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Abstract: Climate change and human activities are reshaping the structure and function of
terrestrial ecosystems, particularly in vulnerable regions such as agro-pastoral ecotones.
However, the extent to which climate change impacts vegetation growth in these areas
remains poorly understood, largely due to the modifying effects of human-induced land
cover changes on vegetation sensitivity to climatic variations. This study utilizes satellite-
derived vegetation indices, land cover datasets, and climate data to investigate the influence
of both land cover and climate changes on vegetation growth in the agro-pastoral ecotone
of northern China (APENC) from 2001 to 2022. The results reveal that the sensitivity
of vegetation productivity, as indicated by the kernel Normalized Difference Vegetation
Index (kNDVI), varies depending on the land cover type to climate change in the APENC.
Moreover, ridge regression modeling shows that pre-season climate conditions (i.e., pre-
season precipitation and temperature) have a stronger positive impact on growing-season
vegetation productivity than growing season precipitation and temperature, while the
effect of vapor pressure deficit (VPD) is negative. Notably, the kNDVI exhibits significant
positive sensitivity (p < 0.05) to precipitation in 34.12% of the region and significant negative
sensitivity (p < 0.05) to VPD in 38.80%. The ridge regression model explained 89.10% of
the total variation (R2 = 0.891). These findings not only emphasize the critical role of both
historical and contemporary climate conditions in shaping vegetation growth but also
provide valuable insights into how to adjust agricultural and animal husbandry manage-
ment strategies to improve regional climate adaptation based on climate information from
previous seasons in fragile regions.

Keywords: vegetation productivity; climate change; land cover change; precipitation
patterns; pre-season climate; APENC
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1. Introduction
Terrestrial ecosystems are increasingly affected by anthropogenic climate change

(e.g., global warming and accelerated hydrological cycles) and human-dominated land
use/land cover changes (LUCC), such as urbanization, deforestation, afforestation, and
agricultural expansion [1–3]. In response to these stressors, terrestrial ecosystems adapt by
altering their structural composition and modifying their sensitivity to climatic variations,
consequently influencing ecosystem functions, particularly primary productivity [3,4].
Therefore, understanding the impacts of climate change and LUCC on vegetation primary
productivity is essential for effective ecological resource management and ensuring human
well-being, particularly in regions heavily dependent on primary productivity for food,
fuel, and fiber.

The arid and semi-arid agricultural pastoral ecotone of northern China (hereafter
the APENC), a transition zone between agricultural cultivation and animal husbandry,
is a typical fragile ecological zone that is highly vulnerable to climate change due to fre-
quent human-dominated LUCC [5]. Historically, the extensive conversion of grasslands and
forestlands into croplands between the 1960s and 1990s led to severe ecological degradation,
including reduced ecological functionality, land degradation, and increased soil erosion [6].
To address these issues, several ecological projects, such as the “Three-North Shelterbelt”,
“Grain for Green”, and “Beijing-Tianjin Sand-Storm Source” projects, have been imple-
mented since 1999, significantly altering the LUCC dynamics in the APENC [7]. These
land cover changes have induced local biome shifts, potentially modifying the sensitivity
of vegetation to climatic factors, including temperature increases, precipitation variabil-
ity, and rising vapor pressure deficit (VPD) [8]. However, the extent to which frequent
transitions between grassland and cropland affect the sensitivity of vegetation to climate
changes remains poorly understood, thereby limiting a comprehensive understanding of
vegetation–climate interactions.

In addition to the impacts of LUCC, the APENC is highly sensitive to climate
change [9]. Precipitation, a primary limiting factor in dryland ecosystems, plays a critical
role in shaping vegetation productivity in the region [10]. Unlike temperature, precipitation
variability encompasses multiple dimensions, including changes in total amount, inten-
sity, and frequency, each exerting distinct influences on vegetation productivity through
various mechanisms [11]. However, existing research has predominantly focused on the
effects of the total precipitation amount, neglecting variations in precipitation intensity
and frequency. For instance, Xue et al. [12] identified total precipitation as the primary
determinant of vegetation greenness, a proxy for productivity, in the APENC. Similarly,
Liu et al. [13] and Chen et al. [14] employed cumulative precipitation amounts to study
vegetation response to climate changes. Such studies, while insightful, offer an incomplete
understanding of the complex interactions between precipitation regimes and vegetation
productivity, leading to oversimplified assessments of climate impacts.

Among the various climatic factors, pre-season temperature and precipitation played
critical roles in regulating plant growth, particularly in arid and semi-arid regions [15,16].
Previous studies showed that snow cover played a critical role by regulating soil moisture,
temperature, and nutrient dynamics, which in turn influenced plant growth and ecosystem
productivity [17,18]. According to Yang et al. [19], the impact of winter snowfall on
vegetation persisted into the growing season. Huang et al. [20] noted that excess moisture
from more snowfall promoted vegetation growth at elevations lower than 3000 m. However,
at elevations higher than 3000 m, more snowfall delayed the onset of spring and inhibited
plant growth [20]. Similarly, pre-season conditions influenced vegetation activity—warmer
temperatures triggered early growth, while colder temperatures delayed it [21]. These
findings underscored the importance of understanding pre-season climatic conditions as
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they directly shaped plant growth dynamics and overall ecosystem productivity in regions
sensitive to climate variability.

