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Abstract: Accurate safflower recognition is a critical research challenge in the field of
automated safflower harvesting. The growing environment of safflowers, including factors
such as variable weather conditions in unstructured environments, shooting distances,
and diverse morphological characteristics, presents significant difficulties for detection.
To address these challenges and enable precise safflower target recognition in complex
environments, this study proposes an improved safflower detection model, WED-YOLO,
based on YOLOv8n. Firstly, the original bounding box loss function is replaced with the
dynamic non-monotonic focusing mechanism Wise Intersection over Union (WIoU), which
enhances the model’s bounding box fitting ability and accelerates network convergence.
Then, the upsampling module in the network’s neck is substituted with the more efficient
and versatile dynamic upsampling module, DySample, to improve the precision of feature
map upsampling. Meanwhile, the EMA attention mechanism is integrated into the C2f
module of the backbone network to strengthen the model’s feature extraction capabilities.
Finally, a small-target detection layer is incorporated into the detection head, enabling
the model to focus on small safflower targets. The model is trained and validated using a
custom-built safflower dataset. The experimental results demonstrate that the improved
model achieves Precision (P), Recall (R), mean Average Precision (mAP), and F1 score values
of 93.15%, 86.71%, 95.03%, and 89.64%, respectively. These results represent improvements
of 2.9%, 6.69%, 4.5%, and 6.22% over the baseline model. Compared with Faster R-CNN,
YOLOv5, YOLOv7, and YOLOv10, the WED-YOLO achieved the highest mAP value. It
outperforms the module mentioned by 13.06%, 4.85%, 4.86%, and 4.82%, respectively. The
enhanced model exhibits superior precision and lower miss detection rates in safflower
recognition tasks, providing a robust algorithmic foundation for the intelligent harvesting
of safflowers.

Keywords: safflower filaments; object detection; improved YOLOv8 algorithm; deep learning

1. Introduction
Safflower is an important specialty crop. The natural pigment safflower yellow, which

is extracted from the safflower filaments, is widely used in medicine due to its high
medicinal value [1,2]. China is one of the major producers of safflower [3]. The harvesting
of safflowers is characterized by highly seasonal and labor-intensive. Currently, safflower
harvesting primarily relies on manual labor, which is inefficient and costly. Furthermore,
due to the delay in harvesting, some safflower filaments wilt, leading to a reduction in
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yield. As such, the intelligent harvesting of safflower has become a key area of research.
Safflowers bloom in multiple batches, with each batch going through flower opening
and shedding periods [4,5]. The safflowers are small, numerous, compact, and vary in
height, which makes it difficult to effectively extract the features of small safflower targets.
Additionally, the complex background in unstructured environments introduces significant
noise, further affecting the feature extraction process. This ultimately reduces the accuracy
of safflower recognition and hampers the development of automated safflower harvesting.
Therefore, there is an urgent need to develop algorithms that can effectively extract small
safflower features in complex environments, minimize background noise, and enable
accurate recognition across different flowering periods. Such algorithms could provide
valuable references for the intelligent harvesting of safflowers.

Numerous deep learning techniques have been utilized for identifying and detecting
crop flowers and fruits within challenging environments [6–8]. Object detection algorithms
are categorized into two-stage and one-stage detection methods. Two-stage detection
algorithms operate by first generating a series of candidate bounding boxes, which are then
classified using convolutional neural networks. Farjon et al. [9] used Faster R-CNN [10]
to detect apple blossoms, achieving a mAP value of 68%. Zhang et al. [11] improved the
backbone feature extraction network, anchor box generation structure, and feature mapping
mechanism of the Faster R-CNN network. The improved algorithm achieved a mAP of
91.49% for safflower detection. Bhattarai et al. [12] used the Mask R-CNN algorithm, for
instance, to segment apple blossoms, conducting experiments during training to optimize
hyperparameters of the deep learning network, achieving an average precision (AP) of 86%.
Tian et al. [13] proposed a Mask Scoring R-CNN model with a U-Net backbone network for
detecting and segmenting different forms of apple blossoms, including buds, semi-open,
and fully open flowers.

