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Abstract: Nitrogen dioxide (NO2) impacts climate, air quality, soil nitrogen fixation, and
crop production, yet its transboundary impacts remain unclear. This study combines
15 global datasets to assess nitrogen’s transboundary impacts on crop yields and soil
health. We use machine learning to develop yield prediction models for major grain
crops (maize, rice, soybean, and wheat) affected by NO2. Our findings indicate stable
soil nitrogen fixation in China from 2015 to 2020, although overgrazing and deforestation
may cause declines. Increasing soil total nitrogen content by 0.62–2.1 g/kg can reduce
NO2 by 10–30%. Our research indicates that the current agricultural environments for
major grain crops (58.5–94.2%) have already exceeded the NO2 concentration range that
crops can tolerate, particularly in regions near northern urban clusters. This highlights
the need for regional interventions, such as precision nitrogen fertilizer management, to
enhance both soil nitrogen fixation and crop yields. Scenario analysis suggests that NO2

control can boost maize and rice yields in a greener context, while increasing total nitrogen
content improves wheat and soybean yields. This provides a solution for advancing
sustainable agriculture by linking nitrogen cycle management with improved crop yields
and environmental sustainability.

Keywords: total nitrogen content; nitrogen cycle; transboundary impact; nitrogen fixation;
yield prediction model

1. Introduction
Soil plays a crucial role as a major nitrogen sink, and, alongside climatic factors, it

significantly influences the distribution patterns of global agricultural land [1]. Plant-
associated nitrogen-fixing bacteria are more efficient than free-living counterparts due to
symbiotic advantages like resource sharing and optimized host conditions [2]. However,
the development and use of agricultural land not only alter the structure and function of soil
microbial communities but also impact soil’s nitrogen fixation [3]. In recent years, the rising
global demand for food has put immense pressure on agricultural production to increase
crop yields while simultaneously confronting escalating environmental challenges [4]. The
reliance on nitrogen fertilizers to boost food and feed production has led to significant
nitrogen losses—over half of the nitrogen fertilizer applied to arable land escapes into
the atmosphere and water, contributing to a global total of 120 megatons of chemical
nitrogen fertilizers used annually [5]. Nitrogen fixation levels and nitrogen oxide (NOX)
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emissions from cropland are influenced by multiple environmental factors, including
nitrogen fertilizer application rates, soil organic carbon content, temperature, moisture, and
pH levels [6,7]. As the global demand for food continues to grow, it is crucial to further
assess how the nitrogen fixation of croplands may change, as well as the implications of
these changes for nitrogen pollution and atmospheric emissions.

The negative impacts of nitrogen on agricultural ecosystems have been recognized
since the last century [8]. The excessive use of nitrogen in agricultural ecosystems has
increased the nitrogen footprint [9], and significantly disrupted the ecological diversity
of communities [10]. Nitrogen dioxide (NO2) contributes to air pollution and directly
intensifies climate change by promoting the formation of ozone and other greenhouse gases,
posing a serious threat to crop growth environments [11]. However, certain studies [12]
have shown that under specific conditions, NO2 can be converted into plant-available
nitrogen forms, such as nitrate (NO3

−) and ammonium (NH4
+), thus enhancing nitrogen

supply within ecosystems and promoting crop growth. Nitrogen, being a crucial factor in
crop yield determination, is in high demand for the production of cereals and leguminous
crops [13]. Legumes fix significantly higher quantities of nitrogen (50–300 kg N/ha/year)
compared to cereals (5–25 kg N/ha/year). This makes legumes critical for improving soil
fertility and reducing dependence on synthetic fertilizers, especially when integrated into
cereal-based cropping systems [14,15]. Against this backdrop, the recycling of organic
nitrogen sources within agricultural ecosystems has emerged as a key strategy for ensuring
the sustainable development of food systems within the Earth’s environmental limits [16].
Therefore, NO2 emissions in the soil nitrogen fixation process are important indicators for
studying the relationship between nitrogen cycling and crop yields.

Research has increasingly explored the role of soil and climate in determining crop
yields and production environments. For instance, research has shown that for every
1 ◦C increase in temperature, wheat yields may decrease by 6% [17]. Meanwhile, high-
quality soil can reduce crop yield sensitivity to climate variability and increase average
yields [18]. Similar studies have confirmed that soil quality can both enhance crop yields
and mitigate the effects of climate change in different ecosystems [19,20]. Research has also
suggested that agricultural activities lead to a decline in the nitrogen-fixing functions of soil
microorganisms, consequently affecting the nitrogen cycle [3]. High concentrations of NO2

negatively impact nitrogen-fixing microorganisms in the soil and disrupt overall nitrogen
cycling [21]. By synergistically managing nitrogen and water resources, rice yields can be
increased by 9% while reducing greenhouse gas emissions by 21% [22]. These studies all
highlight the inseparable link between crop yields and soil and climate conditions.

Despite these insights, current research on the interaction between soil, environmental
changes, and crop yields has not fully explored the dynamics of nitrogen cycling. The
lack of research on the transboundary impact of nitrogen cycling across soil and climate
environments has hindered the effective implementation of nitrogen fertilizer management
strategies [23]. While previous studies have acknowledged the interactions between cli-
mate, soil, and yield [18,24], most focus on crop adaptation to general climate and soil
conditions, without fully addressing the specific impact of environmental variables on
crop yields through nitrogen cycling. This results in limited explanatory power in existing
models. Moreover, studies examining the effects of nitrogen cycling—whether in soil or
in the atmosphere—on crop yields still lack a comprehensive evaluation of nitrogen’s
transboundary impacts.

This study investigates the transboundary impacts of NO2 on nitrogen fixation in
croplands and its effects on crop yields under varying soil total nitrogen contents (TNCs).
We developed a yield prediction model for major grain crops—Oryza sativa L. (rice), Triticum
aestivum L. (wheat), Glycine max (L.) Merr. (soybean), and Zea mays L. (maize)—under the
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influence of NO2, using Random Forest Regression (RFR) and Extreme Gradient Boosting
(XGBoost) machine learning techniques. RFR is known for its robustness, ability to handle
large datasets, and high accuracy in classification and regression tasks, while XGBoost
is particularly efficient for handling imbalanced data and can provide high predictive
accuracy. Both models are widely used in environmental and agricultural studies for their
ability to capture intricate patterns in large datasets, making them suitable for our yield
prediction model. Through partial correlation analysis and Shapley Additive Explanations
(SHAP) values, we identified the transboundary impacts of NO2 concentrations on crop
yields and established optimal NO2 concentration ranges. Additionally, we projected yield
changes from 2030 to 2050 under different soil nitrogen fixation levels, as represented
by TNC, applying the A1 (balanced) and B1 (clean energy) scenarios from the Special
Report on Emissions Scenarios (SRES). This study aims to propose effective nitrogen cycle
management strategies to enhance environmental sustainability in agricultural systems.