In the context of climate–vegetation interactions, analyzing the sensitivity of vegetation
productivity to climatic variables is essential for understanding ecosystem responses to
climate change [22]. However, the complex relationships among multiple climatic factors
often result in multicollinearity, which can distort the outcomes of traditional regression-
based methods [8]. To overcome this issue, this study employs ridge regression, a robust
statistical technique specifically designed to address multicollinearity by applying L2
regularization to stabilize the model coefficients [23]. This approach effectively mitigates
the influence of correlated predictors, resulting in more reliable and interpretable results. In
addition, ridge regression not only enhances the precision of parameter estimates but also
improves the overall robustness of the model, making it particularly suitable for complex,
high-dimensional data like climate–vegetation interactions [24].

This study aims to address two key research questions:

(1) Is the sensitivity of vegetation productivity to climate variables (including VPD and
precipitation) affected by LUCC in the APENC region?

(2) How do precipitation metric interactions and vegetation productivity respond to the
sensitivity of vegetation in the APENC?

To explore these questions, the study utilizes the recently developed kernel Normal-
ized Difference Vegetation Index (kNDVI), which offers an improved representation of
Gross Primary Productivity across diverse biomes [25]. Additionally, the study integrates
data from land cover dataset and multi-source merged climate records to analyze vegetation
responses to climate change in the APENC from 2001 to 2022.

2. Materials and Methods
2.1. Study Area

The agro-pastoral ecotone of northern China (APENC) is located in the northern region
of the Loess Plateau and the southeastern part of the Mongolian Plateau, spanning latitudes
33.5–48.6◦ N and longitudes 101–126.5◦ E. The region covers approximately 835,000 km2

and extends across 11 provinces and autonomous regions, including Inner Mongolia,
Heilongjiang, Jilin, Liaoning, Beijing, Hebei, Shanxi, Shaanxi, Ningxia, Gansu, and Qinghai
(Figure 1a) [26]. APENC is characterized by an arid to semi-arid climate, with mean annual
temperatures ranging from 2 ◦C to 8 ◦C and mean annual precipitation between 300 mm
and 450 mm. Notably, approximately 60% to 70% of the total annual precipitation occurs
during the summer months (June to August). The dominant vegetation types exhibit a
gradual transition from forest and forest steppe in the northeast to typical steppe and desert
steppe in the southwest [27].
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2.2. Datasets
2.2.1. Vegetation Productivity

In the selection of vegetation indices (VIs), NDVI (Normalized Difference Vegetation
Index), EVI (Enhanced Vegetation Index), and GPP (Gross Primary Productivity) are
widely used to assess vegetation productivity but face notable limitations. NDVI suffers
from saturation effects in areas with high vegetation density [28], while EVI, though
reducing this issue with additional spectral bands, still struggles with accuracy under such
conditions [29]. GPP, a direct measure of photosynthetic activity, relies on solar-induced
chlorophyll fluorescence (SIF) for improved precision but is constrained by incomplete
SIF–GPP relationships and limited spatial and temporal resolution [30,31].

In contrast, kNDVI employs higher-order statistical relationships among spectral
reflectances to effectively address saturation issues in NDVI and EVI. This kernel–based
approach ensures robust and accurate vegetation productivity assessments across diverse
phenological cycles and climatic zones. Furthermore, kNDVI’s strong correlation with GPP
and SIF enhances its capability to capture photosynthetic activity, making it a more reli-
able and versatile index for applications such as crop yield estimation and environmental
monitoring [28]. kNDVI is calculated as kNDVI = tanh(NDVI2) [28], offering a more reli-
able measure of vegetation productivity. For this study, the kernel Normalized Difference
Vegetation Index (kNDVI) was derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) MOD13C2 v061 product, which has a monthly temporal resolution
and a spatial resolution of 0.05◦. MODIS, a NASA instrument, collects comprehensive data
on the Earth’s surface, land, oceans, and atmosphere. This data is invaluable for studying
global processes and dynamics and plays a crucial role in climate change prediction and
environmental monitoring. Publicly available datasets were analyzed in this study. These
data can be found here: [https://lpdaac.usgs.gov/products/mod13c2v061/], accessed
on 1 October 2023. The analysis covered the period from 2001 to 2022, allowing for the
assessment of long–term vegetation trends.

2.2.2. Land Cover Dataset

Annual land cover data were obtained from the MODIS MCD12C1 product, which
provides a spatial resolution of 0.05◦ [32]. Publicly available datasets were analyzed in this
study. These data can be found here: [https://lpdaac.usgs.gov/products/mcd12c1v006/],
accessed on 1 October 2023. The land cover types classified by the International Geosphere–
Biosphere Programme (IGBP) were consolidated into five categories for APENC: forestland,
shrubland, grassland, cropland, and barren land (Figure 1b).

