
 

 

Supplementary information 

We utilized satellite remote sensing data focusing on climate and phenological 

variables relevant to grain crop yields, including evapotranspiration (ET), average surface 

temperature (AT), precipitation (Precip), leaf area index (LAI), vegetation index (NDVI), 

and tropospheric NO₂ monitoring data. ET and Ts were sourced from NASA's MODIS 

sensor datasets, specifically MOD16A2 and MOD11A2. MOD16A2, an 8-day 

evapotranspiration product, is produced by the Global Modeling and Assimilation Office 

and widely used in ecosystem and water resource management. MOD11A2 provides 8-

day surface temperature data with a 1 km resolution, suitable for climate research, 

agriculture, and environmental monitoring. LAI data came from the MOD15A2H dataset, 

offering 8-day composite LAI and FPAR data at a 500 m resolution, broadly applied in 

vegetation research and ecosystem modeling. NDVI data were obtained from the 

MOD13Q1 dataset, which provides global 16-day vegetation indices, ideal for long-term 

vegetation change analysis. Precipitation data came from CHIRPS, a product developed 

by the Climate Hazards Group at the University of California, Santa Barbara, combining 

satellite imagery and ground station data with 0.05° spatial resolution, widely used in 

climate research and agricultural monitoring. 

NO₂ emissions data were sourced from the Sentinel-5P satellite's TROPOMI module, 

provided by the European Space Agency. We used Level 3 data processed on the GEE 

platform, offering daily estimates since June 2018 with a resolution of 0.01° (~1 km). The 

TROPOMI algorithm separates stratospheric and tropospheric NO₂, ensuring accuracy by 

removing stratospheric NO₂ influenced by solar cycles, leaving primarily anthropogenic 

emissions in the troposphere. N₂O data were obtained from Emissions Database for 

Global Atmospheric Research (EDGAR), developed by RIVM and the EU's Joint 

Research Centre, aggregates emissions data from various international sources, including 

FAO, UNSD, IEA, and the World Bank. EDGAR's high spatial resolution and global 

coverage, combined with satellite validation by ESA, make it a reliable resource for 



 

 

emissions assessments. We used agricultural sector N₂O data from EDGAR v8.0 (updated 

to 2022). 

Soil characteristics, including total nitrogen content (TNC), organic carbon stock 

(OCS), bulk density (Bdod), cation exchange capacity (CEC), soil organic carbon (SOC), 

clay, sand, and silt, were sourced from the SoilGrids dataset, a global soil information 

system developed by ISRIC. SoilGrids uses advanced machine learning to map soil 

properties across six depth intervals, with a spatial resolution of 250 m. It integrates over 

230,000 soil profiles and 400 environmental covariates, producing global soil property 

maps with quantified uncertainties. These soil characteristics are provided in raster format 

across six depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–

200 cm). The latest SoilGrids data have been updated to 2020. 

Crop yield data for rice, maize, wheat, and soybean were derived from the SPAM 

dataset, developed by IFPRI. SPAM provides high-resolution global crop yield data at 5 

arc-minute (~10 km) resolution, including detailed crop area, yield, and production 

statistics for 42 crops. SPAM's inputs include biophysical crop suitability assessments, 

land use data, and population density, processed through a cross-entropy method for 

precise estimation of crop distributions. The latest SPAM 2020 v1.0 data were released in 

April 2024. 

Future climate scenarios were based on IPCC projections under the A1AIM and 

B1IMAGE scenarios for 2030 and 2050, using 2020 as the baseline. These projections 

come from the IPCC's Special Report on Emissions Scenarios (SRES), which explores 

different socio-economic development pathways and their associated emissions 

trajectories. We primarily focused on NO₂ emissions growth rates under these scenarios. 

Future climate scenarios were based on IPCC projections under the A1 and B1 scenarios. 

The SRES framework includes four "marker" scenarios: A1B-AIM, A2-ASF, B1-IMAGE, 

and B2-MESSAGE, along with two additional scenarios from the A1 family: A1G-

MiniCAM (A1FI) and A1T-MESSAGE. The A1 family assumes rapid economic growth, 

a peak in global population around the mid-21st century, and swift technological 



 

 

advancement. The A1 scenarios are further subdivided based on energy use: A1B-AIM 

assumes a balanced approach using both fossil and non-fossil energy sources; A1G-

MiniCAM (A1FI) is fossil fuel-intensive; A1T-MESSAGE prioritizes non-fossil energy 

technologies. The B1 family, on the other hand, assumes a world with an emphasis on 

clean and resource-efficient technologies, along with a peak in global population by mid-

century. 

Both XGBoost and Random Forest Regression (RFR) are widely used ensemble 

learning techniques for regression and classification tasks. However, they differ 

substantially in their underlying mechanisms and application. Random Forest Regression 

is a classical supervised algorithm that builds multiple decision trees by sampling subsets 

of the data. The method introduces randomness in two ways: first by bootstrapping data 

samples, and second by randomly selecting a subset of features at each node to split. Each 

decision tree is trained independently, and the final prediction is obtained by averaging 

the outputs of all trees. This method reduces the risk of overfitting while enhancing model 

generalization. Additionally, RFR can handle missing data naturally and provides insights 

into feature importance by evaluating the contribution of each feature during the splitting 

process. In contrast, XGBoost follows a boosting approach, where each new tree corrects 

the residual errors made by the previous ones. XGBoost improves prediction accuracy by 

sequentially adding trees that target the mistakes of prior models. The algorithm employs 

regularization techniques (L1 and L2) to control model complexity and mitigate 

overfitting, making it particularly suited for large-scale datasets. However, it requires 

careful tuning of hyperparameters, and the training process is more computationally 

intensive since each tree depends on the residuals of its predecessor. 

For this study, we applied both RFR and XGBoost to model crop yields, as these 

algorithms are well-suited for analyzing complex interactions between environmental 

factors and agricultural outputs. RFR allowed us to assess feature importance, while 

XGBoost provided high predictive accuracy through iterative model refinement. These 



 

 

models enabled a comprehensive evaluation of how TNC and NO₂ emissions influence 

the yields of major grain crops in China. 
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Supplementary Figure S1. Importance of variables in crop yield models based on 
nitrogen cycling. a, Importance analysis of the RFR crop yield model for maize. b, 
Importance analysis of the RFR crop yield model for rice. c, Importance analysis of the 
RFR crop yield model for soybean. d, Importance analysis of the RFR crop yield model 
for wheat. We constructed the RFR model using the sklearn library in Python (Version 
3.12.3); relevant data are detailed in Data availability. The number of valid random 
sample points was Maize = 662, Rice = 890, Soybean = 1063, Wheat = 843. 