2. Materials and Methods
2.1. Data Compilation

Our machine learning yield prediction model includes variables commonly used in
crop growth studies [11,25], such as phenology, climate, and soil properties. Phenological
data included leaf area index (LAI) and vegetation index (NDVI) as inputs, while climatic
data comprised average surface temperature (AT), evapotranspiration (ET), and precipita-
tion (Precip). AT is closely associated with crop canopy temperature, and both ET and Precip
are key variables in crop yield prediction models [25]. Data used in this study were sourced
from public databases. The nitrogen fixation process is accompanied by the denitrification
process; nitrous oxide (N2O) remote sensing data were also incorporated as variables to an-
alyze the transboundary impact of nitrogen in air and soil [26]. Additionally, the SoilGrids
dataset [27] was used to incorporate nine distinct soil properties and to account for different
soil depths depending on crop type. Specifically, soil data from a depth of 0–5 cm were
used for maize, wheat, and soybeans, while rice used data from a depth of 5–15 cm to better
observe the transboundary impact of NO2. Data used in this study were sourced from
official public databases. Provincial crop production data for China were provided by the
National Bureau of Statistics of China https://data.stats.gov.cn/ (accessed on 26 October
2024). N2O emission data were sourced from soil emissions attributed to the agricultural
sector, as reported in EDGAR—Emissions Database for Global Atmospheric Research
https://edgar.jrc.ec.europa.eu/ (accessed on 25 July 2024) [28], ensuring its relevance and
alignment with the focus of this study. NO2 emission data were sourced from TROPOMI
https://www.tropomi.eu/data-products/nitrogen-dioxide (accessed on 19 June 2024) [29],
Precip data from CHIRPS https://chc.ucsb.edu/data/chirps (accessed on 15 September
2024) [30], ET data from MOD16A2v061 https://lpdaac.usgs.gov/products/mod16a2v061/
(accessed on 16 September 2024), AT data from MOD11A2v006 https://lpdaac.usgs.gov/
products/mod11a2v006/ (accessed on 16 September 2024), LAI data from MOD15A2Hv006
https://lpdaac.usgs.gov/products/mod15a2hv006/ (accessed on 16 September 2024),
soil data from SoilGrids https://soilgrids.org/ (accessed on 15 September 2024), and
crop yield data from Spatial Production Allocation Model (SPAM) database 2020 v1.0
https://mapspam.info/data/ (accessed on 15 September 2024) [31]. Due to challenges
associated with data acquisition, it was not feasible to investigate specific cultivars of
globally consumed legumes. Instead, our study focuses on general crop categories rather
than specific cultivars. The classification of crops in this research is based on the SPAM
dataset to ensure consistency and reliability in the analysis while aligning with available
data constraints. All data were integrated and randomly sampled using Google Earth
Engine (GEE) https://code.earthengine.google.com/ (accessed on 6 September 2024).

https://data.stats.gov.cn/
https://edgar.jrc.ec.europa.eu/
https://www.tropomi.eu/data-products/nitrogen-dioxide
https://chc.ucsb.edu/data/chirps
https://lpdaac.usgs.gov/products/mod16a2v061/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod15a2hv006/
https://soilgrids.org/
https://mapspam.info/data/
https://code.earthengine.google.com/
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In studying the relationship between NO2 and TNC, we ensured data accuracy by
screening random sample points located in the major grain producing regions using MODIS
land use raster data, specifically masks 12 (cropland) and 14 (paddy field). The initial
sample size was 4000 points, and this screening ensured that all data originated from
cropland, avoiding interference from non-agricultural areas. For studying the effects of
environmental factors on crop yield, we established 2500–3500 sample points in each crop.
As the crop yield data for non-cultivated land were null, further screening of sample points
was unnecessary, which simplified data preprocessing and ensured both consistency and
completeness. To accurately analyze the effects of various factors on crop yield within a
consistent time frame, we standardized the study period based on the available years of
the raster dataset, set from 2020 to 2021. To minimize bias from seasonality, we collected
yield-related data from the rapid growth stage (when the third leaf is fully expanded) to the
maturity stage for each grain crop. The growing periods for wheat, maize, rice, and soybean
were defined as December 2020 to May 2021, May 2020 to September 2020, June 2020 to
October 2020, and June 2020 to October 2020, respectively. After obtaining crop yield and
environmental factor raster data, we performed band synthesis on datasets with different
resolutions to extract eigenvalues for all feature variables at consistent spatial coordinates.
This process, conducted using GEE, generated a random sample point dataset of crop
yields and related environmental factors. After Z-test, the final numbers of valid sample
points were 662 for maize, 890 for rice, 1063 for soybean, and 843 for wheat. Due to the
lack of collected farmland management data for 2020–2021, this study does not incorporate
management practice data. To mitigate potential model errors due to the absence of
cropland management data and the difficulty in standardizing such data across different
crops, crop yield was set under natural precipitation conditions (i.e., total yield minus the
portion from artificial irrigation). As rice is less dependent on natural precipitation, total
yield data were used for this crop. This study dataset contains information on crop yields,
related environmental factors from a nitrogen cycle perspective, and the spatial coordinates
of sample points. Source data are provided with this paper.

2.2. Yields of Major Grain Crops Modeling
2.2.1. Overview of the Methodology

This study examines the transboundary impact of nitrogen in both air and soil using
machine learning models, combining the RFR model and the XGBoost model. This model
was developed based on 16 feature variables, including NO2, TNC, LAI, ET, and soil
properties for rice, maize, wheat, and soybean. Both the XGBoost and RFR models were val-
idated for accuracy and underwent parameter tuning to optimize performance. To mitigate
single-model errors, a Stacking model was employed to integrate the RFR and XGBoost
models, resulting in a crop yield prediction model that accounts for the transboundary
impact of NO2. The accuracy validation is shown in Table 1. MSE (Mean Squared Error)
was used to evaluate the model’s prediction accuracy. The detailed introduction of both
RFR and XGBoost models are provided in the Supplementary Methods.