2.2.3. Climate Data

Daily climate data with a spatial resolution of 0.1◦ were sourced from the Multi–Source
Weighted Ensemble Precipitation (MSWEP) dataset [33]. Publicly available datasets were
analyzed in this study. These data can be found here: [https://www.gloh2o.org/mswep/],
accessed on 1 October 2023. Considering both the temporal dynamics of precipitation
regimes and their time–lag effects, the following precipitation metrics were calculated
for the growing season (April to October): total precipitation amount, precipitation inten-
sity, precipitation frequency, and dry–day fraction. In addition, pre–season precipitation
(November of the previous year to March of the current year) was also assessed. Precipita-
tion intensity (Pint) was determined as the ratio of the total precipitation amount to wet
days (daily precipitation ≥ 0.1 mm) during growing –season [34]. The ratio of the number
of dry days (daily precipitation < 0.1 mm) to the total number of growing–season days
was used to compute dry–day fraction (fdry) [34]. The Unranked–Gini index (UGi), which

https://lpdaac.usgs.gov/products/mod13c2v061/
https://lpdaac.usgs.gov/products/mcd12c1v006/
https://www.gloh2o.org/mswep/
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describes how the precipitation amount is irregularly distributed, was employed to indicate
precipitation frequency (Pfre) [34].

In addition to precipitation metrics, other climatic variables were incorporated, in-
cluding mean temperature, mean radiation, and mean VPD during the growing season, as
well as pre–season mean temperature. These variables were derived from the Multi–Source
Weather (MSWX) dataset [35]. Publicly available datasets were analyzed in this study.
These data can be found here: [https://www.gloh2o.org/mswx/], accessed on 1 October
2023. VPD was calculated using the “plantecophys” package in R, based on air temper-
ature, relative humidity, and air pressure [36]. Additionally, 0–28 cm soil moisture data
were obtained from the monthly ERA5–Land dataset provided by the European Centre
for Medium–Range Weather Forecasts (ECMWF) [37]. Publicly available datasets were
analyzed in this study. These data can be found here: [https://cds.climate.copernicus.eu/],
accessed on 1 October 2023.

In this study, based on the local variance method [38], regional climate change and
land cover details were captured, confirming that the spatial resolution of 0.05◦ is better
than 0.1◦. Nearest–neighbor interpolation was used for resampling with the Terra package
in R [39], preserving original values without smoothing artifacts, suitable for categorical
climate data. A sensitivity analysis compared the effects of changing resolution from
0.1◦ to 0.05◦, showing variations within ±0.02 and no significant impact on conclusions.
Missing values were replaced with the mean of respective variables using mean imputation.
Additional tests confirmed no significant errors (error < 1%). Data sources and variables
are summarized in Table 1.

Table 1. Summary of data used in this study.

Data Type Data Name Unit Spatial
Resolution

Temporal
Resolution Spatial Range Source

Climate data

Precipitation mm 0.1◦ daily Global MSWEP
Temperature ◦C 0.1◦ daily Global MSWX

Solar radiation W m−2 0.1◦ daily Global MSWX
Air pressure Pa 0.1◦ monthly Global MSWX

Relative
humidity % 0.1◦ monthly Global MSWX

Soil moisture % 0.1◦ monthly Global ERA5–Land
Plant productivity kNDVI – 0.05◦ monthly Global MOD13C2

Land cover Land cover – 0.05◦ yearly Global MCD12C1

2.3. Land Cover Changes

The dynamics of land cover changes in the APENC region were systematically ana-
lyzed. First, the areal percentage of each land cover type was calculated annually from
2001 to 2022, and trends were evaluated using linear regression. Subsequently, the specific
transitions among land cover types were analyzed, categorizing these changes by type.
Finally, the Mann–Kendall (MK) test [40,41] was applied to assess the statistical significance
of the changes within the same categories of land cover.

2.4. Influence of Land Cover Variations on Vegetation’s Climatic Sensitivity

To explore whether land cover change impacts the sensitivity of climate change to local
vegetation productivity, we performed linear mixed-effects models in land cover change
regions and moderation effects in APENC. In linear mixed-effects models, mean kNDVI
in growing season is the dependent variable, and climatic variables (i.e., growing-season
precipitation amount, VPD, interaction between growing season precipitation amount and
land cover and interaction between growing season VPD and land cover) are independent
variables, with long-term land cover series as random factor.

https://www.gloh2o.org/mswx/
https://cds.climate.copernicus.eu/
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Furthermore, the relationship between vegetation indices and climate factors across
different land cover types was explored in APENC. The moderating effect of land cover on
the relationship between climate factors and vegetation productivity was assessed through
group regression analysis, utilizing the R package “bruceR”. In this analysis, land cover
type was treated as the moderating variable and categorized into distinct land cover types.
Vegetation indices were considered as the dependent variable, while precipitation and VPD
were regarded as independent variables.

