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Abstract: The European Union promotes the development of a sustainable approach to solid
waste management and disposal. Sewage sludge (SWS) is a good example of this economic
model because it has fertilizing and soil-conditioning characteristics. This study employed
a conventional manure spreader to evaluate the distribution of SWS on agricultural land.
Various interpolation methods and machine learning models were employed to analyze
the spatial distribution patterns of the sludge. Data were collected from 15 sampling trays
across a controlled field during three separate trials. Statistical analysis using ANOVA high-
lighted significant variations in sludge quantities along the longitudinal axis but not along
the latitudinal one. Interpolation methods, such as spline, cubic spline, and inverse distance
weighting (IDW) were used to model the distribution, while machine learning models
(k-nearest neighbors, random forest, neural networks) classified spatial patterns. Different
performance metrics were calculated for each model. Among the interpolation methods,
the IDW model combined with neural networks achieved the highest accuracy, with an
MCC of 0.9820. The results highlight the potential for integrating advanced techniques into
precision agriculture, improving application efficiency and reducing environmental impact.
This approach provides a solid basis for optimizing the operation of agricultural machinery
and supporting sustainable waste management practices.

Keywords: precision agriculture; manure spreader; soil improvement; ANOVA; big data;
spatial analysis

1. Introduction
The European Union (EU) promotes the development of a circular economy aimed at

reusing resources and reducing negative environmental impacts [1]. In this context, the
development of technologies capable of intercepting nutrients from the waste stream and
transforming them into a safe product to be reused for the benefit of agriculture could
represent a winning solution to ensure global food security and address the challenges
associated with excessive waste production [2].

The latest available data on sewage sludge (SWS) production suggest that more than
9500 thousand tons of dry matter were produced in 2022 in the countries within the
European region [3]. The volumes of waste biomass produced annually pose significant
challenges for their sustainable management, aimed at minimizing the negative impact
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on the environment and human health. SWS’s primary disposal and recycling pathways
include agricultural reuse, incineration, composting, and landfill. Specifically, in European
countries, the valorization of the fertilizing and conditioning properties of SWS through
land application (38%) and composting (17%) predominates. This is followed by waste-
to-energy treatments (30%), a disposal method widely used in Germany, the Netherlands,
Switzerland and Belgium, which can be combined with the potential recovery of thermal
energy and the recycling of phosphorus contained in the combustion ashes. The remaining
fraction (15%) is typically disposed of in landfills or via other methods [3]. In Italy, in
2021, 52% of the sludge produced from urban wastewater treatment was sent for disposal
operations, while the remaining 45.6% was directed to recovery operations—this value is
steadily increasing, particularly in the country’s northern regions [4].

In this context, the application of urban SWS as an organic amendment in agriculture
offers significant benefits due to its high nutrient content (20% dry matter (DM), >1.5%DM
nitrogen and >0.4%DM phosphorus [5]), which can enhance soil fertility and improve crop
productivity. However, uniform SWS distribution is crucial to maximize these benefits and
minimize potential environmental risks, such as nutrient runoff or uneven crop growth; it
also prevents the hotspot accumulation of heavy metals and organic pollutants featured
in SWS [6]. The nutrient content of SWS varies significantly depending on its origin, as
regional waste treatment processes and local urban activities influence it. This variability
challenges its standardization as a fertilizer in precision agriculture. However, this study
acknowledges that such variability can be addressed by implementing site-specific nutrient
analysis before application. Techniques like on-the-go sensors and rapid laboratory testing
can provide real-time data on nutrient composition, allowing for tailored application
strategies. By integrating these approaches, the potential environmental risks associated
with nutrient imbalances can be minimized, while maximizing the agronomic benefits of
using SWS.

Sludge could be applied using conventional manure spreaders, primarily designed for
solid organic matter, which may not provide the even distribution required in agriculture.
Inaccurate or uneven distribution can lead to over- or under-application in certain areas,
reducing the amendment’s effectiveness and potentially causing environmental harm [7,8].