Table 1. Validation of accuracy for the stacked model (RFR and XGBoost).

Crop CV MSE CV R2 Train MSE Test MSE Train R2 Test R2

Maize 2 × 106 0.452 3 × 104 2 × 106 0.993 0.451
Rice 2 × 106 0.498 2 × 105 2 × 106 0.946 0.548

Soybean 4 × 105 0.463 1 × 104 3 × 105 0.982 0.608
Wheat 1 × 106 0.541 2 × 104 1 × 106 0.991 0.597
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2.2.2. Random Forest Regression Yield Prediction Model

We developed a RFR yield prediction model using the Scikit-learn library in Python.
Initially, we processed missing values and applied feature engineering. The target variable
in this study is grain crop yield, while the feature variables consist of 15 input indicators
representing the water–soil–air dimensions of the crop’s environment. Subsequently, we
divided the data into training and test sets, with the test set used to evaluate model
performance and accuracy. An 80:20 ratio was applied. The RFR model was then initialized
using the Scikit-learn library in Python, with a fixed random state to ensure reproducibility
and verification of the experimental results. The RFR model predicts by integrating multiple
decision trees, where the predictions from each tree are averaged or voted on to produce a
final prediction, which can be expressed as

ŷ =
1
M∑M

m=1 ŷ(m) (1)

where ŷ represents the final predicted value; M is the number of decision trees; ŷ(m) denotes
the predicted value of the m-th tree. The RFR model consists of multiple decision trees, each
trained on a different data subset and making predictions through a voting mechanism.
As a result, unlike linear regression models, the RFR model lacks an explicit mathematical
formula for its output and can only be optimized by adjusting its hyperparameters. Model
performance was optimized by tuning the random forest’s hyperparameters (number of
estimators, maximum depth, minimum samples split, and minimum samples leaf), using
Grid Search to automate this process. Grid Search automates the hyperparameter tuning
process to obtain the optimal model, as represented by the following formula:

θ̂ = argmin
θ∈Θ

1
K ∑K

k=1 L(yk, ŷk(θ)) (2)

where Θ represents the hyperparameter space containing all possible combinations; θ̂ is
the optimal hyperparameter combination; K denotes the number of cross-validation folds;
L(yk, ŷk(θ)) is the loss function, which measures the difference between the predicted value
ŷk and the true value yk; and ŷk(θ) is the model’s predicted value with hyperparameter θ

for the validation set in the k-th fold of cross-validation.

2.2.3. XGBoost Yield Prediction Models

Although XGBoost benefits from some concepts and techniques used in Random
Forests, its core principles and algorithmic mechanisms differ significantly. XGBoost is a
decision tree algorithm based on Gradient Boosting, where, in each iteration, a new decision
tree is designed to correct the prediction errors of all the previous trees. The primary goal
of XGBoost is to minimize the loss function, which typically consists of two components:
(1) training error, which measures the difference between the model’s predictions and
the true labels, and (2) a regularization term, which controls the model complexity and
prevents overfitting. Thus, the objective function of XGBoost can be expressed as

Obj = L(θ) + Ω(θ) (3)

where L(θ) is the training error and Ω(θ) is the regularization term. To approximate the loss
function, XGBoost simplifies the computation by using a second-order Taylor expansion:

Obj = ∑n
i=1

[
l
(

yi, ŷ(t)
i

)
+ gi ∗ ŷ(t)

i +
1
2

hi ∗
(

ŷ(t)
i

)2
]
+ γT +

1
2

λ ∑T
j=1 w2

j (4)
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where gi is the first-order derivative, representing the rate of change of the loss function
with respect to the current prediction, and hi is the second-order derivative, reflecting the
rate of change of the gradient. ŷ(t)

i is the model prediction in round t, T is the number of
leaf nodes in the current tree, γ is the regularization parameter controlling the number
of leaf nodes to prevent overfitting, and λ is the regularization parameter that controls
the size of the weights wj, where wj represents the weight of the j-th leaf node. XGBoost
employs a greedy algorithm, constructing decision trees iteratively by selecting the split
point that maximizes the gain of the objective function at each layer:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (5)

where GL and HL represent the gradient and Hessian sums for the left child node, while
GR and HR are the corresponding sums for the right child node. To prevent overfitting,
XGBoost introduces pruning and regularization techniques, controlling leaf node weights
through the parameter γ, and tree complexity through the parameter λ.

2.2.4. Analysis of Feature Variables

We analyzed the feature variables using feature importance analysis from the RFR
model, partial dependency analysis, and SHAP analysis from the XGBoost model. Fea-
ture importance assessment was based on Gini node splitting and replacement feature
importance measures. The reduction in node impurity before and after splitting determines
each feature’s importance score. Although RFR captures nonlinear relationships between
features, it is limited in its ability to model feature interactions.

SHAP, based on the Shapley value from game theory, reflects the strength of feature
contributions through the magnitude of the SHAP values. When calculating SHAP values,
the marginal contribution of feature values across all possible feature combinations is
considered. Although this increases computational complexity, it provides the most equi-
table interpretation of feature importance. Additionally, SHAP values offer explanations
for individual predictions rather than a global interpretation. This characteristic makes
SHAP suitable for a wide range of machine learning models. Using partial dependency
analysis, we further investigated the effect of NO2 on crop yield. The codes used in this
study are available at: https://github.com/xiejhhhhhh/Transboundary-Impacts-of-NO2
-on-Soil-Nitrogen-Fixation-Systems-and-Their-Effects-on-Four-Grain-Crops (accessed on
19 September 2024). We have created a flow chart that summarizes the strategy for data
collection and statistical modeling (Figure 1). This chart visually outlines the key steps in
our methodology.