2.5. Sensitivities of Vegetation Index to Climate Change

A systematic analysis was conducted to evaluate the relationships between these
variables. First, Pearson correlation coefficients were calculated to assess the pairwise
relationships between all climate variables [42]. This step provided initial insight into the
strength and direction of inter-variable dependencies, highlighting the potential presence
of multicollinearity. The correlation matrix revealed significant correlations among some
precipitation metrics and other climatic factors, suggesting the need for further diagnostic
measures [43]. Next, the Variance Inflation Factor (VIF) was computed for each independent
variable to quantify multicollinearity in the dataset. VIF values exceeding the commonly
accepted threshold of 5 indicated substantial multicollinearity among certain variables,
particularly within precipitation metrics [44]. These results further justified the use of ridge
regression to ensure the robustness of the analysis.

To address multicollinearity among key climatic variables—such as precipitation
amount, dry-day fraction, precipitation intensity, and VPD—ridge regression analysis
was utilized to evaluate the sensitivity of the vegetation index to climate factors. Ridge
regression effectively mitigates multicollinearity, providing a robust analytical framework
for understanding complex inter-variable relationships [2].

In the ridge regression model, the average of kernel Normalized Difference Vegetation
Index (kNDVI) in growing season was treated as the dependent variable. Independent
variables included growing−season temperature, precipitation amount, precipitation inten-
sity, precipitation frequency, dry−day fraction, radiation, and VPD, as well as pre-season
temperature and precipitation amount. Prior to analysis, all variables were normalized to a
0–1 range to ensure consistency.

The regression coefficients derived from the ridge regression analysis were used to
quantify the sensitivities of vegetation productivity to climatic changes, providing valuable
insights into how vegetation responds to various climatic drivers.

2.6. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a method used to determine whether there is spatial
aggregation or clustering of a geographic phenomenon or variable by examining its overall
degree of spatial dispersion [45]. This analysis reveals whether there is a correlation between
the values of attributes of geographic elements and their neighboring elements, providing
insights into the spatial distribution patterns of the phenomenon under investigation.

In this study, two main indices were used to assess spatial autocorrelation: the Global
Moran’s I Index and the Local Moran’s I Index.

The Global Moran’s I Index is a measure of the overall spatial autocorrelation of a
variable across the entire study area. It quantifies the degree of similarity or dissimilarity
of values of a variable in neighboring locations. The formula for calculating the Global
Moran’s I is as follows:

Global Moran′s I =
n∑n

i=1 ∑n
j=1 ωij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 (1)
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where n indicates number of spatial units (e.g., pixels); xi and xj indicate values of
the attribute at locations; x indicates mean value of the attribute across all locations; ωij

indicates spatial weight between locations i and j.
The Local Moran’s I Index measures the degree of spatial autocorrelation at each

individual location, allowing for the identification of local patterns of spatial clustering. It
helps to determine whether certain areas are characterized by significant spatial clusters
or outliers of high or low values, which may not be evident in the global analysis. The
formula for the Local Moran’s I at location iii is given by the following:

Local Moran′s I =
n(xi − x)∑n

j=1 ωij
(
xj − x

)
∑n

i=1(xi − x)2 (2)

where n indicates number of spatial units (e.g., pixels); xi and xj indicate values of
the attribute at locations; x indicates mean value of the attribute across all locations; ωij

indicates spatial weight between locations i and j.

3. Results
3.1. Spatial–Temporal Processes of Land Cover Changes

An analysis of the MCD12C1 dataset revealed that approximately 17% of the APENC
region experienced land cover changes between 2001 and 2022, with notable alterations
occurring in grasslands and croplands (Figure 2). Specifically, the proportion of grasslands
in the region declined significantly at an annual rate of 0.34% (y = −0.0034x + 7.72, p < 0.05,
R2 = 0.78), while the percentage of croplands increased significantly by approximately
0.26% per year (y = 0.0026x − 5.09, p < 0.05, R2 = 0.79) (Figure 2a). In contrast, the areal
percentages of forests, shrublands, and barren lands exhibited little variation throughout
the study period.
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Figure 2. Land use and land cover change in the APENC from 2001 to 2022. (a) Trend of land use
and land cover changes in the APENC region from 2001 to 2022; (b) the map illustrates the specific
transitions of land cover types between 2001 and 2022; (c) the spatial distribution of land cover change
significance was determined using the Mann–Kendall (MK) test. White areas indicate no significant
changes in land cover, and red areas represent regions with slight changes (−1.96 < z < 1.96), while
black areas denote regions with significant land cover changes (z > 1.96 or z < −1.96).
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The predominant transitions were observed between grasslands and croplands, with
conversions from grasslands to croplands accounting for 43.6% of all changes, while
transitions from croplands to grasslands represented 26.2% (Figure 2b).