In contrast, one-stage detection algorithms bypass the need for generating candidate
boxes, formulating the task of object localization as a regression problem instead. This
fundamental difference in design gives two-stage methods a slight edge in detection
accuracy and localization precision, while one-stage methods excel in processing speed.
However, with the continuous evolution of the YOLO series, one-stage detection algorithms
have achieved significant improvements in accuracy while maintaining their advantage in
speed, narrowing the performance gap with two-stage methods. Zhang et al. [14] proposed
GSC-YOLOv3 based on YOLOv3 algorithm to detect safflower filaments, achieving a
mAP of 91.89%. Guo et al. [15] introduced a safflower pistil detection and localization
algorithm based on YOLOv5m, incorporating the CBAM attention mechanism, which
led to an AP of 95.2%. Wang et al. [16] introduced a safflower recognition approach for
complex environments, leveraging an enhanced YOLOv7 algorithm. The optimization
involved integrating the Swin Transformer attention mechanism and refining the Focal Loss
function, resulting in an AP of 88.5%, marking a 7% improvement compared to the original
model. Wang et al. [17] presented a YOLOv5-based object detection algorithm for real-time
detection of apple stems and sepals, achieving a mAP of 88%. Bhattarai et al. [18] proposed
a deep regression-based network, AgRegNet, capable of estimating the density, quantity,
and location of flowers and fruits in tree crowns. In an unstructured orchard environment,
their model achieved a mAP of 81% for apple blossom detection. Dias et al. [19] proposed
an improved end-to-end residual convolutional neural network to enhance color sensitivity.
Using the Deeplab + RGR method, they achieved accurate recognition of flowers with both
Recall and Precision rates exceeding 90%. Qi et al. [20] introduced a TC-YOLO algorithm
that uses an improved backbone network to extract features and detect chrysanthemums in
complex environments. Bai et al. [21] developed an enhanced YOLOv7 algorithm tailored
for the recognition of flowers and fruits in greenhouse strawberry seedlings. They classified
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the flowers into bud and flower periods, achieving a mAP value of 94.7% for flowers and
89.5% for fruits. Zhao et al. [22] proposed a tomato flower period recognition and detection
method based on a cascade convolutional neural network, with a Precision of 76.67% in a
glass greenhouse environment. While these studies have achieved promising results in
flower and fruit recognition and detection, they often overlook the challenges posed by
complex backgrounds, blurred images, and low-quality samples during actual harvesting.
These factors result in fuzzy detection target features at varying distances, leading to lower
detection accuracy. To address these challenges, this study collected safflower images under
different weather conditions and shooting distances to create a dataset suitable for model
training and evaluation. Based on the YOLOv8n model, we propose improvements and
optimizations for safflower filament detection. The primary contributions of this study can
be summarized as follows:

(1) Based on the significant variations in safflower size and shape as the shooting distance
changes, the loss function was replaced with the WIoU, better suited for handling
these variations.

(2) To retain more detailed safflower feature information during upsampling, the upsam-
ple module in the neck network was replaced with the DySample module, enhancing
the model’s upsampling capabilities.

(3) To better capture safflower features, the EMA module was integrated into the C2f
module of the backbone network, improving the backbone’s feature extraction ability
for safflower targets.

(4) A small target detection layer was incorporated to improve the model’s capability in
extracting and identifying small safflower target features within the dataset, providing
a precise detection method for safflower automation.

The remainder of this study is structured as follows: Section 2 provides an overview
of the relevant materials and details the recognition and detection methods employed in
this research; Section 3 outlines the experimental setup, presents the evaluation metrics,
and reports the experimental results; finally, Section 4 offers a discussion of the findings,
presents the conclusions, and highlights potential directions for future work.

2. Materials and Methods
2.1. Material
2.1.1. Acquisition of Image Data

Safflower is the experimental subject in this study. The safflower structure is composed
of three primary parts arranged from top to bottom: the filament, the fruit ball, and the
stem. It goes through two main flowering stages: the opening period and the shedding
period. The safflower dataset was gathered from the safflower cultivation base located
at 81◦8′ E and 43◦33′ N in Qapaqal Xibe Autonomous County, Yili, Xinjiang, China. The
imaging devices include a Canon digital camera (E700D) (Canon Inc., Tokyo, Japan) and a
Huawei P50 (Huawei Technologies Co., Ltd., Shenzhen, China). To ensure the versatility
and operational range of the safflower intelligent harvesting machinery, the dataset was
designed to be diverse. It includes safflower samples captured under different weather
conditions and at varying distances. Additionally, each image contains multiple safflower
plants at different flowering periods. The weather conditions during data collection were
categorized as sunny, cloudy, and overcast. Since a safflower plant typically consists of
multiple branches and has a certain spread, with height variations, the shooting distance
was selected between 0.4 and 1 m to match the operational range of the equipment. The
dataset was divided into two categories based on shooting distance: close (0.4~0.7 m) and
far (0.7~1 m). This range ensures that the height variations of the safflower plants are
kept within a manageable range, maximizing the visibility of all flowers in the frame. The
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dataset includes images captured in various weather conditions, including sunny, cloudy,
overcast, and at both close and far distances. This combination allows for flexibility in
selective harvesting tasks. A total of 1126 RGB images were collected for model training
and testing, with the categories and quantities detailed in Table 1. Some of the images are
shown in Figure 1.