But even before uniformity, precision agriculture (PA) values knowledge of distribu-
tion variability, if it is known and constant. In this way, a machine may be able to match
complex prescription maps for variable dose distribution.

PA plays a crucial role in SWS distribution. In Italy, the diffusion of PA is very low
(only 1% of the Utilized Agricultural Area) due to the typical orography of Italian territory
and farms [9]. The increase in agricultural input prices, such as fertilizer, can increase PA.

The current PA technology provided by tractor owners is now mature and its operation
established: it allows precision fertilization, sowing, spreading and irrigation. However,
the latest advancements in PA emphasize the need for accurate and efficient application
methods, where technologies like interpolation and machine learning can play a pivotal role.
Interpolation techniques can model and predict the spatial distribution of SWS, enabling
better management practices that align with the goals of PA [10,11]. Furthermore, machine
learning models can classify and predict distribution zones, optimizing sludge application
and ensuring positive impacts on crop yields and environmental sustainability [12].

When comparing accuracy results to Kriging, which is traditionally effective at mod-
elling spatial autocorrelation, it is encouraging to see that the combination of neural
networks and spline interpolation has the potential not only to match but possibly exceed
Kriging’s performance in certain aspects, primarily when data preprocessing is carefully
managed [7,13]. This observation reflects a promising trend in the literature, where com-
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bining machine learning and interpolation techniques leads to more substantial and more
reliable spatial predictions.

Furthermore, the research conducted by [14], who examined various interpolation
methods for predicting soil attributes, adds valuable insight to this study’s findings. Their
results highlight the strengths of spline-based methods, mainly when utilized alongside
advanced machine learning models. This study suggests that more straightforward meth-
ods, such as inverse distance weighting (IDW), may struggle with more complex datasets,
illustrating the advantages of more sophisticated techniques like spline interpolation.

This study investigates the effectiveness of a standard manure spreader in distributing
urban sludge across agricultural land, using interpolation methods to assess the spread
patterns, and machine learning models to classify and predict distribution zones. The
results aim to contribute to the optimization of sludge application strategies, supporting
the broader adoption of PA practices [10,13].

2. Materials and Methods
2.1. Field Trials

Field experiments were conducted on a test site located in northern Italy, around San
Giorgio di Lomellina (Pavia, Italy; 45.156450◦ N, 8.768105◦ E). SWS came from different
urban wastewater treatments across Italy and is then processed with oxide lime to break
down the bacterial load and stabilize its mass.

SWS was applied using a conventional manure spreader across a pre-tilled agricultural
field. Fifteen trays (0.50 m × 0.50 m) were positioned to capture the spread pattern,
distributed systematically along both longitudinal and latitudinal axes (five latitudinally
x three longitudinally, every 3 m) (Figure 1). The experiment was repeated thrice under
consistent conditions to ensure data reliability and capture any spread pattern variability.
The sludge collected from the trays was immediately weighed (grams), avoiding any
loss of moisture that could compromise the final result. The weight was recorded and
implemented in an Excel® file for elaboration. The aim was to evaluate the machine’s
ability to distribute sludge evenly across the field.
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Figure 1. Experimental field setup. (a) Location of the field trials and position of trays. (b) Focus on
tray setup and their spatial distribution.

2.2. Spreader Characteristic

The trailed manure spreader (Figure 2) used in the trials had 8 m3 of volume, two rear
vertical rotors (360 rpm) for spreading and 12 m of distribution width. The spreading of
organic material was guaranteed by a chain mat that moved a belt on the bottom surface
of the wagon. A rear bulkhead mounted sensorized hydraulic cylinder (MH-Series MS,
Temposonics GmbH Co., Lüdenscheid, Germany) was used to adjust the opening height
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according to the characteristics of the organic material inside the spreader. Furthermore, a
belt advancement control sensor (model M18, DigiDevice, Calvisano, Brescia, Italy) was
installed to modulate the speed and, therefore, the amount of material to the rear rotors.
In the trials, the spreader was used in conventional mode; the installed sensors acquired
information without changing the spreader distribution settings.
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Figure 2. The improved manure spreader used in trials. (a) Overview vision of manure spreader.
(b) Focus on belt advancement control sensor. (c) Render of sensorized hydraulic cylinder (real
photos do not fully describe the sensor).

