accuracy of early disease
detection by amplifying the Raman signals. Fang et al. [95] employed SERS to detect apple
canker disease and determined, through correlation analysis, that the air-PLS algorithm was the
most effective preprocessing method, as shown in Figure 14. The characteristic Raman bands
of the apples correspond to those in Table 7, with detection accuracies for BP-ANN, LS-SVM,
and other models exceeding 90%. Raman spectroscopy is also applicable for classifying and
detecting tomato canker disease caused by Nectria galligena. Perez et al. [96] collected Raman
spectra from infected, asymptomatic, and healthy tomato plants, as shown in Figure 15, with
the characteristic Raman bands for tomatoes aligning with those in Table 7. After spectral
standardization preprocessing, a PCA-based LDA classification model was developed, achieving
a classification accuracy of 97% for tomato canker disease.

Figure 13. Score plot of the spectral data of the first three PCs.

(A) (B) (C)

Figure 14. Spectral baseline correction: (A) using the MSBC algorithm for baseline correction,
(B) using the AsLS algorithm for baseline correction, and (C) using the air-PLS algorithm for baseline
correction. The blue line represents the original spectrum, the red line represents the estimated
baseline, and the yellow line represents the corrected spectrum.
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Figure 15. Raman spectra of asymptomatic tomato plants (BCTo) and healthy tomato plants (HTo).

Fruit diseases greatly affect both the yield and quality of fruits. Although Raman spec-
troscopy can identify early-stage fruit diseases, false negatives may arise due to the uneven
distribution of pathogens within plants. Addressing the issue of false negatives in fruit
disease detection can improve accuracy. In-depth research on fruit disease detection can
be optimized by sample preprocessing, multi-technique detection methods, and enhanced
equipment sensitivity [97,98].

Table 7. Vibrational bands and their assignments for some fruits.

Sample Band (cm−1) Vibrational Mode Assignment

Grapefruit

747 γ(C – O – H) of COOH Pectin [92]
915 ν(C – O – C) in plane, symmetric Cellulose, lignin [89]

1000 ν3(C – CH3), phenylalanine Carotenoids, protein [93]
1155 asym ν(C – C) ring breathing Carbohydrates, cellulose [92]
1184 ν(C – O – H) next to aromatic ring+σ(CH) Xylan [93]
1247 (C – O) stretching (aromatic) Lignin [89]
1326 δ(CH2)bending vibration Cellulose, lignin [89]
1440 δ(CH2), δ(CH3) Aliphatic [99]
1455 δCH2 bending vibration Aliphatic [99]

1525–1551 ν( – C –– C – ) in plane Carotenoids [93]
1610 C –– C – C ring Lignin [99]

Citrus
1000-1008 ν(CH3), δ(C – CH3) Carotenoids [80]
1154–1157 ν(C – O – C), ν(C – C) Carotenoids [85]
1000–1008 ν( – C –– C – ) in plane Carotenoids [80]

Apple

319 (C – C – C) or (C – O – C) skeletal bending Cellulose [92]
625 Skeletal bending Lignin [93]
731 Skeletal bending Lignin [93]
957 (C – C) or (C – O) stretching vibration Cellulose [100]

1165 (H – C – C) or (H – C – O) skeletal bending Cellulose [93]
1325 (C – H) bending vibration Cellulose [100]
1599 (C – C) aromatic ring Lignin [66]

Tomato

915 ν(C – O – H) in plane, symmetric Cellulose, lignin [96]
985 δ(CH3) Chlorophylls [101]

1001 δ(C – CH3) Carotenoids [102]
1156 ν(C – C) Carotenoids [102]
1165 (H – C – C) or (H – C – O) skeletal bending Cellulose [94]
1180 ν(C – C), γ(CH) Chlorophylls [103]
1227 δ(CCH) Cuticle triterpenoids [96]
1328 δ(CH), ν(CN) Chlorophylls, pyrrole ring [101]
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Table 7. Cont.

Sample Band (cm−1) Vibrational Mode Assignment

1462 δ(CH2), δ(CH3) Cuticle triterpenoids [102]
1522 ν(C –– C) Carotenoids [102]
1665 β sheet Amide 1 [103]
1690 β turn Proteins [103]

Table 8. Vibrational bands and their assignments for some pesticides.