Table 1. Dataset and their quantities under different conditions.

Weather Condition
Image Quantities Under Different Shooting Distance

Close Distance (0.4~0.7 m) Far Distance (0.7~1 m)

Sunny 204 169
Overcast 223 192
Cloudy 172 166
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Figure 1. Example of safflower image dataset in complex environment: (a) Sunny, (b) overcast,
(c) cloudy, (d) close distance (0.4~0.7 m), (e) far distance (0.7~1 m).

2.1.2. Augmentation and Processing of the Safflower Filaments Image Dataset

To mitigate overfitting during training, various data augmentation techniques were
implemented on the original dataset. The applied techniques included rotations (90◦,
180◦, and 270◦), noise injection, horizontal and vertical mirroring, as well as brightness
modifications. Such augmentations effectively expanded the dataset, highlighting both
global and local features of the safflower samples and increasing the contrast between
different flowering stages. This approach contributes to enhancing the learning capacity of
deep neural networks. Expanding the dataset’s variability greatly enhanced the model’s
robustness and generalization capabilities. Examples of the augmented images are shown
in Figure 2.

The dataset was captured under different weather conditions and at varying shoot-
ing distances to ensure its diversity. To guarantee the accuracy of the data parameters,
the dataset was manually annotated using the LabelImg tool before model training. An-
notations followed the YOLO format, with safflower in the blooming phase labeled as
Opening_period and safflower in the wilting phase labeled as Flower_shedding_period. During
annotation, the minimum enclosing rectangle around the filaments of the safflower was
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used as the ground truth bounding box, minimizing the inclusion of irrelevant background
pixels. Once annotated, the corresponding .txt annotation files were generated. After data
augmentation, a total of 3940 safflower images were obtained. These were split into training,
validation, and test sets at a ratio of 8:1:1. The final distribution consisted of 3152 images
in the training set, 394 images in the validation set, and 394 images in the test set. The
training and validation sets were used for model training and intermediate evaluation
during each training cycle, while the test set was reserved for the final evaluation of the
model’s detection performance.
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2.2. Methods
2.2.1. YOLOv8 Model

The You Only Look Once (YOLO) algorithm series comprises single-stage detection
models that achieve an effective balance between detection speed and accuracy, particularly
in detecting small objects. These models enable rapid classification and detection directly
from images [23–25]. YOLOv8 is an anchor-free, single-stage object detection algorithm
that has emerged as one of the leading models in the state-of-the-art (SOTA) category. The
YOLOv8 architecture largely follows the YOLOv5 model while introducing new features
and improvements to further enhance its performance and flexibility. In YOLOv8, the
C2f structure replaces the C3 structure used in YOLOv5. The C2f module is designed by
drawing inspiration from both the C3 module and the ELAN [26] concept. It divides the
input feature map into two parts along one dimension, reducing computational complexity
while enriching gradient flow, which improves the model’s ability to represent non-linear
features. Additionally, YOLOv8 incorporates a Decoupled-Head as the final detection head,
which separates the classification and regression tasks, allowing for independent predic-
tions. This approach reduces conflicts between the two tasks and introduces an anchor-free
method, simplifying the object detection pipeline and improving model performance. The
structural diagram of the model is shown in Figure 3.
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2.2.2. Improved YOLOv8 Model for Small Target Safflower Filaments Detection

Owing to the safflower filaments features small size and large number, accurately
identifying safflower filament features, generating target bounding boxes, as well as identi-
fying the different flowering periods of safflower filaments in natural environments are the
research focuses of this paper. The main improvements include:

(1) Replace the CIoU of the original model with the WIoU loss function. WIoU assigns
different weights to different size targets of safflower samples, which could improve
the bounding box fitting ability and speed up the convergence of the network.

(2) In the neck network, the Dysample module is introduced to replace the Upsample
module of the original model. Dysample could enhance the ability of upsampling for
safflower targets in low-resolution images or far-field views and then reduce the loss
of safflower features during the sampling process.

(3) Incorporate an efficient multi-scale attention mechanism in the C2f module in the
backbone network to improve the extraction capability of the backbone network for
safflower features.

(4) A small object prediction head with a size of 160 × 160 × 32 is added, intending
to enhance the ability to detect small target safflower samples. The structure of the
YOLOv8-WED model is shown in Figure 4.