https://github.com/xiejhhhhhh/Transboundary-Impacts-of-NO2-on-Soil-Nitrogen-Fixation-Systems-and-Their-Effects-on-Four-Grain-Crops
https://github.com/xiejhhhhhh/Transboundary-Impacts-of-NO2-on-Soil-Nitrogen-Fixation-Systems-and-Their-Effects-on-Four-Grain-Crops
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Figure 1. Framework of data collection and statistical modeling process. Phenological data included
evapotranspiration (ET), average surface temperature (AT), leaf area index (LAI), normalized differ-
ence vegetation index (NDVI), precipitation (Precip. Soil data included silt, clay, bulk density (bdod),
total nitrogen content (nitrogen), pH in H2O (pHH2O), sand, cation exchange capacity at pH7 (cec),
soil organic carbon (soc). Terms in parentheses refer to key soil and environmental metrics. The crop
yield data is from Spatial Production Allocation Model (SPAM) database 2020 v1.0.
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3. Results
3.1. Spatial Distribution of Soil Nitrogen Fixation and Changing Trends

To ensure that our research findings were ultimately reflected in crop yield changes,
we defined the cultivated land area covering 95% of the total grain production based on
national statistical data. Building on this foundation, we mapped China’s major grain-
producing regions and generated a total nitrogen density map (Figure 2) to highlight the
primary areas of interest. Our results reveal distinct spatial climate distribution characteris-
tics in China’s major grain-producing regions. Except for soybeans, provinces within the
same climate zones not only share similar grain production rankings but are also geograph-
ically close to one another. Rice production is primarily concentrated in southern China,
while wheat and maize production areas show significant overlap. The soybean-producing
regions are more dispersed. From the soil total nitrogen density distribution shown in the
Figure 2, we can observe that the North China Plain—a major production area for rice,
maize, wheat, and soybeans—exhibits the lowest nitrogen fixation levels, as well as a low
total soil nitrogen density. This finding suggests that the low nitrogen density in the North
China Plain may be linked to long-term agricultural practices in this area. To test this
hypothesis, we further examined the nitrogen fixation levels across different land types
and assessed the changing trend in soil nitrogen fixation levels across China.
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nitrogen density, mainly in (1) the three northeastern provinces, and (2) the southern provinces.
(b) Distribution of cultivated land and soil total nitrogen density in major wheat-producing areas
is primarily located in the (3) north, (4) southwest, and (5) northern regions. (c) Distribution of
cultivated land and soil total nitrogen density in major maize-producing areas, including (6) the three
northeastern provinces, (7) Sichuan, Yunnan, Guizhou regions, Inner Mongolia, the North China
Plain, and the (8) Xinjiang region. (d) Distribution of cultivated land and soil total nitrogen density
in soybean-producing areas is mainly concentrated in (9) the northeast, (10) the southwest, and (11)
parts of the North China Plain. The division of major grain-producing regions was based on the 2020
national statistics of crop production; spatial distribution data for cultivated land were sourced from
the 30 m resolution land use dataset of CNLUCC [32] in 2020; total nitrogen concentration data were
derived from the Basic Soil Property dataset of high-resolution China Soil Information Grids [33].

We quantified changes in nitrogen fixation levels across different land types in China
during urbanization by aggregating and processing TNC data from land use types and
soils at 3458 random sample sites nationwide (Figure 3a). We found that cropland, built-up
land, and water bodies (swamps, wetlands, etc.) increased by 5.44 × 106 ha, 6.93 × 105 ha,
and 1.61 × 106 ha, respectively, while forests, grasslands, and unavailable land decreased
by 1.09 × 106 ha, 1.60 × 106 ha, and 5.06 × 106 ha, respectively from 2015 to 2020. The most
significant changes were the conversion of unavailable land to cropland and of grassland
to cropland. Overall, the land use changes from 2015 to 2020 showed a trend of grasslands
and unavailable land being gradually converted into cropland.
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Figure 3. The overall trend of soil TNC and its variation across different land types. (a) Flow chart of
the land transfer matrix in China from 2015 to 2020. (b) Statistical analysis of the TNC of different land
types. (c) Evolution of TNC during urbanization in China. The land transfer matrix was plotted using
the CNLUCC dataset, total soil nitrogen content data were obtained from SoilGrids, corresponding
land types were referred to MODIS land classification data.
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The feature extraction and statistical analysis revealed that in 2020 (Figure 3b), forests
(4857 cg/kg), grasslands (3579 cg/kg), and cropland (3035 cg/kg) had higher TNC, while
unavailable land had lower (2132 cg/kg). By integrating average TNC with land use
data, we found that China’s overall soil nitrogen fixation level remained relatively stable
(approximately 0.1% change) between 2015 and 2020. The decrease in TNC, mainly due to
the reduction in forests and grasslands, was offset by the conversion of unavailable land
into cropland. This study revealed that the soil TNC decrease was most rapid during the
conversion of forests to grassland or cropland (Figure 3c). Despite the overall stability
in soil nitrogen fixation levels, the ongoing conversion of unavailable land to cropland is
approaching its limit. If forest and grassland losses continue, soil TNC could decline rapidly.

3.2. Soil Nitrogen Fixation as a Buffer for NO2 Dispersion

We used the SoilGrids soil information dataset, the TROPOMI module of the Sentinel
5 precursor satellite, and 878 sample points and plotted the relationship between NO2 and
TNC (Figure 4), followed by linear regression analysis.

The results indicated that, overall, the TNC in the cropland of major food crops
exhibited a significant negative linear relationship (R = −0.77) with ambient NO2. When
distinguishing sample points based on crop type, we observed that soybean (R = −0.84)
and maize (R = −0.76), both types of feed grains, exhibited the most pronounced negative
correlations with ambient NO2 levels, whereas the correlations for rice and wheat were
comparatively weak. This may be attributed to the higher sensitivity of soil nitrogen
fixation systems in feed grains to NO2. The fitted equation estimates suggest that the NO2

concentration will decrease by approximately 10%, 20%, and 30% when TNC increases
by 0.62 g/kg, 1.31 g/kg, and 2.10 g/kg, respectively, using 2020 as a baseline. These
findings emphasize that TNC-enriched soils may help control NO2 emissions by inhibiting
or absorbing NO2 through nitrogen transformation, nitrogen uptake, nitrogen fixation, and
other pathways, thereby mitigating air pollution and climate change.