Sample Calculation (cm−1) SERS (cm−1) Assignments

Thiabendazole

606 626 δ(C – C – C) , δ(S – C – N) [104]
771 786 δ(C – H) [105]
870 890 δ(C – C – C) , δ(C – H) [105]
1010 1016 δ(C – H) [104]
1401 1400 ν(C –– C) [106]
1584 1601 ν(C –– N) [106]
1641 1623 ν(C –– N) [106]

Pyraclostrobin

778 780 δ C3C11O27, ν C3C11 [107]
932 935 δ CNN rβ [107]
1087 1092 νa N14O15 / O22C20 [107]
1176 1174 δ CCH rγ, νs CC rγ [108]
1367 1359 ω CH2, νa C3N33C35 [108]
1386 1388 ν C20N14 [108]
1598 1598 νs CC rγ [108]

Chlorpyrifos

605 606 P=S stretch [109]
676 672 C–Cl stretch [109]
1092 1096 P–O–C stretch [110]
1572 1562 Ring stretching mode [110]
1612 1600 C=C stretch [110]

Thiram

557 556 ν(S=S) [111]
1147 1139 ρ(CH3), ν(C-N) [111]
1372 1379 δs(CH3), ν(C-N) [112]
1456 1444 ν(C-N), δ(CH3), ρ(CH3) [112]
1498 1508 ρ(CH3), ν(CN) [112]

Note : ν = stretching; γ = out-of-plane bending; ρ = rocking; ω = wagging; δ = bending; νa = antisymmetric stretch-
ing; νs = symmetric stretching; δs = symmetric bending; rβ, rγ = aromatic ring.

4.2. Application of Raman Spectroscopy in the Detection of Pesticide Residues in Fruits

Farmers use various pesticides to protect fruits from diseases and pests. However, the
improper and excessive use of pesticides leads to the accumulation of multiple pesticide
residues in the fruits [113]. In order to protect the health of consumers and improve the
quality of agricultural products, it is necessary to detect pesticide residues in fruits with
high precision. Due to its high sensitivity and strong Raman signal, SERS has been widely
employed to detect pesticide residues in fruits. The effectiveness of SERS detection depends
on the substrate utilized, and detection results can vary with different substrates [114].

4.2.1. Application of SERS Technique Based on AgNPs in Pesticide Residue Detection

Due to the high lipophilicity of pesticides, they penetrate the interior of fruits, making
the detection of pesticide residues a challenge. The SERS technique enables the non-invasive
detection of various analytes at trace levels, with silver nanometal materials commonly
applied as SERS substrates for the detection of pesticide residues in fruits due to their
strong electromagnetic field intensity effect resulting from plasma enhancement [115].
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Molnar et al. [116] utilized the SERS technique based on nanosilver sol to detect residues
of thiabendazole in blueberry extract. The results indicated that the lowest detection limit
of pesticide residue after extract pretreatment was 0.09 µM. The raw and pretreated SERS
spectra of the extract are shown in Figure 16. The substrate provides an adsorption surface
that enhances the Raman signal, and AgNPs with various shapes offer differently shaped
adsorption surfaces for molecules as SERS substrates to detect pesticide residues in fruits.
Alfredo et al. [117] employed the SERS technique based on an AgNP ring to detect residues of
the fungicide pyraclostrobin in lemons. The AgNP ring provided a larger adsorption surface
for molecules, allowing the detection of the Raman signal, even when the concentration of
pyraclostrobin was as low as 6 × 10−5 M. Table 9 summarizes the application of the SERS
technique based on AgNPs in the detection of pesticide residues in fruits.

Table 9. Methods based on silver nanoparticles (Ag NPs) for the detection of pesticides in fruit.

Matrix Analytes SERS Substrates LOD Reference

Apple

Thiram Ag NPs 4.6261 ng/cm2 [118]
Thiabendazole, Acetamiprid,

Phosmet
Polyurethane

micelle/Ag NPs 0.02, 0.08, 0.1 µg/mL [119]

Chlorpyrifos Ag NP 10 ng/ml [120]
Triphenyltin chloride Ag NPs 6.25 ng/cm2 [121]

Thiabendazole CNF-Ag NP 5 ppm [122]
Thiram Ag NRs 1.0 × 10−9 g/cm2 [123]

Acetamiprid, Carbendazim,
Chlorpyrifos Ag NPs 5.4 × 10−3, 1.4 × 10−2,

6.4 × 10−2 ppm
[124]

Metolcarb Ag NPs 1.0 × 10−9 g/cm2 [125]

Thiabendazole, Thiram Ag NPs 1.51 × 10−8, 1.805 ×
10−8 g/cm2 [126]

Thiram Ag NPs 0.01 ppm [127]
Thiram Ag NPs 5.313 × 10−10 g/cm2 [128]
Thiram Ag NPs 2.88 × 10−8 g/cm2 [129]