2.2.3. WIoU Loss Function

At different distances within the field of view, the actual size and shape of the red
flowers undergo significant changes. The clarity and quality of the images captured by
the camera are also affected by the varying field-of-view sizes. Additionally, when the
dataset contains a large number of low-clarity safflower samples, merely improving the
loss function’s ability to fit the bounding box does not significantly enhance its localization
performance and may even degrade it. However, as the original bounding box regression
loss function in YOLOv8, CIoU exclusively focuses on the fitting accuracy of the bounding
box. When the predicted box and the ground truth box have the same aspect ratio but differ
in width and height, CIoU may hinder further optimization of the model. To address this
issue, this paper introduces Wise-IOU (WIoU) [27] to improve bounding box localization
performance in safflower samples with varying levels of clarity across different fields of
view. The WIoU loss function utilizes a dynamic, non-monotonic focusing mechanism that
replaces IoU with outlier degree to assess anchor box quality. It also incorporates a gradient
gain allocation strategy, which enhances the focus on high-quality anchor boxes while
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mitigating the negative impact of low-quality samples in the dataset. The computation
method is shown in Figure 5, and the formula for calculating the loss value is as follows:

LIOU = 1 − Wi Hi
Su

(1)
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coordinates of the predicted bounding box; Wg represents the width of the minimum enclosing box
for the predicted bounding box; Hg represents the height of the minimum enclosing box for the
ground truth bounding box.
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Su represents the area of the intersection, and the calculation formula is as follows:

Su = wh + wgthgt − Wi Hi (2)

where w and h represent the width and height of the predicted bounding box, respectively;
wgt and hgt represent the width and height of the ground truth object bounding box; Wi

and Hi represent the width and height of the intersection area between the ground truth
and the predicted bounding boxes.

In the WIoU loss function, we adopted the more performant WIoUv3 [28], with its
formula expressed as follows:

LWIoUv1 = RWIoU LIoU (3)

RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

(W2
g + H2

g)
∗ ) (4)

When the predicted bounding box overlaps with the object bounding box, the LIoU loss
weakens the penalty for geometric factors and shifts the focus to the center distance. The
non-monotonic focus coefficient RWIoU in Formula (4) helps balance gradient contributions,
ensuring that low-quality samples do not adversely affect the training process. Furthermore,
within the aggregation factor r, an outlier value β is introduced to assess the anomaly level
of the anchor frame, expressed as:

β =
LIoU

LIoU
∈ [0,+∞) (5)

In Formula (5), LIoU represents the moving average of momentum m, where m is
typically set to 1 − tn

√
0.05, t denotes the training epoch, and n represents the batch size.

Consequently, focus factor r can be defined as:

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(6)

where α and δ are hyperparameters. When the outlier degree of an anchor frame reaches
a certain constant, the anchor frame achieves the highest gradient gain. The dynamic
characteristics of LIoU also render the quality classification criterion β for anchor frames
dynamic. This enables WIoUv3 to dynamically determine the most appropriate gradient
gain allocation strategy for the given scenario, allowing the model to concentrate more on
medium-quality anchor boxes of safflower samples, which in turn enhances overall detec-
tion performance. Additionally, the scale invariance provided by LWIoUv3 in Formula (6)
ensures that the model consistently delivers stable performance across safflower samples of
different sizes. This effectively addresses significant variations in safflower samples caused
by distance and environmental changes in real harvesting scenarios. Consequently, the
detection model becomes more robust and precise, especially under challenging weather
conditions, thereby improving its generalization capability in complex real-world harvest-
ing scenarios.

2.2.4. Dysample

In the real-world safflower image samples, the size of the safflowers varies with
distance, and safflower samples in the background may experience pixel distortion. This
distortion leads to the loss of fine-grained details in the filaments, making it difficult
for the model to learn the true features of safflower samples during recognition tasks.
YOLOv8 utilizes an upsampling layer, Upsample, in its neck feature enhancement network,
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which employs the Nearest Neighbor interpolation algorithm. This method relies on
the nearest neighboring pixels and fails to effectively capture subtle changes and dense
semantic information in safflower features, resulting in feature loss. Additionally, this
method incurs significant computational and parameter overhead. To address this issue,
this paper introduced a dynamic point sampling-based Dysample [29] operator, which
aims to improve the network’s upsampling ability for safflower targets in low-resolution
or distant scenes. This module reduces the loss of safflower features during the sampling
process. Furthermore, it does not require additional CUDA packages, offering a significant
reduction in computational and parameter overhead compared to the original module
during operation.