The significance of land cover changes was analyzed using the Mann–Kendall (MK)
test. The results indicated that regions with significant changes in land cover, denoted by
black, accounted for 53.7% of the total change area (with z > 1.96 or z < −1.96), suggesting
that these areas experienced substantial alterations in land cover. In contrast, regions with
non-significant changes (indicated by red) occupied 46.3% of the change area, with z-values
ranging between −1.96 and 1.96, suggesting that the land cover changes in these areas
were either minor or not statistically significant. Additionally, the white areas represent
regions with no changes. These findings suggest that the spatial distribution of land cover
changes in the study area exhibits certain unevenness, with areas of significant change
slightly outweighing those with non-significant changes (Figure 2c).

3.2. Impacts of Land Cover Changes on Vegetation Climatic Sensitivity

The analysis results revealed significant interactions between climate factors, specif-
ically vapor pressure deficit (VPD) and precipitation, and land cover, highlighting their
collective impact on vegetation productivity, as assessed by the kNDVI. Notably, VPD
exhibited a significant negative sensitivity to the kNDVI in 12.54% of the region (p < 0.05),
indicating that increased atmospheric dryness detrimentally affected vegetation produc-
tivity in these areas (Figure 3a). In contrast, a positive sensitivity to VPD was observed
in 6.32% of the region (p < 0.05), suggesting that moderate increases in VPD might have
benefited vegetation in certain ecosystems. When the interaction between VPD and land
cover was accounted for, the significant negative sensitivity was reduced by 5.32%, and the
positive sensitivity diminished by 3.28% (Figure 3b). This reduction underscored the role
of land cover in moderating vegetation responses to VPD, likely attributed to variations in
vegetation types, land management practices, or adaptive characteristics.

Similarly, precipitation demonstrated a significant positive sensitivity to the kNDVI in
10.54% of the region (p < 0.05), indicating that increased precipitation positively influenced
vegetation productivity in these areas (Figure 3c). Conversely, negative sensitivity was
noted in 5.64% of the region (p < 0.05), suggesting that excessive rainfall may have detri-
mental effects on vegetation due to factors such as waterlogging or nutrient leaching. When
considering the interaction between precipitation and land cover, the positive sensitivity
decreased substantially by 8.57%, while the negative sensitivity saw a slight reduction of
1.39% (Figure 3d). These findings emphasized the influence of land cover in modulating
precipitation’s effects on vegetation productivity, potentially through variations in water
retention capacity, soil properties, or vegetation structure.

The interaction terms further indicated that land cover played a pivotal role in shaping
vegetation responses to climate variables. Incorporating these interactions into the model en-
hanced the understanding of the spatially heterogeneous impacts of climate factors on vegeta-
tion dynamics, providing a more comprehensive view of the underlying ecological processes.

In this study, the response of the vegetation index (kNDVI) to climate factors (pre-
cipitation and VPD) was analyzed by using the land cover type as a moderating variable.
The results showed that the introduction of the land cover type significantly improved the
fitting accuracy of the regression model. Specifically, the regression model coefficient of
determination (R2) between the kNDVI and precipitation was 0.75 when the land cover
type was not considered, whereas the R2 of the model was improved to 0.81 when the land
cover type was added as a moderating effect. Similarly, the R2 of the regression model
between the kNDVI and VPD was improved from 0.72 to 0.76, This further confirmed the
significant role of land cover type in moderating and influencing the vegetation response.
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Figure 3. Results of the raster-scale linear mixed-effects model, with land cover as a random effect
and climate factors as fixed effects. (a) illustrates the impact of vapor pressure deficit (VPD) on the
vegetation index (kNDVI). (b) highlights the interaction between VPD and land cover. (c) shows
the impact of precipitation on the vegetation index (kNDVI). (d) depicts the interaction between
precipitation and land cover. Regions labeled with black × indicate statistically significant trends
(p < 0.05).

There were significant differences in the response of the kNDVI to precipitation and
VPD under different land cover types. With the increase in precipitation, there was a
significant positive correlation (p < 0.001) between the kNDVI and precipitation in crop
and grass, while the response was weaker or even close to zero in forest, shrub, and barren
areas (Figure 4a). Unlike the response trend of precipitation, the kNDVI of grass and crop
showed a significant negative correlation with VPD as VPD increased; however, the kNDVI
of forested areas showed a positive correlation with VPD (Figure 4b). The kNDVI of shrub
and barren areas showed little response to changes in VPD. Therefore, the role of the land
cover type in regulating the response of vegetation to climate factors cannot be ignored.
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the climatic factor (i.e., the difference between its maximum and minimum values) for the respective
land cover type. The slope of the line indicates the strength and direction of the relationship: lines in
the first and third quadrants represent a positive correlation between the climatic factor and kNDVI,
whereas lines in the second and fourth quadrants indicate a negative correlation. ** indicates p < 0.01;
*** indicates p < 0.001.