2.3. Statistical Analysis

The sludge collected in each tray was analyzed using ANOVA, after checking for
homogeneity of variance and normality, to determine if there were significant differences
in the distribution patterns across the repetitions (trials) and along the geographical coordi-
nates. The confidence level for the analysis was set at a p-value < 0.05. The analysis aimed
to identify any systematic variations in distribution caused by mechanical limitations of
the distributor or the configuration of the field. Subdivision into geographical axes made
it possible to separately assess the uniformity of distribution along the direction of travel
(longitudinal axis) and along the width of the field (latitudinal axis).

2.4. Interpolation Techniques

Spatial interpolation was used to estimate the value of unknown points with a few
data where the value is observed.

The software QGIS 3.28 LTR with the SAGA plugin allowed the assessment of the
spatial distribution of the sludge; successively, three interpolation methods were applied
as follows:

1. Spline: This method creates a smooth curve that fits the data points, ideal for mod-
elling gradual changes in distribution. The data (amount of sludge, kg) of the single
trials are included in the algorithm, and the grid pixel output extent (m) is selected.

2. Cubic Spline: This is a more refined version of the spline that ensures a smoother
transition between data points. Following third-degree polynomials, the result of
interpolation is smoother and avoids oscillations. The input data are equal to the
spline, but the setting of output is quite different: the cubic spline allows the selection
of the minimal and maximal number of points to create the interpolation (low points
do not make interpolation, and high points avoid overfitting) and finally, the density
of points to be used in a specific cell.

3. Inverse Distance Weighting (IDW): This method calculates the value of unknown
points based on the inverse distance from known points, with closer points having
more influence. The algorithm creates a coefficient depending on the distance between
different known points. This method must have a regular sample grid, otherwise the
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interpolation may contain more errors and be less accurate. The input data are the
same as the previous methods. The sett radius influences the output results, namely
the influence distance of the single point in the final calculated interpolation.

These interpolation methods generated distribution maps visually representing the
spread pattern across the field. The maps were analyzed to identify any trends or anomalies
in the distribution, with particular attention to areas of over- or under-application.

2.5. Machine Learning Classification on Field Data

Machine learning classification validated the interpolative results. Three machine
learning algorithms were employed to classify mud distribution patterns and predict
application zones using the interpolated data as input. The implementation was carried out
in the R environment using specific packages for each model [15]. The analysis leveraged
several key R packages that are commonly used in the field of machine learning and
data analysis:

1. k-Nearest Neighbors (kNN): The k-nearest neighbors algorithm classifies points based
on the majority category of their nearest neighbors, making it particularly effective in
scenarios where the data are locally structured. This study used the class package [8]
to implement the kNN algorithm, with the number of neighbors (k) selected via
cross-validation to optimize predictive performance. The caret package [16] was also
utilized for model training and evaluation, allowing for a streamlined workflow that
includes data preprocessing, model tuning, and validation.

2. Random Forest: Random forest is an ensemble learning method that builds multiple
decision trees and merges their results to enhance classification accuracy and control
overfitting [17]. The randomForest package [18] was employed to create and train
the random forest models, with hyperparameters such as the number of trees (ntree)
and the number of variables tried at each split (mtry) tuned to achieve the best
performance. Additionally, the caret package was again used to manage the tuning
process and to evaluate model performance using cross-validation techniques.