The structure of DySample is shown in Figure 6. First, given an input feature map X
with dimensions C × H × W, an upsampling factor s, and a static range factor of 0.25 to limit
the sampling position’s movement. A linear layer with specified input and output channel
sizes of C and 2s2, respectively, is used to generate feature offsets of size H × W × 2s2.
These offsets are reshaped into the size 2g × sH × sW through a Pixel Shuffle operation to
obtain the final dynamic offsets O. Finally, the offsets O are added to the original sampling
grid G, resulting in the sampling set S. The set S is then used to perform a grid sampling
operation with the original input X, producing an upsampled feature map X’ of size
C × sH × sW. This dynamic point sampling method effectively upsamples low-resolution
feature maps to higher resolutions, which is crucial for safflower recognition. At higher
resolutions, finer details of the safflower can be better preserved and presented, ultimately
enhancing recognition accuracy.
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2.2.5. C2f-EMA Module

The dataset contains safflowers at multiple scales; meanwhile, the background features
numerous objects such as branches, leaves, and weeds, which are similar to the color of the
safflower. These elements significantly interfere with safflower detection. Therefore, it is
crucial to extract safflower features effectively from complex backgrounds for achieving
accurate detection results. To address this challenge, this paper introduces an efficient
multi-scale attention module (EMA) [30], which is integrated into the C2f module of the
backbone network to form the C2f-EMA structure. This module reshapes certain channels
to the batch dimension and groups the channel dimensions into multiple subfeatures. This
allows it to retain key safflower features in each channel while reducing the interference
caused by the complex background. As a result, the feature representation capability of the
input image is enhanced, improving the overall safflower feature extraction performance.

The structure of the EMA module is shown in Figure 7. The input is first grouped
and then processed through three parallel branches. The input is first grouped and then
processed through three parallel branches. In the two 1 × 1 branches, one-dimensional
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global average pooling is applied to encode the channels in both spatial directions. The
channel-wise attention maps within each group are then combined using basic multiplica-
tion operations, facilitating cross-channel interactions between the two parallel paths. In the
3 × 3 branch, a single 3 × 3 convolution is stacked to expand the feature space, enabling the
capture of multi-scale features. The two feature sets obtained from the different branches
are processed through a cross-space learning module and a Sigmoid function, resulting in
the final output feature map.
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2.2.6. Small-Target Detection Layer

In the process of recognizing small target safflower images, inputting excessively large
images leads to scaling, which reduces the pixel coverage of small targets, thereby hindering
the accurate recognition of safflowers. To address this challenge and enhance the precision
of small target detection, the YOLOv8 network is optimized by incorporating an additional
prediction head, which is specifically designed to process small targets. This modification
enables the network to focus more effectively on safflower samples with smaller pixel sizes,
thus improving the recognition accuracy of small targets [31]. Specifically, the network
is enhanced by fusing the output feature maps from the second-layer C2f-EMA module
and the dynamic upsampling module. This fusion integrates information across multiple
network depths, effectively bridging high-level semantic features with low-level details.
Such combination significantly improves the model’s ability to accurately recognize small
safflower targets. The fused feature maps are combined to generate a newly constructed
high-resolution detection layer, measuring 160 × 160 × 32. This layer is specifically tailored
to improve the identification and detection capabilities for small safflower targets.
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3. Results
3.1. Experimental Setup
3.1.1. Test Platform

The experiment was conducted on a system running Windows 11, with an Intel(R)
Core (TM) i9-10700K CPU operating at 3.80 GHz (3.79 GHz base clock) and an NVIDIA
GeForce GTX 4070 graphics card. The general parallel computing architecture utilized was
CUDA 11.0, with the deep neural network acceleration library CUDNN V8.0.5.39. The
deep learning framework employed was PyTorch 1.7.1, and the programming environment
was PyCharm, using Python 3.9 as the programming language.

3.1.2. Evaluation Indicators

In this study, the metrics chosen to evaluate the performance of the safflower recogni-
tion model include the Precision rate (P), Recall rate (R), F1 score, Average Precision (AP),
and Mean Average Precision (mAP). AP is defined as the area under the precision-recall
curve, where a higher AP value reflects superior model performance. The mAP is the mean
value of AP across all classes, calculated at a given Intersection over Union (IoU) threshold.
The formulas for the evaluation metrics are as follows:

P =
TP

TP + FP
× 100% (7)

R =
TP

TP + FN
× 100% (8)

F1 =
2PR

P + R
× 100% (9)

AP =
∫ 1

0
P(R)dR (10)

mAP =

2
∑

n−1
AP(n)

2
× 100% (11)

In the equation, TP denotes the number of correctly detected target objects, FP repre-
sents the number of falsely detected target objects, and FN refers to the number of target
objects that were not detected. Precision (P) is defined as the ratio of correctly detected
filaments to the total number of detected filaments, expressed as a percentage. Recall (R) is
the ratio of correctly detected filaments bounding boxes to the total number of ground truth
filaments bounding boxes, also expressed as a percentage. The F1 score is the harmonic
mean of Precision and Recall. AP represents the Average Precision of a specific class of
safflower filaments, expressed as a percentage. Finally, mAP denotes the Mean Average
Precision, which is the Average Precision across both the opening and flower-shedding
period of safflower filaments, expressed as a percentage.