3.3. Correlation Among Climate Factors and Collinearity Analysis

The correlation matrix revealed significant relationships among various climatic fac-
tors, highlighting their complex interdependencies. Strong positive correlations were
observed between soil water variability (SWV) and precipitation (P) (r = 0.85, p < 0.001),
as well as between vapor pressure deficit (VPD) and radiation (Rad) (r = 0.78, p < 0.001)
(Figure 5). Conversely, strong negative correlations exist between growing-season VPD and
precipitation (r = −0.80, p < 0.001), as well as between radiation (Rad) and precipitation (P)
(r = −0.74, p < 0.001) (Figure 5).
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Figure 5. Pearson correlation coefficients among climate variables. The diagonal displays histograms
of each variable’s distribution, while scatterplots show the distribution trends and linear correlations
between variables, with red curves representing nonlinear fitting trends. The correlation coefficients
shown are Pearson coefficients, and the significance levels are indicated with asterisks (* for p < 0.05,
and *** for p < 0.001).

The significant correlations among variables pointed to the presence of multicollinearity,
which could compromise the reliability of regression analyses. To quantify the degree of mul-
ticollinearity, the Variance Inflation Factor (VIF) was calculated, with the results presented in
Table 2. The VIF analysis confirmed the existence of substantial multicollinearity among cli-
matic variables. Consequently, ridge regression was employed as a robust statistical method
to address this issue and mitigate the effects of multicollinearity in subsequent analyses.
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Table 2. Variance Inflation Factor of climate factor.

P fdry Pint VPD T Rad SWV Tpre Ppre UGi

VIF 38.3 28.1 18.5 13.2 9.1 8.7 5.3 3.9 2.8 2.3

3.4. Spatial Distributions of Sensitivities of Vegetation Index to Climate Variability

Subsequently, ridge regression was employed to assess the sensitivities of vegetation
productivity to climate change across the entire APENC region. All sensitivity values noted
below represent averages calculated for the entire region. The modeling results of the
ridge regression model used in this study can be expressed as follows: kNDVI = 5.1218 +
0.125Ppre + 0.090P + 0.086Pint + 0.061Tpre + 0.056SWV + 0.019T + 0.0039UGi−0.046fdry
− 0.0584Rad− 0.117VPD. The model with R2 = 0.891 and RMSE = 0.0125. The results
revealed that both pre-season precipitation and temperature, along with growing-season
precipitation, soil moisture, and precipitation intensity, had a positive effect on vegetation
productivity. Conversely, VPD, radiation, and the dry-day fraction exhibited negative
impacts on vegetation productivity (Figure 6). Notably, pre-season precipitation showed
the highest positive sensitivity, while VPD demonstrated the greatest negative sensitivity
(Figure 6). Additionally, the influence of growing-season temperature and precipitation
frequency (i.e., UGi) on vegetation productivity was minimal (Figure 6).
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Figure 6. The sensitivity of mean kNDVI in growing season to intra-season climatic factors used the
ridge regression in APENC from 2001 to 2022. Notes: VPD indicates vapor pressure deficit (hPa), UGi
indicates Unranked−Gini index (no unit), Tpre indicates pre−season temperature (◦C), T indicates
temperature (◦C), SWV indicates soil moisture (%), Rad indicates radiation (W/m2), Ppre indicates
pre-season precipitation amount (mm), Pint indicates precipitation intensity (mm/day), P indicates
precipitation amount (mm), and fdry indicates dry−day fraction (%). The error bars represent the
95% confidence intervals of the sensitivity estimates, reflecting the degree of uncertainty associated
with the regression coefficients for each climatic factor.

From a spatial perspective, significant positive sensitivity to growing-season precip-
itation was observed in 34.12% of the APENC region, followed by 23.43% for growing-
season SWV, 22.93% for pre-season precipitation, and 7.89% for pre-season temperature
(Figure 7b,c,f,h, Table 3). In contrast, 38.80% of the region exhibited significant negative sen-
sitivity to VPD, with 13.72% for the dry-day fraction and 9.73% for radiation (Figure 7a,e,j,
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Table 3). Furthermore, no significant differences in climatic sensitivity were observed across
biome types (i.e., forests, shrublands, grasslands, croplands and barren) within the APENC
region (Figure 8).
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Figure 7. Spatial distribution of the sensitivity between mean kNDVI in growing season and intra-
season climatic factors in APENC from 2001 to 2022. a–i show the sensitivity of dry-day fraction
(%) (a), pre−season temperature (◦C) (b), pre−season precipitation (mm) (c), temperature (◦C) (d),
radiation(W/m2) (e), soil moisture (%) (f), precipitation intensity (mm/day) (g), precipitation (mm)
(h), Unranked−Gini index (no unit) (i), and vapor pressure deficit (hPa) (j), respectively. Regions
labeled with black dots indicate statistically significant trends (p < 0.05).
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Table 3. The pixel proportion of the sensitivity between kNDVI and climatic factors.