3. Neural Network: A neural network, particularly a feedforward neural network, was
applied to capture complex relationships within the data, offering high predictive
accuracy for non-linear and high-dimensional datasets. The nnet package [8] was used
to implement a single hidden-layer neural network, with the number of neurons in the
hidden layer (size) and the regularization parameter (decay) optimized through grid
search techniques. For more complex deep learning models, the keras package [19]
was integrated, allowing for the construction of deep neural networks with multiple
layers, activation functions, and dropout regularization to mitigate overfitting. The
architecture consisted of an input layer corresponding to the number of features in
the preprocessed dataset, a single hidden layer with 64 neurons, and an output layer
with one neuron employing a sigmoid activation function to output probabilities for
binary classification. The hidden layer utilized the ReLU activation function to handle
non-linear relationships in the data. The model was trained using the Adam optimizer
with an initial learning rate of 0.001, selected for its efficiency in handling gradient
updates and its adaptability during training. The batch size was set to 32, balancing
computational efficiency and stability during the learning process. Training was
capped at 100 epochs, with early stopping implemented to prevent overfitting. Early
stopping monitored the validation loss and halted training when no improvement
was observed over 10 consecutive epochs. To further mitigate overfitting, a decay
parameter of 0.01 was applied as regularization.

The performance of the neural network was evaluated using several metrics, dur-
ing both training and validation phases (MT: Training Metrics) and on the test set
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(MP: Prediction Metrics), including mean absolute error (MAE) and mean squared error
(MSE) to measure prediction accuracy, and accuracy (CA) to assess the proportion of cor-
rectly classified instances. The area under the curve (AUC) was calculated to evaluate the
model’s ability to distinguish between classes. Additionally, F1 score, precision, and recall
were used to balance the evaluation of true positive and false negative predictions. The
Matthews correlation coefficient (MCC) was particularly useful in assessing the agreement
between predictions and true values, especially in imbalanced datasets. These metrics were
computed during both training and validation phases to ensure consistency in performance
evaluation. The dataset included the distributed sludge quantities (kg) measured at the
15 sampling points and interpolated using the spline, cubic spline and IDW methods.

Data preprocessing steps, including normalization, feature scaling, and handling of
missing values, were performed using the caret package, ensuring that all models received
comparable input data. To ensure reproducibility, random seeds were set using the caret
package in R with set.seed(42) to ensure consistency of results during optimization and
training. The value 42 was selected arbitrarily, as it is a widely recognized convention in
computational research, providing consistency across implementations while maintaining
randomness in generated sequences.

For each model, the optimization of the hyperparameters was performed using
the caret package, which allowed for the identification of optimal values through cross-
validation and error minimization on the test data.

The dataset was divided into training (70%) and testing sets (30%), and each model
was iterated 100 times to ensure robustness. Performance metrics, including area under the
curve (AUC), classification accuracy (CA), F1 score, precision, recall, and the Matthews cor-
relation coefficient (MCC), computed via the pROC package [20], were calculated for each
model. AUC was calculated using the R pROC package based on the ROC curves generated
for each model. CA, precision, recall and F1 score were derived from the confusion matrices.
The MCC was calculated to assess the correlation between predictions and observations,
which is particularly useful in the presence of unbalanced datasets. The models were
iterated 100 times, with average results reported to reduce variability due to randomization
in the distribution of the data. These metrics provided insights into the effectiveness of the
machine learning models in accurately classifying the distribution patterns.

3. Results
3.1. ANOVA and Interpolation on Field Data

The ANOVA results indicated significant variability in sludge quantities along the
longitudinal axis, particularly showing that one trial (Trial 1) differed markedly from
the others. Conversely, no significant differences were observed along the latitudinal
axis, suggesting that the machine’s performance was less consistent across the working
width of the field (Table 1 and Figure 3). The results presented in Table 1 highlight the
significant variability in sludge distribution along the longitudinal axis (p < 0.001). This
indicates that the manure spreader exhibited uneven performance across this axis, with
notable accumulation in central areas. Conversely, the latitude results (p = 0.770) show no
significant differences, suggesting that the spreader maintains a more uniform distribution
along the latitudinal axis. The trial effect (p = 0.002) underscores variability between the
repetitions, likely due to slight differences in operational conditions or material consistency.
Figure 3 provides a visual representation of the sludge distribution patterns collected
during the trials. The data confirm significant longitudinal variability, with higher sludge
concentrations observed in the central areas of the field. This finding is consistent with the
limitations of the manure spreader technology, as uneven distribution is a known challenge
for vertical rotor systems. The relatively uniform pattern along the latitudinal axis aligns
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with the non-significant ANOVA results for this direction. These findings underscore the
challenges in achieving uniform distribution using the current manure spreader technology.