3.2. Experimental Result
3.2.1. Model Training

The training was conducted using the default hyperparameters of YOLOv8n. The
initial image size was set to 640 × 640 pixels, with a batch size of 16. A learning rate of
0.01 was used, along with a weight decay factor of 0.0005 and a momentum factor of 0.937.
The model was trained for a total of 1000 iterations, and the optimal results were analyzed.
As shown in Figure 8, the loss function curve and mAP curve during the training process
illustrate that as the number of iterations increases, the total loss decreases. As shown in
Figure 8a, when the number of training iterations reaches 900, the loss curve begins to
plateau and eventually stabilizes at a minimum value of 0.080. Simultaneously, the mAP
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curve steadily increases with each training iteration and eventually reaches stability. As
shown in Figure 8b, the mAP (IoU = 0.5) achieves a value of 95.03%. The trends of the
curves throughout the training process effectively reflect the model’s learning progress and
the training’s overall effectiveness.
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3.2.2. Ablation Experiment

To evaluate the contribution of the proposed improvements to the overall model
performance, ablation experiments were conducted, and the results are presented in Table 1.
As shown in the table, replacing the WIoU loss function led to improvements in Precision,
Recall, and mAP, demonstrating that the WIoU loss function enhances the model’s fitting
ability and recognition accuracy. Additionally, when the upsampling module in the neck
network was replaced with the dynamic upsampling module, the model achieved increases
of 0.54%, 1.65%, 1.15%, and 0.77% in Precision, Recall, F1 score, and mAP, respectively,
compared to Test NO. 2. Meanwhile, the inference time of the images was reduced by
3 ms. This improvement is attributed to the DySample module. It does not require
additional CUDA packages, which makes a difference from the traditional upsampling
methods. As a result, it significantly reduces computational overhead and parameter
costs, thereby enhancing overall computational efficiency. These results indicate that the
DySample module effectively enhances the model’s capability to detect low-resolution
and small-target safflowers. Furthermore, when the C2F module in the backbone network
was replaced with the C2f-EMA module, the model showed substantial improvements in
Precision, Recall, F1 score, and mAP over Test NO. 3. The improvements were 1.04%, 1.87%,
1.66%, and 1.72%, respectively. These findings suggest that incorporating the attention
mechanism significantly increases the model’s focus on small-target safflowers. Finally, the
improved YOLOv8n model proposed in this study demonstrated slightly longer inference
time compared to Test NO. 4 but achieved the best performance across all other evaluation
metrics. It outperformed Test NO. 4 in terms of Precision, Recall, F1 score, and mAP by
1.22%, 1.86%, 1.4%, and 1.85%, respectively. With an image inference time of 13.9 ms, it is
capable of meeting the requirements of practical harvesting scenarios. This indicates that
the newly introduced small-target detection layer effectively improves the model’s ability
to detect small safflower targets, thereby enhancing the overall detection performance.

4. Discussion
4.1. Comparison of Different Object Detection Methods

To further validate the advantages of the improved YOLOv8 algorithm in red flower
recognition, a comparative experiment was conducted using Faster R-CNN, YOLOv5n,
YOLOv7, YOLOv8n, and YOLOv10n object detection models. The experiments were
performed using constructed red flower dataset for training, followed by evaluation on the
same test set for the six detection networks. The experimental results are shown in Table 2.
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Table 2. Ablation experiment.

Test
NO.

Base
Model WIoU DySample C2f-EMA S-T D

Layer
Precision

/%
Recall

/% F1/% mAP/% Inference
Time/ms

1
√

- - - - 90.25 80.01 84.82 90.53 15.2
2

√ √
- - - 90.35 81.33 85.43 90.69 15.2

3
√ √ √

- - 90.89 82.98 86.58 91.46 12.2
4

√ √ √ √
- 91.93 84.85 88.24 93.18 12.6

5
√ √ √ √ √

93.15 86.71 89.64 95.03 13.9

Note: In the table, the “Base Model” represents the original YOLOv8n model. S-T D Layer represents the small-
target detection layer. A “

√
” indicates that the module has been added, while a “-” indicates that the module has

not been added.