Positive
(Not Significant)

Positive
(Significant)

Negative
(Not Significant)

Negative
(Significant)

Fdry (dry-day fraction) 28.4% 2.36% 55.52% 13.72%
Tpre (pre-season temperature) 70.89% 7.89% 20.71% 0.51%
Ppre (pre-season precipitation) 67.95% 22.93% 8.99% 0.13%

T (temperature) 55.61% 2.94% 40.15% 1.30%
Rad (radiation) 26.16% 0.19% 63.92% 9.73%

SWV (soil moisture) 45.04% 23.43% 29.07% 2.46%
Pint (precipitation intensity) 58.23% 22.56% 18.59% 0.62%

P (precipitation) 55.41% 34.12% 10.38% 0.09%
Ugi (Unranked-Gini index) 43.25% 5.75% 47.60% 3.40%

VPD (vapor pressure deficit) 7.34% 0.47% 53.39% 38.80%
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Figure 8. Sensitivity of mean kNDVI in growing season to intra-season climatic variables across
different biomes. Notes: Tpre indicates pre−season temperature (◦C), Ppre indicates pre−season
precipitation amount (mm), Rad indicates radiation (W/m2), T indicates temperature (◦C), VPD
indicates vapor pressure deficit (hPa), UGi indicates Unranked−Gini index (no unit), Pint indicates
precipitation intensity (mm/day), P indicates precipitation amount (mm), fdry indicates dry−day
fraction (%), and SWV indicates soil moisture (%).

3.5. Spatial Autocorrelation Analysis Results

The sensitivity of vegetation to climatic factors exhibited significant spatial heterogene-
ity. The global Moran’s I values indicated strong spatial autocorrelations for all climatic
factors, suggesting that regions with similar sensitivities were spatially clustered rather
than randomly distributed (Table 4). Pre−season precipitation (Ppre), precipitation in-
tensity (Pint), and growing season precipitation (P) had strong and concentrated effects
on vegetation indices, indicating a significant and consistent vegetation response to these
climatic factors (Figure 9). In contrast, the Unranked−Gini index (UGi) and radiation
(Rad) exhibited weaker and more dispersed effects on vegetation indices, suggesting lim-
ited vegetation sensitivity to these variables (Figure 9). These findings underscored the
significant spatial clustering of vegetation sensitivity to climatic factors, highlighting the
importance of fine-scale spatial modeling in better understanding vegetation dynamics
under climate change.
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Table 4. Global Moran’s I Index and significance testing for vegetation sensitivity to climatic factors.

fdry P Ppre Pint Rad SWV T UGi VPD Tpre

Moran’s I 0.84 0.85 0.86 0.88 0.88 0.89 0.84 0.89 0.86 0.86
Z 162.53 163.21 164.79 168.84 168.99 171.30 159.99 170.22 165.54 164.65
P <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Figure 9. Spatial distribution of clustering and outlier patterns for vegetation sensitivity to climatic
variables. High−High clusters (red) and Low−Low clusters (blue) indicate regions with significant
spatial autocorrelation, while High−Low (brown) and Low−High (light blue) outliers represent
localized deviations. Non−significant areas (gray) lack strong clustering patterns. Variables include
(a) vapor pressure deficit (VPD), (b) Unranked−Gini index (UGi), (c) pre−season temperature (Tpre),
(d) growing−season temperature (T), (e) soil moisture (SWV), (f) radiation (Rad), (g) growing−season
precipitation (Pint), (h) dry−day fraction (fdry), (i) precipitation amount (P), and (j) pre−season
precipitation (Ppre).
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4. Discussion
4.1. Relationship Between LUCC and Anthropogenic Activities

LUCC was predominantly driven by anthropogenic activities [46,47]. This study ob-
served that 17% of the land cover in the APENC region changed between 2001 and 2022,
with approximately 69.8% of these changes resulting from transitions between croplands
and grasslands. This finding aligned with prior research Wei et al. [6]. The predominance
of cropland-to-grassland transitions suggested a continuous cycle of land management
practices, such as cropland abandonment, which might have exacerbated habitat fragmen-
tation and ecosystem instability [48]. Understanding the mechanisms underlying these
transitions was essential for designing effective conservation strategies to mitigate the
negative ecological impacts of land use changes [49].

The dynamics of land use in the APENC from 2005 to 2009 were primarily influenced
by policy interventions and population migration. During this period, cropland areas de-
clined while grasslands expanded, driven by two major factors. First, the “Grain for Green”
initiative led to the conversion of sandy and low-quality croplands into ecologically restored
land [50]. Second, rural population declines, largely due to urban migration, resulted in a
shortage of agricultural labor. Consequently, large areas of cropland were abandoned, facil-
itating grassland expansion [6]. Official statistics indicate that the agricultural population
decreased from 745 million in 2005 to 689 million in 2009, reflecting substantial demo-
graphic shifts. In underdeveloped rural areas, agricultural systems proved particularly
vulnerable to changes in labor availability, climatic conditions, and policy measures.