Table 1. ANOVA results highlight the significance of longitudinal coordinates on sludge distribution.

Sum of Squares df Mean Square F p

Longitude 7.78 × 106 4 1.95 × 106 7.297 <0.001
Latitude 140,481 2 70,241 0.263 0.770

Trial 3.89 × 106 2 1.95 × 106 7.295 0.002
Residuals 9.60 × 106 36 266,717
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The ANOVA results confirmed significant differences in sludge distribution along the
longitudinal axis, reflecting the inherent limitations of the manure spreader in achieving
even distribution across the field’s width. Tukey’s test (Table 2) was used to identify
significant differences in sludge concentrations distributed along the longitudinal axis. The
results showed three distinct zones: a central zone and two peripheral zones. In the central
zone, the concentration was significantly higher, indicating a more accurate distribution in
the central part of the field. In the peripheral zones, concentrations were lower, suggesting
a reduction in the effectiveness of material release at the ends. These differences reflect the
mechanical limitations of the distributor’s vertical rotor system, which tends to concentrate
material near the central trajectory. These results are consistent with the visual patterns
highlighted in Figure 3.

Table 2. Tukey’s test to define the zones. Different letters represent significantly different values.

Longitude Value Tukey (p < 0.05)

481,993.868 236 bc
481,997.368 422 b
482,000.868 1307 a
482,004.368 430 b
482,007.868 135 bc

The Tukey’s test results highlight the need to better calibrate the distributor to improve
distribution uniformity across the working width. A possible solution could be the addition
of sensors or compensation mechanisms to automatically adjust material release.

Figure 4 illustrates the spatial distribution maps of municipal sludge generated using
three interpolation methods—spline, cubic spline and inverse distance weighting (IDW)—
based on the data collected during the three experimental replicates.
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speed or distributor opening, in real time. In addition, machine learning models such as
random forest or neural networks, combined with interpolation methods such as IDW,
have proven to be particularly effective in predicting spatial variations with high accuracy,
even under suboptimal distribution conditions [10].

3.2. Machine Learning Validation in Treated Data

The machine learning models demonstrated high accuracy in classifying the interpo-
lated distribution patterns. Figure 5 shows the confusion matrices for machine learning
models applied to interpolated data. Each matrix represents the number of correct and
incorrect predictions for each class, divided into true positives (TPs)—samples correctly
classified as belonging to a class; false positives (FPs)—samples incorrectly classified as
belonging to a class; false negatives (FNs)—samples belonging to one class but classified as
belonging to another class; and true negatives (TNs)—samples correctly classified as not
belonging to the class.



Agriculture 2025, 15, 202 9 of 13Agriculture 2025, 15, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 5. Confusion matrices and cluster maps illustrating the classification. Actual clusters are rep-
resented by colours (1: green; 2: red; 3: blue), predicted clusters are represented by shapes (1: circle, 
2: cross, 3: triangle). 

The confusion matrices show that the neural network (NN) gives the highest overall 
accuracy, with few FPs and FNs, especially in the central areas of the field. Random forest 
(RF) shows good accuracy but a slightly higher number of FPs in the peripheral areas. The 
k-nearest neighbors (kNN) algorithm tends to make errors in the border areas, showing 
limitations in the ability to generalize with less dense data. These results suggest that the 
NN model is more suitable for applications where reducing classification errors is critical, 

Interpolation Model Confusion Matrix Clusterization 

Spline kNN 

  

Spline 
Random 

Forest 

  

Spline 
Neural 

Network 

  

Cubic Spline kNN 

  

Cubic Spline 
Random 

Forest 

  

Cubic Spline Neural 
Network 

  

IDW kNN 

  

Figure 5. Confusion matrices and cluster maps illustrating the classification. Actual clusters
are represented by colours (1: green; 2: red; 3: blue), predicted clusters are represented by shapes
(1: circle, 2: cross, 3: triangle).