As shown in Table 3, the two-stage detection algorithm Faster R-CNN exhibits the
lowest detection accuracy, the slowest inference speed, and the largest model size, making it
unsuitable for small safflower target detection. Among the one-stage detection algorithms,
YOLOv5n, YOLOv7, YOLOv8n, and YOLOv10 show similar performance in terms of
Precision, Recall, mAP, and F1 score. However, YOLOv7 performs poorly in inference
speed and model size, with a model size of 74.8 MB, significantly larger than the other
three algorithms. The improved YOLOv8n model demonstrates the best performance in
Precision, Recall, mAP, and F1 score. The reason lies in the fact that the filaments occupy
only a small number of pixels in the images, leading to a decline in the feature quality of
safflower filaments. This makes it challenging for other algorithms with weaker small-
object detection capabilities to achieve satisfactory results. In contrast, the WED-YOLO
algorithm significantly enhances small-object detection performance and the ability to
extract feature information by the improvement mentioned in Section 2.2.2, with its mAP
value substantially surpassing the other algorithms. Specifically, its Precision exceeds that
of Faster R-CNN, YOLOv5n, YOLOv7n, YOLOv8n, and YOLOv10 by 14.19%, 3.23%, 3.26%,
2.9%, and 3.17%, respectively; Recall exceeds by 4.38%, 9.84%, 6.76%, 6.69%, and 6.66%; mAP
exceeds by 13.06%, 4.85%, 4.86%, 4.5%, and 4.82%; F1 score exceeds by 13.14%, 7.14%, 6.31%,
4.82%, and 6.22%, respectively. The inference speed of the improved YOLOv8n is 72 frames
per second (FPS), which is slightly lower than the speed YOLOv10n but has a higher mAP
value. Among these models, the proposed algorithm demonstrates the highest mAP in
small safflower detection, with a moderate model weight, making it suitable for precise
detection of safflowers during both the flower-opening and flower-shedding periods.

Table 3. Comparison of experimental results of different models.

Model P/% R/% F1/%
AP/%

mAP/
%

FPS/
Frame·s−1

Model
Size/MBOpening

Period
Flower-Shedding

Period

Faster R-CNN 78.96 82.32 76.50 82.92 77.34 81.97 23 322
YOLOv5n 89.92 76.86 82.50 90.17 90.19 90.18 69 4.1
YOLOv7 89.89 79.94 83.33 90.11 90.23 90.17 47 74.8

YOLOv8n 90.25 80.01 84.82 90.40 90.66 90.53 66 6.2
YOLOv10n 89.98 80.04 83.42 90.13 90.28 90.21 80 3.5

YOLOv8-WED 93.15 86.7 89.64 95.25 94.82 95.03 72 6.4

To evaluate the detection performance under different weather conditions, we selected
one image from each weather condition—sunny, cloudy, and overcast—taken at different
distances (far and close). The detection results of the six models are shown. The red
detection box labeled “Flower-opening period” indicates the detection of safflowers in the
blooming period, while the blue detection box labeled “Flower-shedding period” indicates
safflowers in the shedding period. The numbers following the labels represent the detec-
tion confidence values. As shown in Figure 9, due to the two-stage detection algorithm’s
candidate region generation network being highly dependent on large-scale feature maps



Agriculture 2025, 15, 205 14 of 18

to generate candidate boxes, Faster R-CNN struggles to capture multi-scale features in
the scene, leading to poor detection of small safflower targets. This results in significant
misdetection, with many small safflower targets not being correctly generated or recog-
nized by the candidate region network. YOLOv5n, YOLOv7, YOLOv8n, and YOLOv10
exhibit similar detection performance, with only a few missed detections. For instance,
in overcast images, there are some distant safflower samples, making safflower features
with a low quality in the images. When processing these low-quality safflower images,
YOLOv5n and YOLOv7 detected 9 safflowers in the flower-openning and 12 safflowers in
the flower-shedding period. Meanwhile, YOLOv8n and YOLOv10n detect 8 safflowers in
the flower-openning and 15 safflowers in the flower-shedding period. All these models
outperformed Faster R-CNN and exhibited commendable performance. However, some
safflowers with low-quality features were still misidentified by all models. Only the im-
proved YOLOv8n model achieved the best detection performance. In overcast images, it
detected 9 safflowers in the flower-opening period and 16 safflowers in the flower-shedding
period, outperforming all other models. Similarly, in cloudy images, there were also some
safflower samples with blurry outer contours and low-quality features. All models missed
detections in these cases, but the improved YOLOv8n model performed the best. This
superior performance can be attributed to the improved model’s enhanced ability to ex-
tract features of small safflower targets, enabling it to effectively recognize safflowers in
low-quality images.