Triazophos Ag NPs 2.5 × 10−8 g/cm2 [129]
Triazophos Ag NPs 2.5 × 10−8 M [130]

Thiram Ag NPs 240 ng/cm2 [131]

Citrus

Thiabendazole, Acetamiprid,
Phosmet

Polyurethane
micelle/Ag NPs 0.02, 0.08, 0.1 µg/mL [119]

Methy1 parathion Ag NC@PE
composite film 10 nM [132]

Thiabendazole Ag NPs 4 ppm [133]
Thiram Ag NPs 1.0 × 10−5 M [134]

Grape Thiram Ag NPs 5.7061 ng/cm2 [118]
Thiram Ag NPs 5.768 × 10−10 g/cm2 [128]

Pear Thiram Ag NPs 5.1799 ng/cm2 [118]
Fenthion Ag NPs 1.8 × 10−7 M [135]

Cherry

Phosmet Polyurethane-Ag
NPs 0.6 µg/mL [136]

Thiabendazole, Acetamiprid,
Phosmet

Polyurethane
micelle/Ag NPs 0.02, 0.08, 0.1 µg/mL [119]

Triazophos, Methy1
parathion Ag NPs 7.9 × 10−10, 1.58 ×

10−9 g/cm2 [137]

Tomato Chlorpyrifos Ag colloid 1.0 × 10−9 mol/L [138]
Fenthion Ag NPs 1.8 × 10−7 M [135]
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Figure 16. Original SERS spectra of two different blueberry extracts and SERS spectra after pretreatment.

4.2.2. Application of SERS Technique Based on AuNPs in Pesticide Residue Detection

The chemical properties of AgNPs are unstable and susceptible to oxidation and
aggregation during storage and use, which diminishes the SERS signal. In contrast, the
chemical properties of AuNPs are stable, largely unaffected by other substances in the
system, and their surfaces are easily modified, enhancing the adsorption and detection of
specific molecules. Therefore, AuNPs act as substrates for the SERS technique in detecting
pesticide residues in fruits [25].

Xu et al. [139] utilized the SERS technique based on AuNPs to obtain the SERS spec-
trum of a chlorpyrifos standard solution. The theoretical and experimental spectra of the
standard solution are shown in Figure 17, with the corresponding Raman characteristic
bands detailed in Table 8. A strong linear relationship was demonstrated for chlorantranilip-
role concentrations in citrus in the range of 3–20 mg/kg, with an R2 value of 0.9979. The
minimum detectable concentration was approximately 3 mg/kg. Combining gold nanopar-
ticle structures with semiconductors or other materials facilitates charge transfer at inter-
faces, increasing the Raman scattering cross-section of molecules and enhancing the SERS
effect. Xiao et al. [140] combined bacterial cellulose with AuNPs and employed the SERS
technique based on this composite material to detect thiram residues in apples, achieving
an R2 of 0.99 and a detection limit of 0.98 ppm. Table 10 summarizes the application of the
SERS technique based on AuNPs in the detection of pesticide residues in fruits.

Figure 17. Spectrum of chlorpyrifos standard solution (a) and theoretical calculation spectrum (b).
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Table 10. Methods based on gold nanoparticles (Au NPs) for the detection of pesticides in fruit.

Matrix Analytes SERS Substrates LOD Reference

Apple

Methy1 parathion Au NPs 0.011 µg/cm2 [141]
Phosmet Au NPs 0.5 mg/kg [142]

Methy1 parathion,
triazophos, phosmet Snowflake-like Au NPs 0.026, 0.031, 0.032 ng/cm2 [143]

Imidacloprid Au NPs 0.02 mg/kg [144]
Methy1 parathion Au NPs@tape 26.3 ng/cm2 [145]

Phosmet Au NPs 0.5 µg/g [146]
Thiram Au NRs 0.24 ng/cm2 [147]

Methy1 parathion Au NRs 110–440 ng/cm2 [148]
Thiram bipyramid AuNPs 36.58 ng/cm2 [149]

Thiabendazole Au NRs 0.06 mg/kg [150]
Acephate,

Cypermethrin,
Tsumacide

Au NPs 1 × 10−12 , 1 × 10−6, 1 × 10−13 g/cm2 [135]

Carbaryl,
Cypermethrin,

Permethrin, Phosmet
Au NPs-ZrO2 NFs 1 × 10−7, 1 × 10−6, 1 × 10−7, 1 × 10−8 M [151]

Carbaryl, Methy1
parathion Au NPs 2.5 × 10−9, 5.2 × 10−6 M [152]

Chlorpyrifos,
Omethoate Au NPs 2.64 × 10−6, 1.63 × 10−6 g/cm2 [153]