3.3. Crop Yields’ Response to NO2 Concentration and Its Spatial Distribution

To clarify the relationship between NO2 concentration and crop yield, we conducted an
in-depth analysis focused on the transboundary impact of NO2 on the soil nitrogen fixation
system. In the bias dependence plots for maize and rice, the yields increased significantly
within low NO2 ranges (maize: NO2 ≈ 1–3 × 10−5 tropospheric vertical column densities
(VCDs); rice: NO2 ≈ 2–4 × 10−5 VCDs). As the NO2 concentrations rose, their contribution
to the yields increased but plateaued beyond 4–5 × 10−5 VCDs. Soybean displayed a dis-
tinct response due to its symbiotic rhizobia; low NO2 levels (<3.5 × 10−5 VCDs) disrupted
nitrogen fixation, while moderate levels (3.5 × 10−5 < NO2 < 7 × 10−5 VCDs) mitigated
this effect. Wheat responded positively to low NO2 concentrations (≈1–2 × 10−5 VCDs),
but excessive NO2 reduced fertilizer efficiency and contributed to soil degradation. The
SHAP scatter plots from the XGBoost model aligned with the RFR bias dependence plots
(Figure 5), showing the robustness of the analysis in assessing the effects of NO2. This sug-
gests that, although low to moderate concentrations of NO2 are associated with improved
major grain crops growth, concentrations above a certain level may produce marginal
benefits, leading to nitrogen saturation or soil acidification.
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Figure 4. Linear regression analysis between TNC and NO2 for major grain crops. (a) The scatter
plot of the linear relationship between TNC and NO2 for total sample points (R = −0.76). (b) Linear
relationship of TNC and NO2 for 202 maize sample points (R = −0.76). (c) Linear relationship of
TNC and NO2 for 267 rice sample points (R = −0.70). (d) Linear relationship of TNC and NO2 for
224 soybean sample points (R = −0.84). (e) Linear relationship of TNC and NO2 for 165 wheat sample
points (R = −0.68).
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Figure 5. RFR bias dependence and SHAP scatter plots for the yields of major grain crops under
influence of NO2. (a) RFR bias dependence and SHAP scatter plots for maize yields under influence
of NO2. (b) RFR bias dependence and SHAP scatter plots for rice yields under influence of NO2.
(c) RFR bias dependence and SHAP scatter plots for soybean yields under influence of NO2. (d) RFR
bias dependence and SHAP scatter plots for wheat yields under influence of NO2.

We identified the optimal NO2 concentration range for each crop and the spatial
distribution of this range (Figure 6). For maize, the yields increased significantly within a
NO2 concentration range of 1–3 × 10−5 VCDs, which covers only 36.3% of the major maize-
producing areas. In major maize-producing regions, particularly in the North China Plains
and Northeast Plains, the NO2 levels exceeded the crops’ nitrogen uptake capacity. For rice,
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the effective NO2 range was 2–4 × 10−5 VCDs, covering 41.5% of the major rice-producing
area, with a more stable nitrogen environment observed in the Northeast Plains and
Southwest regions. The optimal range for soybean was 3.5–7 × 10−5 VCDs, covering 38.3%
of the major soybean-producing areas, although many areas still experienced incompatible
NO2 emissions. For wheat, the effective range was 1–2 × 10−5 VCDs, covering only 5.77%
of the major wheat-producing area. Consequently, major grain-producing regions are
currently experiencing NO2 oversaturation. Wheat faces the most severe NO2 challenge,
while rice exhibits the best adaptability to current NO2 levels. NO2, as an intermediate in
the nitrogen cycle during crop growth, reflects nitrogen accumulation in the environment.
However, excessive fertilization and uncontrolled emissions have caused NO2 levels to
exceed optimal ranges.
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Figure 6. Spatial distribution of the optimal NO2 concentration range for major grain crops in China.
(a) Spatial distribution of the optimal NO2 concentration range for maize in major maize-producing
areas. (b) Spatial distribution of the optimal NO2 concentration range for rice in major rice-producing
areas. (c) Spatial distribution of the optimal NO2 concentration range for soybean in major soybean-
producing areas. (d) Spatial distribution of the optimal NO2 concentration range for wheat in major
wheat-producing areas. The legend shows the extent of NO2 impact on different crops, with colors
ranging from blue (low impact) to red (high impact). The red areas highlight regions where crops are
more vulnerable to the adverse effects of NO2. The basemap is from Google Earth.

3.4. Crop Yields’ Response to All Feature Variables

The importance ranking in the RFR can enhance our understanding of the extent of
the transboundary impacts of NO2. Based on the importance ranking results of the RFR
model, NO2 had the highest importance in crop yield prediction models for maize, rice, and
wheat, with importance scores of 0.179, 0.404, and 0.140, respectively (Figure S1). Rice, in
particular, exhibited a significantly greater influence of NO2 compared to the other feature
variables, probably because rice growth is more dependent on atmospheric and aquatic
feature variables than on soil properties. In major soybean-producing areas, the negative
correlation between TNC and NO2 was significant, although TNC ranked second (0.141) in
importance for soybean and third (0.091) for maize.
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The correlations between other variables and crop yields, as derived from the XGBoost
model, are also worth analyzing as potential factors influencing results. The SHAP ranking
results for XGBoost were generally consistent with the variable importance ranking from the
RFR. However, due to SHAP’s inherent randomness based on game theory, some variables
with similar influence showed slight variations in ranking, although the overall trend
remained unchanged. The results indicate that Precip and AT are two variables correlated
with maize yield (Figure 7a). In rice, pH (H2O) and cation exchange capacity (CEC) are the
main variables, with pH (H2O) values showing a significant negative correlation with yield
(Figure 7b). For soybean, Precip, TNC, and pH (H2O) are important variables, with Precip
showing a significant positive correlation with yield (Figure 7c). In wheat, pH (H2O) and
AT are key variables, but low pH (H2O) values show a moderate negative correlation with
yield (Figure 7d). We summarize four key observations on the trends of these variables:
(1) NO2 shows a positive correlation with crop yield within a certain concentration range.
(2) AT affects maize and wheat yields, with optimal temperatures enhancing photosynthesis
and kernel filling. (3) Precip is critical for maize and soybean yields, with appropriate levels
improving root development. (4) pH (H2O) affects crops differently: rice thrives in acidic
soils, soybeans prefer neutral to slightly acidic soils, and wheat can tolerate a broader range
of conditions. However, extreme pH levels still impact the production of major crops.
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Figure 7. Impact of all feature variables on major grain crops in XGBoost yield prediction models.
(a) Impact of all feature variables on maize yield prediction models. (b) Impact of all feature variables
on rice yield prediction models. (c) Impact of all feature variables on soybean yield prediction models.
(d) Impact of all feature variables on wheat yield prediction models. The impact of different variables
on crop yield is represented by SHAP values, and the magnitude of the variables’ eigenvalues is
indicated by color.
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3.5. Impacts of NO2 on Crop Yields at Different Soil Nitrogen Fixaiton Levels