The confusion matrices show that the neural network (NN) gives the highest overall
accuracy, with few FPs and FNs, especially in the central areas of the field. Random
forest (RF) shows good accuracy but a slightly higher number of FPs in the peripheral
areas. The k-nearest neighbors (kNN) algorithm tends to make errors in the border areas,
showing limitations in the ability to generalize with less dense data. These results suggest
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that the NN model is more suitable for applications where reducing classification errors
is critical, while RF and kNN may be useful for less sensitive scenarios. The confusion
matrices showed high model performance in area recognition, with few false positives and
negatives. However, the distribution of false positives on the maps shows that they are
always located in the edge areas.

Among the models, the neural network applied to the IDW interpolation method pro-
vided the highest accuracy, with an AUC of 0.9841, a classification accuracy of 0.9789, and
an MCC of 0.982 (Table 3). These results indicate that the neural network, in combination
with IDW, is particularly effective in identifying and predicting the spatial distribution of
sludge, even when the spread is uneven.

Table 3. Performance metrics for machine learning models applied to different interpolation methods.

Interpolation Model AUC CA F1 Prec Recall MCC

Spline
kNN 0.9829 0.9473 0.9130 0.8400 0.9490 0.9160

Random Forest 0.9802 0.9473 0.9130 0.8400 0.9540 0.9240
Neural Network 0.9897 * 0.9684 0.9333 0.8750 0.9840 0.9730

Cubic Spline
kNN 0.9795 0.9368 0.9130 0.8400 0.9400 0.9020

Random forest 0.9834 0.9578 0.9545 * 0.9130 0.9460 0.911
Neural Network 0.9834 0.9578 0.9545 * 0.9145 0.9600 0.9350

IDW
kNN 0.9705 0.9368 0.8636 0.8236 0.9540 0.9240

Random Forest 0.9863 0.9578 0.9130 0.8400 0.9750 0.9580
Neural Network 0.9841 0.9789 * 0.9500 1.0000 * 0.9890 * 0.9820 *

* best results in single performance metrics.

4. Discussion
The results of this study highlight both the potential and the limitations of using a

conventional manure spreader for slurry application in precision agriculture. The signifi-
cant variation along the longitudinal axis underscores the challenge of achieving uniform
distribution with the current equipment, particularly across the working width. However,
integrating interpolation and machine learning techniques presents a viable solution. By
accurately modelling the spread pattern, these techniques allow for identifying areas that
require corrective action, such as adjusting the overlap of spreader passes to achieve more
uniform coverage [7,8].

Furthermore, this study provides valuable insights into developing precision agri-
culture strategies that incorporate advanced data analysis tools. Predicting distribution
patterns with high accuracy enables more informed decision-making, potentially leading
to the more efficient use of resources, reduced environmental impact, and improved crop
yields. However, the effectiveness of the machine learning models is highly dependent on
the quality and quantity of data collected, which may vary under different field conditions
or with different types of spreaders. Additionally, while the interpolation methods used
in this study provided reliable results, they are based on assumptions about the spatial
relationships between data points that may not always hold true in practice [10].

An innovative aspect of this study is the cross-validation of interpolative results using
machine learning models, ensuring a robust and accurate analysis of distribution dynamics.
This approach, rarely explored in the current literature, demonstrates how advanced data
analysis tools can be integrated into precision agriculture practices to improve the efficiency
of sludge applications and reduce environmental impact.

Despite encouraging results, this study has some limitations. First, the data were
collected at a single experimental site with a specific type of manure spreader. Future
studies should replicate these analyses under diverse environmental conditions and with
different equipment to confirm the generalizability of the findings. Second, machine
learning techniques require large datasets to achieve optimal performance, which may pose
a barrier to their practical adoption in agricultural contexts with limited data collection
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resources. Developing more efficient data collection methods and simplified learning
models could facilitate the adoption of these technologies by farmers.