Methy1 parathion Au NPs 3.658 × 10−8 g/cm2 [149]
Paraoxon Au NPs 1 × 10−8 M [154]

Phosmet, Thiram Au NPs 0.1, 0.1 ppm [155]
Phosmet, Triazophos Au NPs 0.2, 0.2 ppm [156]

Thiabendazole Au–Pt–Pd 0.5 ppm [157]
Thiabendazole, Thiram Au NRs 7.9 × 10−10, 7.6 × 10−10 g/cm2 [158]

Thiram Au NPs 4.62 × 10−3 ppm [159]
Thiram Au NPs 1.0 × 10−9 M [160]
Thiram Au NPs 5.0 × 10−9 g/cm2 [161]

Citrus
Methy1 parathion Au NPs@tape 26.3 ng/cm2 [145]

Thiabendazole Au NP-based UF
membrane 0.125 µg/g [162]

Grape
Carbaryl, Methy1

parathion Au NPs 2.5 × 10−9, 5.2 × 10−6 M [152]

Pear

Chlorpyrifos Au NP 0.35 mg/kg [163]
Acephate Au NFs 5.4 × 10−12 M [137]

Thiabendazole, Thiram Au NRs 8 × 10−10, 4.1 × 10−11 g/cm2 [158]
Thiram Au NPs 4.62 × 10−3 ppmM [159]
Thiram Au NPs 1 × 10−9 M [160]

Tomato

Thiram bipyramid AuNPs 31.56 ng/cm2 [149]

Carbendazol,
Parathion

Au
NPs-microhemisphere

PDMS NFs
1 × 10−8, 1 × 10−8 M [164]

Methy1 parathion Au NPs 3.156 × 10−8 g/cm2 [149]
Thiabendazole, Thiram Au NRs 4.7 × 10−11, 2.9 × 10−11 g/cm2 [158]

Lemon Thiram Au NPs and SiNWP 72 ng/cm2 [165]

Strawberry Thiram AuNPs 5.0 × 102 ppm [166]

4.2.3. Application of SERS Technique Based on Gold and Silver Mixed Nanoparticles in
Pesticide Residue Detection

Ionic gold and silver in chloroauric acid or silver nitrate can be chemically reduced
to their elemental state. However, the morphology and size of monometallic nanoparticle
materials influence their optical absorption and SERS characteristics. Furthermore, in
multicomponent nanomaterials, there is a synergistic effect between different components,
collectively enhancing the SERS signal [167]. Therefore, gold-silver alloy nanoparticles can
serve as SERS substrates to detect pesticide residues in fruits [168].

Asgari et al. [169] employed the SERS technique based on Au@Ag nanoparticles
to detect residues of thiabendazole and other pesticides in strawberries. The Raman
spectra of four pesticide residues are shown in Figure 18. PLS and PCA models were
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established for the preprocessed spectra, and Raman peaks were distinctly observable,
even at low pesticide concentrations of 5 µg/kg. In contrast, Rizzato et al. [170] utilized
the SERS technique based on AgNPs to detect thiabendazole residue in strawberries, with
a minimum detection limit of 500 µg/kg. Thiabendazole, used to control fungal diseases
in crops, is also required in apple cultivation. Yan et al. [171] applied the SERS technique
based on Au@Ag nanoparticles to detect thiabendazole residue in apples and found that
the SERS activity was optimal when the silver shell thickness was 7.3 nm, with a minimum
detection limit of 5 ng/cm2. Similarly, Dayalan et al. [172] applied the SERS technique with
gold core-silver shell nanoparticles to detect thiabendazole residue on apple peels. The
results indicated that substrate intensity was optimal at a pH of 5, with the lowest detection
limit of 0.1 ng/cm2, as shown in Figure 19. Table 11 summarizes the application of the
SERS technique based on Au@Ag in the detection of pesticide residues in fruits.

Table 11. Methods based on the combination of gold and silver nanoparticles (Au@Ag NPs) for the
detection of pesticides in fruit.

Matrix Analytes SERS Substrates LOD Reference

Apple

Thiram Au@Ag NRs 7.5 × 10−8 M [172]
Thiram Au@Ag NPs 1.5 × 10−2 ppm [173]

Thiram Au@Ag on ZnO
nanosheets 2.0 × 10−10 g/cm2 [174]

Grape Difenoconazole Au@Ag NPs 2.8 × 10−8 M [175]

Pear Flusilazole Au@Ag NPs <0.1 µg/g [176]

Tomato Thiram u@Ag on ZnO
nanosheets 2.0 × 10−10 g/cm2 [177]

Peach

Methy1 parathion,
Triazophos Au@Ag NPs 1.0 × 10−3,

1.0 × 10−3 ppm
[177]

Thiacloprid,
Profenofos, Oxamy1 Au@Ag NPs 0.1, 0.01, 0.01 mg/kg [178]

Figure 18. Raman spectra of four pesticides.