To better understand the transboundary impacts of NO2 on cropland and its impact
on crop yields within a more sustainable resource context, we analyzed yield changes for
major grain crops in 2030 and 2050 under different nitrogen fixation levels, based on the
SRES A1 AIM (balanced) and B1 IMAGE (clean energy) scenarios. Our findings reveal that
different NO2 emission scenarios significantly influence maize yields (Figure 8). In the more
sustainable B1 IMAGE scenario, as NO2 concentrations decrease, maize yields increase.
Nitrogen fixation levels—BAU (TNC basic as usual), HN (TNC increase by 20%), and LN
(TNC decrease by 20%)—substantially affect nitrogen-demanding crops, particularly feed
grains like soybeans and maize. For soybeans, the predicted yields increase under HN and
decrease under LN. Based on a scenario analysis, we found that in the next 20–30 years,
under a relatively clean scenario, if soil nitrogen fixation levels increase by 20%, the average
soybean yield will increase to 2407 ± 38 kg/ha, representing an 8% increase. Conversely,
if soil nitrogen fixation levels decrease by 20%, the average soybean yield will decline to
2013 ± 31 kg/ha, representing an 9.7% decrease. The scatter plot of the predicted versus
the observed yields under different SRES scenarios (Figure 9) demonstrates the robustness
of our model fit.
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Figure 8. Crop yield predictions at different nitrogen fixation levels for SRES in 2030 and 2050.
(a) Maize yield predictions at different nitrogen fixation levels for SRES in 2030 and 2050. (b) Rice
yield predictions at different nitrogen fixation levels for SRES in 2030 and 2050. (c) Soybean yield
predictions at different nitrogen fixation levels for SRES in 2030 and 2050. (d) Wheat yield predictions
at different nitrogen fixation levels for SRES in 2030 and 2050. The nitrogen fixation levels include
basic as usual (BAU), high nitrogen (HN), and low nitrogen (LN). The two SRES scenarios from the
Intergovernmental Panel on Climate Change (IPCC) are A1 AIM (balanced) and B1 IMAGE (clean
energy), in 2030 and 2050.
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Figure 9. Scatter plot of predicted vs. observed yields at BAU nitrogen fixation levels under different
SRES. (a–d) Scatter plot of predicted vs. observed maize yield under the A1 AIM and B1 IMAGE
scenarios. (e–h) Scatter plot of predicted vs. observed rice yield under the A1 AIM and B1 IMAGE
scenarios. (i–l) Scatter plot of predicted vs. observed soybean yield under the A1 AIM and B1
IMAGE scenarios. (m–p) Scatter plot of predicted vs. observed wheat yield under the A1 AIM and
B1 IMAGE scenarios.

Upon comparing the significance of different crops’ responses to NO2 and TNC, we
observed varied responsiveness across crops to different nitrogen levels (Table 2). Soybeans
exhibited a highly significant response to TNC (p < 0.001), whereas their response to NO2

was not significant. Maize showed a highly significant response to TNC (p < 0.001) and
a moderately significant response to NO2 (p < 0.05). Rice’s response to NO2 was highly
significant (p < 0.001), but its response to TNC was not significant. Wheat’s response to
both TNC and NO2 was not significant. This result is also reflected in the dual dependence
plots of TNC and NO2 for the yields of major grain crops (Figure 10). The significance of
the impact and the optimal TNC and NO2 combinations for different crops can be inferred
from the general trends of the response surface. Furthermore, we found that the use of
clean energy enhances the stability of crop yields at high nitrogen fixation levels, while
its impact is less pronounced at low nitrogen fixation levels. Therefore, in addition to
prioritizing air pollution control, it is essential to consider the environmental conditions
of crop production areas and the security of cropland quality. These results reveal the
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long-term effects of climate and management practices on different crop yields under
various scenarios. Therefore, nitrogen fertilization and related environmental management
measures should consider the specific responses of these crops, particularly under different
climate change scenarios, to ensure food security and sustainable agriculture.

Table 2. Significance of yield response to NO2 and TNC in different grain crops.

Crop Term Df Sumsq Meansq Statistic p Value

Maize
TNC 2 4 × 108 2 × 108 87.850 <0.001 ***
NO2 3 2 × 107 7 × 106 2.889 0.034 *

Rice
TNC 2 2 × 105 1 × 105 0.045 0.956
NO2 3 5 × 107 2 × 107 7.491 <0.001 ***

Soybean TNC 2 3 × 108 2 × 108 387.147 <0.001 ***
NO2 3 8 × 105 3 × 105 0.654 0.580

Wheat
TNC 2 6 × 106 3 × 106 1.604 0.201
NO2 3 4 × 106 1 × 106 0.699 0.553

Notes: (1) p < 0.001*** are highly significant result, indicating that there is strong evidence to reject the null
hypothesis with a probability of less than 0.1%. (2) p < 0.05* are marginally significant result, with a 95%
confidence level in rejecting the null hypothesis.

Figure 10. The dual dependence plots of TNC and NO2 for the yields of major grain crops. (a) Partial
dependence of NO2 and TNC on maize yield. (b) Partial dependence of NO2 and TNC on rice yield
(kg/ha). (c) Partial dependence of NO2 and TNC on soybean yield (kg/ha). (d) Partial dependence
of NO2 and TNC on wheat yield (kg/ha).
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4. Discussion
4.1. The Application of Machine Learning Modeling in Agriculture

For our method selection, we chose machine learning to establish the yield model, as
machine learning is increasingly relevant and suited to agricultural research, particularly
in the field of big data. The combination of machine learning, big data technologies,
and high-performance computing has opened up new opportunities for data-intensive
research in the multidisciplinary field of agricultural technology [34]. For example, one
study [25] used soil data and remote sensing data to predict the single-season wheat yield in
a 22-hectare field in Bedfordshire, UK. Another study applied machine learning algorithms
to estimate the spatial variation in carbon emissions caused by energy consumption in
Shaanxi, China [35]. Additionally, a study used machine learning algorithms and multiple
indicators to assess the early prediction of maize yields at the county level in China [36].
These studies collectively indicate that the use of machine learning algorithms in various
aspects of agricultural research is gradually becoming mainstream.