The long-term impacts of urban sludge application, such as heavy metal accumulation
and organic pollutants, should also be evaluated. Combining advanced technological
approaches with sustainable agronomic strategies is a priority to ensure both environmental
and productive benefits.

This study provides practical insights for precision agriculture software developers
and agricultural machinery manufacturers. Enhancing the mechanical components of
manure spreaders, such as by implementing advanced sensors and automated systems for
speed and trajectory adjustment, could further improve distribution uniformity. In parallel,
the algorithms developed for distribution analysis could be integrated into automatic tractor
guidance systems, enabling site-specific SWS applications aligned with prescription maps.

When evaluating interpolation results against established research, several compelling
insights arise. The results presented are consistent with findings from geostatistical and
agricultural studies. In terms of spline and cubic spline interpolations, these methods
typically outperform inverse distance weighting (IDW) due to their smoothness and ability
to model continuous surfaces. Neural networks also perform strongly, combining the
advantages of spline methods and machine learning to capture complex patterns [7].
Additionally, random forest is recognized for its ability to balance precision and recall,
showing robust results in agricultural contexts, particularly for predicting crop yields
and soil conditions [7,10]. This study adheres to this trend, with spline-based techniques
combined with neural networks achieving the highest evaluation metrics, particularly in
AUC, F1 score, precision, and the Matthews correlation coefficient (MCC).

The integration of neural networks with spline interpolation increases predictive
accuracy, especially in intricate data pattern scenarios [7]. The work of [12] supports our
conclusions, as they noted that spline-based methods and neural networks performed
exceptionally well in spatial predictions, particularly concerning geospatial data on soil
properties and crop yields. Likewise, Reference [11] reinforced that spline-based methods
are particularly effective for spatial predictions, especially in mapping soil properties. This
is consistent with our findings, which indicate that neural networks achieved superior
results compared to other models in terms of area under the curve (AUC) and Matthews
correlation coefficient (MCC). These insights emphasize the potential of combining these
advanced methods for improved spatial analysis.

In their study, Reference [21] provided critical insights into interpolation methods for
predicting water quality indices, underscoring the effectiveness of spline-based methods
and neural networks, asserting that these approaches deliver remarkably accurate and
robust predictions in complex spatial scenarios, significantly surpassing traditional inverse
distance weighting (IDW) techniques.

Overall, the described experiment reinforces the prevailing literature, highlighting the
strengths of spline-based methodologies and machine learning models, especially neural
networks. Such a combination is key to achieving reliable outcomes in spatial analysis.

5. Conclusions
This study highlights the practical implications of using advanced technologies such

as machine learning and interpolation methods in precision agriculture. The combination
of IDW interpolation and neural networks achieved the highest accuracy, with a Matthews
correlation coefficient (MCC) of 0.9820, showcasing their potential to address challenges in
spatial variability and distribution efficiency. These results provide actionable insights for
improving manure spreader calibration and optimizing in-field operations. Furthermore,
adopting these techniques can enhance nutrient management strategies, reducing envi-
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ronmental risks and ensuring sustainable agricultural practices. Future research should
focus on integrating real-time sensors and automation systems to further refine application
precision and expand the scalability of these approaches

However, several critical points must be addressed in future research. Firstly, the
current study is based on data from a single field trial with a specific type of manure
spreader; additional studies are needed to validate these findings across different field
conditions and with other types of spreaders. Secondly, machine learning models, while
accurate, require large datasets for training, which may not always be feasible in practical
settings. Future research should explore ways to optimize data collection and model train-
ing to ensure these techniques are accessible and applicable in diverse agricultural contexts.
Furthermore, to improve the precision management of these organic matrices with high
variability, it is important to provide preliminary laboratory analysis or, even more precisely,
on-the-go analysis with expeditious methods (e.g., NIR) to manage the distribution. Finally,
further investigation is needed into the long-term impacts of sludge distribution patterns
on soil health and crop productivity to ensure that precision agriculture strategies can be
sustainably integrated into farming practices.
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