4.2. Comparison of Different Loss Functions

The original YOLOv8 object detection model employs CIoU as its bounding box re-
gression loss function. During training, this loss function exhibits strong fitting ability;
however, since the aspect ratio of the predicted box is a relative value, there is inherent un-
certainty in the calculation. Additionally, both high-quality and low-quality mispredictions
negatively affect the regression loss. This study examines the convergence behavior of the
improved YOLOv8 model with different loss functions, including WIoU, CIoU, EIoU [32],
and SIoU [33]. The experimental results are illustrated in the loss comparison chart.

As shown in Figure 10, when using EIoU, the convergence speed is the slowest, and
the final loss value is the highest. The convergence speed of SIoU and CIoU is slightly faster
than that of EIoU, with final loss values marginally lower than EIoU. However, when using
WIoU, the model exhibits the fastest gradient descent during training, converging rapidly
within the first 300 epochs and achieving a final loss value significantly lower than that of
the other three loss functions. Additionally, as indicated in Table 1 of the ablation study, the
use of WIoU results in improvements across various evaluation metrics, including Precision,
Recall, and mAP.

4.3. Visualization of Heatmap

To visually showcase the optimization effect of the proposed WED-YOLOv8 model on
the Red Flower dataset, the Gradient-weighted Class Activation Mapping (Grad-CAM) [34]
algorithm is utilized for visualization. In the heatmap, different colors indicate the im-
portance of each position in the image for the red flower detection task. Darker colors
indicate regions where the model focuses more attention. As shown in Figure 11, YOLOv8n
is susceptible to noise from the background area during detection, leading the model to
focus on irrelevant background regions. In contrast, the improved model significantly
reduces attention to noise from the background, allowing it to accurately focus on the red
flower region. This demonstrates that the improved model is better at extracting red flower
features in complex environments, thereby enhancing the model’s accuracy in recognition
and detection tasks in challenging background settings.
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Figure 10. Convergence of different bounding box loss functions. CIoU Loss indicates that the model
uses CIoU as the bounding box loss function. EIoU Loss indicates that the model uses EIoU as the
bounding box loss function. SIoU Loss indicates that the model uses SIoU as the bounding box loss
function. WIoU Loss indicates that the model uses WIoU as the bounding box loss function.
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high activity or importance regions and cool colors (e.g., blue or green) indicating low activity or
importance regions.

5. Conclusions
To achieve precise safflower recognition in complex and unstructured environments, a

novel detection methodology, WED-YOLO, has been proposed. First, safflower samples
from both the opening and flower-shedding periods were selected as detection targets
to create a safflower dataset. A series of robust data augmentation techniques, including
random occlusion and brightness enhancement, were implemented to enhance the dataset’s
diversity. Next, the original CIoU loss function of the model was replaced with WIoU,
mitigating the adverse effects of low-quality samples in the safflower dataset, enhancing
the model’s fitting performance, and accelerating network convergence. Subsequently, the
upsampling mechanism in the neck network, UpSample, was replaced with the dynamic
upsampling mechanism, DySample, which further enhances the model’s detection capa-
bility for small safflower targets in low-resolution images or distant views, improving the
model’s learning ability and robustness. Building on this, the EMA attention mechanism
was integrated into the C2f module of the backbone network, strengthening the model’s
feature extraction ability for safflowers. Finally, a small target detection layer was added
to enable the network to focus more on smaller safflower samples, thereby improving
the accuracy of small target safflower recognition. When compared to other detection
algorithms, including Faster R-CNN, YOLOv5n, YOLOv7, YOLOv8n, and YOLOv10n, the
proposed WED-YOLO model demonstrated superior performance, achieving the highest
mAP value (mAP = 95.03%). It outperforms the module mentioned by 13.06%, 4.85%,
4.86%, 4.5%, and 4.82%, respectively. The performance is also more balanced in terms of
detection accuracy and detection speed, with a moderate model size. Experimental results
demonstrate that the WED-YOLO model is effective for safflower recognition in complex,
unstructured environments. The precision meets the requirements of safflower-harvesting
robots, providing an algorithmic reference for the intelligent harvesting of safflowers.

In future studies, it will be essential to gather a wider variety of safflower images to
enhance the dataset’s diversity. At the same time, the YOLOv8 model will undergo further
improvements and optimizations to adapt more effectively to detection tasks in diverse
scenarios, facilitating the extension of the YOLOv8-WED model. Moreover, if applied to
real-time tasks such as dynamic safflower counting, the computational efficiency of the
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approach should be further refined. These challenges will remain the focus of ongoing
exploration and investigation in future research efforts.
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