4.2. Potential Explanations for the Insignificant Impact of NO2 on the Yields of Certain Crops

Although NO2 is generally harmful to plants, the negative impact of NO2 on crop
yields is not significant in our study. Based on related mechanistic studies [12,37,38], we
propose three potential explanations for this phenomenon. First, machine learning captures
interactions between variables, which may alleviate the harmful effects of NO2. Second, in
real agricultural environments, crops may develop resistance or adaptive mechanisms that
reduce NO2 toxicity. For instance, sufficient levels of other nutrients, such as potassium and
phosphorus, might enhance plant tolerance to NO2 [39]. Finally, as an intermediate in the
nitrogen cycle during crop growth, NO2 reflects nitrogen accumulation in the environment.
The active growth of major grain crops is closely associated with NO2 within an optimal
concentration range. These effects could explain the positive impact of NO2 on crop yields.
Additionally, studies have shown a close relationship between NO2 and nitrogen fertilizer
application [40,41]. In farmlands using nitrogen fertilizers, NO2 emissions primarily result
from the nitrification process, where nitrite (NO2

−) is converted into nitrate. Elevated NO2

levels may indicate substantial nitrogen fertilizer use, which intensifies nitrogen cycling
and increases nitrogen activity. When excessive nitrogen fertilizer is applied, disruptions
in nitrogen cycling lead to greater nitrogen losses and higher NO2 emissions. This is
particularly problematic in China’s major grain-producing regions, where nitrogen loss has
led to resource depletion [42,43]. Effective nitrogen fertilizer management [44] can mitigate
the negative impacts of NO2 while optimizing its benefits as a nitrogen source.

4.3. Mechanistic Insights into the Dynamic Yield Responses of Major Crops to NO2 Emissions

Our research indicates that TNC can suppress NO2, thereby reducing air pollution
and mitigating climate change, which in turn affects crop yields. Similarly, a related
study has shown that NO2 exerts a harmful impact on soil nitrogen fixation. NO2 itself
has an inhibitory effect on soil nitrogen fixation capacity [45]. A further analysis of the
transboundary impacts of NO2 on nitrogen-fixing microorganisms and plant roots revealed
that elevated NO2 levels not only directly disrupted nitrogen-fixing microorganisms, but
also indirectly reduced soil nitrogen fixation capacity by impairing root development and
nutrient uptake, leading to a decline in overall plant health. In conjunction with other
studies [38,46] on nitrogen utilization mechanisms in grain crops, we analyzed the complex
processes underlying the impact of NOx on crop yields.

As a key component in the atmosphere, NOx plays a multifaceted role in plant pho-
tosynthesis. For maize, NO2 can be converted into nitrate through nitrification, serving
as a nitrogen source for the plant. At lower concentrations (1–3 × 10−5 VCDs), maize
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can effectively utilize this nitrogen source, promoting growth and yield [47]. However,
when NO2 concentrations exceed maize’s nitrogen absorption capacity, yield growth slows
down. Rice requires a substantial amount of nitrogen, and NO2 deposition aids in its
growth and yield improvement. However, water and soil management in rice fields can
influence the actual efficiency of NO2 utilization [48]. Therefore, the optimal NO2 range
for rice (2–4 × 10−5 VCDs) differs from that of maize. Soybeans, as nitrogen-fixing crops,
can directly fix nitrogen from the atmosphere [49]. At lower NO2 concentrations, external
nitrogen supply may interfere with the nitrogen fixation process, negatively affecting soy-
bean growth. However, as NO2 concentrations increase, soybeans may utilize nitrogen in
other forms (rhizobia symbiosis), although excessively high NO2 levels (>7 × 10−5 VCDs)
still inhibit yield growth. Wheat requires a substantial nitrogen input to support rapid
growth and grain development [48]. Based on our research findings, at lower NO2 concen-
trations (1–2 × 10−5 VCDs), wheat can efficiently absorb and utilize nitrogen. However, as
NO2 concentrations rise beyond a critical threshold, wheat’s nitrogen fixation saturates.
Excessive NO2 further harms the environment and crop health.

4.4. The Spatial Influence of NO2 Emissions on Environment Health

NO2 plays a pivotal role as an intermediate in the nitrogen cycle, particularly during
the growth period of major grain crops. Acting as an indicator of nitrogen accumulation in
the crop-growing environment, the NO2 concentration can have dual effects on soil and
plant health. Within the optimal range, NO2 contributes to nitrogen availability, promoting
plant growth and yield. However, when concentrations surpass this range, the toxic effects
of NO2 become evident. Excessive levels of NO2 disrupt soil microbial communities,
damage plant root systems, and impair the nutrient uptake processes essential for crop
growth. These toxic effects not only reduce crop yields but also contribute to broader
environmental challenges, such as nitrogen source pollution and eutrophication of nearby
water systems.

Our research highlights a concerning trend: the agricultural environments of most
staple crops, including maize, rice, wheat, and soybeans, are already experiencing NO2

concentrations beyond the tolerance thresholds of these crops. Specifically, 58.5–94.2% of
these agricultural regions exceed the safe NO2 range, with the most severe cases observed
in regions adjacent to northern urban clusters. These urban areas, characterized by high
NO2 emissions from transportation, industrial activities, and dense human populations,
exhibit limited soil nitrogen fixation capacities. The weakened nitrogen fixation in these
areas further exacerbates the imbalance in nitrogen cycling, leading to long-term degra-
dation of soil fertility and declining crop productivity. Urban agricultural zones bear a
disproportionate burden of NO2 pollution, reflecting the need for targeted nitrogen man-
agement strategies [50]. Improving nitrogen cycle management in these areas requires a
multifaceted approach.