Raman spectroscopy is used to detect pesticide residues in fruits; however, it is limited
in its ability to uniformly detect multiple pesticide residues within the same sample. To
address this limitation, enzyme inhibition methods can be employed to mask interference
from other pesticides, or luminescent labeling methods can be used to tag specific pesticides.
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These methods are then combined with Raman spectral detection to enhance pesticide
residue detection [179,180].

Figure 19. SERS spectra of (a) Tbz and (b) thiram in standard solutions with different concentrations
(pH = 5).

4.3. Application of Raman Spectroscopy in Fruit Origin Identification

Many regions produce the same type of fruit, but fruits from different regions can
differ significantly in terms of their nutritional composition, taste, and size. Fruit origin
traceability technology helps protect well-known local specialties and ensures the authentic-
ity of the food market [181]. A sufficient number of spectra from different points in samples
(such as the top, middle, and bottom) should be collected and preprocessed. This method
can obtain the average spectra of multiple sampling points, which reduces the impact of
local variations on the overall detection results and improves the stability of the spectral
data. Therefore, Raman spectroscopy is applied to identify the origin of fruits [182].

In the field of fruit origin identification, traditional methods cannot non-destructively
analyze the biochemical information inside the fruit. In contrast, Raman spectroscopy can
non-destructively acquire internal information for fruit origin identification [114]. Lu et al. [183]
found that after SG and MSC preprocessing, the Long Short-Term Memory (LSTM) network
model for cherry origin identification achieved the highest accuracy, with an average recog-
nition accuracy of 99.12%. SVM can also serve as an identification model for cherry origin.
This team combined SG and MSC spectral preprocessing algorithms with variance feature
screening algorithms to establish a GA-SVM discrimination model, concluding that both mod-
els achieved 100% accuracy in identifying cherry origin [184]. SERS can also be utilized for
fruit origin identification due to its strong Raman signal. Traksele et al. [185] applied the SERS
technique based on silver nanosol to classify the origin of bilberries in Northern Europe. The
average SERS spectra of bilberries from each country are shown in Figure 20. The results were
consistent with those obtained by high-performance liquid chromatography, confirming the
applicability of the SERS-PCA method for determining bilberry origin.

Raman spectroscopy can determine the origin of fruit by analyzing the differences in
the chemical compounds between samples. However, establishing an accurate identification
model requires a large number of representative sample data, and the generalization ability
of the model is often limited. To improve identification accuracy, intelligent and automated
equipment is utilized in the origin identification process, improving both the speed and
precision of identification [186,187].
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Figure 20. Average SERS spectra of bilberry in each country.

5. Prospects and Challenges
Raman spectroscopy has been systematically applied in the field of fruit quality detec-

tion, characterized by its rapid, accurate, and non-destructive nature. However, traditional
Raman spectroscopy faces several challenges, such as weak Raman signals, the inability to
detect information in the interior of samples, and susceptibility to fluorescence background
interference. Advanced spectral techniques, such as SERS, CM-RS, and SORS, have been
gradually introduced. Combining these techniques with machine learning algorithms en-
ables more efficient applications in areas such as agricultural product quality detection,
biomedical identification, and environmental monitoring.

Raman spectroscopy offers many advantages but still faces several challenges, such as
difficulties in multicomponent analysis and quantitative analysis, as well as the need for
specific sample pretreatment processes. With advancements in computer technology and
chemometrics, computational power has significantly improved, enabling the faster and
more efficient processing and analysis of large Raman spectral datasets. Progress in chemo-
metrics has also provided advanced tools for Raman data analysis, allowing the extraction
of information from the interior of samples and improving the accuracy and reliability of
detection. For samples requiring specific pretreatment, appropriate preparation can be
made based on the physicochemical properties of the sample, such as slicing, dilution, or
freeze-drying. For high-density solids or powder samples, grinding or compaction can cre-
ate a uniform surface, whereas for high-concentration liquid samples, dilution can reduce
the background signal from Raman scattering. It is believed that Raman spectroscopy will
be widely applied in food safety detection, materials science, life sciences, environmental
monitoring, and other research fields, particularly in fruit quality detection, with a brighter
application prospect. It will also extend to various interdisciplinary fields, fully leveraging
its unique advantages.
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