4.5. Policy Recommendations

Research [51] indicates that implementing agricultural management practices can
increase crop yields by 10%, reduce nitrogen pollution by 8%, and improve nitrogen use
efficiency in China by 18%. Based on related studies and the current state of NO2 emissions
in China, we propose the following nitrogen fertilizer management policy recommenda-
tions. First, the promotion of precision fertilization technologies is essential. By monitoring
soil and crop needs in real time, the precise adjustment of nitrogen fertilizer application
rates and timing can prevent nitrogen loss and NO2 emissions caused by over-fertilization.
This technology not only reduces fertilizer waste but also enhances crop nitrogen uptake
efficiency. Second, the combined use of nitrogen fertilizers and organic fertilizers should be
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encouraged. Integrating nitrogen fertilizers with organic matter helps increase soil organic
content, enhancing nitrogen retention and reducing nitrogen loss and NO2 emissions. This
also significantly alleviates agricultural waste pollution [52] and resource shortages [53].
This measure is particularly crucial in reducing environmental and resource pressures in
agricultural production. Lastly, optimizing fertilization systems by promoting split fertil-
ization is vital. Encouraging the staged application of nitrogen fertilizer according to crop
growth phases prevents nitrogen loss from excessive one-time fertilization. In addition, the
development of new nitrogen fertilizers through bioengineering presents a novel approach
to further enhance nitrogen use efficiency and reduce environmental impacts [54]. These
methods ensure nitrogen is effectively utilized during the critical growth periods of crops
while reducing nitrogen oxide emissions.

Through fertilizer management, farmers can adjust NO2 concentrations to optimal
levels, reducing nitrogen losses in crops and improving nitrogen uptake efficiency, thereby
minimizing excessive NO2 emissions. The issue of NO2 oversaturation is particularly severe
in the North China Plain and southern areas of the Northeast Plain. This may be due to the
proximity of northern urban clusters to these farmlands. The related research [51] indicates
that rapid urbanization can reduce nitrogen use efficiency in crop production. As nitrogen
use efficiency declines, emissions of N2O and NO2 from agricultural activities accumulate,
exacerbating the problem of nitrogen oxide emissions and diffusion. To optimize crop
yields and promote environmental sustainability, nitrogen fertilizer application must be
regulated and integrated with other fertilization strategies. Measures such as reducing
urban NO2 emissions through cleaner energy solutions, optimizing agricultural practices
to enhance soil nitrogen fixation, and implementing buffer zones between urban centers
and croplands can help mitigate the detrimental effects of NO2 pollution.

At the same time, the nitrogen deposition function of forests is a major source of
nitrogen sinks in the soil [55]. Microbial functional genes in forest soils play a crucial role in
reducing NOx emissions [56]. Therefore, we must continue to focus on the issue of declining
soil nitrogen fixation levels caused by deforestation and overgrazing [19,20]. Due to the
strong nitrogen-fixing ability of legumes, the findings can be extrapolated to other cereals
and legumes. For example, integrating legumes like peas or alfalfa into cropping systems
could similarly enhance soil nitrogen fixation and improve the yields of non-leguminous
crops, such as maize or wheat, through rotational or intercropping practices.

Based on previous research findings and discussions, we summarize the following
policy recommendations. First, to maintain the stability of overall soil nitrogen fixation
levels, deforestation and overgrazing should be reduced, and degraded land should be
actively converted into farmland and forest. Second, to ensure food quality and soil safety
in crop growing environments, precise management of agricultural nitrogen fertilizers
is essential, particularly in regions near northern urban clusters. Third, implementing
regulated nitrogen management, cleaner energy solutions, and urban–cropland buffer
zones can reduce NO2 impact, enhance crop yields, and promote sustainable agriculture.

5. Conclusions
In our study, we found that the average level of soil nitrogen fixation in China has

remained relatively stable over the past 5–10 years, but urbanization may pose a risk of
decline. Both excessively high and low NO2 levels disrupt the normal grow of major
grain crops. Therefore, we quantified the optimal NO2 concentration range for grain crops
and assessed the current status of NO2 emission diffusion in farmland. Our findings
reveal that 58.5–94.2% of grain crops are in a state of NO2 oversaturation, with wheat
being the most affected. Based on scenario and significance analyses, we found that
reducing NO2 emissions in a greener and cleaner scenario significantly improves crop
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yields, especially for maize and rice. Meanwhile, increasing soil nitrogen fixation levels
significantly boosts the yields of soybean and maize. This provides a solution for advancing
sustainable agriculture by linking nitrogen cycle management with improved crop yields
and environmental sustainability.

The contributions of our study are primarily reflected in three key areas. First, we
provide valuable insights into the NO2 transboundary impacts on crop yield by analyz-
ing the complex interactions between NO2 concentrations and crop yields, focusing on
major grain crops such as maize, rice, soybeans, and wheat. This research advances our
understanding of how NO2 influences plant nitrogen utilization and growth at varying
concentration levels. Second, our study identifies regional vulnerabilities, particularly in
regions near northern urban clusters, where NO2 concentrations have already exceeded
the threshold that crops can tolerate. This highlights the urgent need for targeted regional
policy interventions. Finally, this study offers policy recommendations for sustainable
agriculture, emphasizing the reduction of deforestation, control of overgrazing, and the im-
plementation of precision nitrogen fertilizer management to enhance soil nitrogen fixation
and crop productivity.

Despite these contributions, there are notable limitations. First, this study primarily
focuses on a limited scope of crop types—major grain crops—which restricts the generaliz-
ability of our findings to other agricultural systems that may be impacted by NO2. Second,
our research is geographically focused on Chinese cropland, which may not fully capture
the diverse environmental and agricultural conditions in other regions, thus limiting its
global applicability. Third, the lack of long-term data on the impacts of NO2 on crop yield
means that this study could benefit from additional evidence to strengthen conclusions on
the sustainability of nitrogen management practices in the face of changing environmental
conditions. While we endeavored to select NO2 emission data from the troposphere above
croplands during the crop growth period, we acknowledge that separating NO2 emissions
from other sources (e.g., transportation, industries, livestock) was not feasible, which may
introduce some level of uncertainty.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agriculture15020208/s1. Figure S1: Importance of variables in crop yield
models based on nitrogen cycling.
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