In contrast to the 2005–2009 period, the years from 2009 to 2022 witnessed a reversal,
with grasslands increasingly converted into croplands. This shift could be attributed to two
key factors. First, the abolition of the agricultural tax in 2006 curbed cropland reduction.
Second, the 2009 introduction of the “Defend the Cropland Red Line” policy mandated that
cropland area be maintained above 1.2 million square kilometers to safeguard national food
security [51]. These trends reflected broader land use shifts characterized by intensified
agricultural practices and land conversion. Such changes posed significant challenges for
balancing ecological conservation with human demands [52].

Grassland degradation remained a pressing environmental issue. Between 2001 and
2022, grasslands declined at an annual rate of 0.34%. This persistent decline was concern-
ing given the critical ecological roles of grasslands, including carbon sequestration, soil
stabilization, and the provision of habitats for diverse species [53]. Continued degradation
could have compromised ecosystem resilience, resulting in soil erosion, degradation, and
biodiversity loss [54,55]. It was, therefore, imperative to prioritize grassland conservation
and restoration efforts to ensure ecosystem stability.

In addition to LUCC, other environmental and ecological factors could also contribute
significantly to vegetation resilience [56]. Soil properties, such as soil organic matter
content, texture, and water retention capacity, played critical roles in supporting vegetation
by regulating water and nutrient availability [57]. Moreover, biodiversity, including species
richness and functional diversity, enhanced ecosystem stability and resilience by promoting
complementary resource use and reducing susceptibility to disturbances [58]. These factors,
alongside LUCC, interacted in complex ways to shape vegetation dynamics and resilience.
Therefore, a more comprehensive framework is needed in the future that integrated LUCC
with soil properties and biodiversity to better understand and manage vegetation resilience
in the APENC region.

4.2. Impacts of Land Cover Changes on Vegetation Sensitivity to Climate

The sensitivity of vegetation to climate change varied significantly across different
land cover types in the study area. This study revealed that the relationships between
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precipitation, VPD, and the kNDVI differed markedly across various land cover types.
Specifically, precipitation is strongly positively correlated with the kNDVI in grasslands
and croplands, a result consistent with Liu et al. [59], indicating that water supply was
crucial for vegetation growth in these ecosystems. Increased precipitation effectively
enhanced soil moisture, thereby stimulating metabolic processes such as photosynthesis
and nutrient absorption in grasslands and croplands [60]. In contrast, the relationship
between precipitation and the kNDVI is weaker in forests and shrub, which aligned with
the findings of Jia et al. [27]. This might have been due to the typically deeper root systems
and larger canopy sizes of woody plants. The deeper root systems allowed for better access
to soil moisture, while the larger canopy sizes helped reduce fluctuations in the kNDVI,
thus diminishing the sensitivity of vegetation to variable precipitation.

Regarding VPD, the kNDVI in grasslands and croplands showed a negative correlation
with VPD, consistent with the findings of Liu et al. [59], suggesting that higher VPD
decreased relative humidity, exacerbating water loss in grassland plants. Under water
stress conditions, grassland plants typically restricted stomatal opening to reduce water
loss [61], which limits photosynthesis and suppressed vegetation growth [62]. However, in
forests, VPD is positively correlated with the kNDVI, possibly indicating a higher adaptive
capacity of forests under drought conditions. Flach et al. [63] suggested that, globally,
forests were less sensitive to drought than other vegetation types. In summary, the results
of this study highlighted the critical role of land cover type in moderating climate change
impacts, particularly in terms of the differential responses of vegetation to precipitation
and VPD.

Due to the impact of LUCC on the sensitivity of vegetation productivity to climate
change, the ongoing intensification of global climate change presented significant challenges
to regional management in the APENC [64]. Therefore, it was crucial to implement effective
measures to enhance the ecological resilience of the region [9,65]. For instance, in drought
years that induced by pre-seasonal precipitation deficiency, it was suggested that, on the
one hand, the proportion of agriculture should be reduced and animal husbandry increased;
on the other hand, water resource regulation along with irrigation technologies (e.g., drip
irrigation and micro-sprinkler systems, etc.) should be adopted to reduce water stress.
Moreover, the implementation of precipitation harvesting and storage systems could have
been a viable strategy during dry season. Conversely, when pre-seasonal precipitation is
relatively abundant, it might have been beneficial to increase the area of crops, particularly
by introducing drought-resistant crops such as wheat and potatoes [10]. This strategy
would have helped to minimize the negative impacts of climate change and reduce the
potential risk of a food crisis [66].

4.3. Vegetation Index Response to Climate Change

Pre-season precipitation played a pivotal role in determining vegetation growth, with
findings highlighting its greater impact on vegetation productivity compared to growing-
season precipitation. This difference was likely due to the critical role of snowfall in
water storage. Increased snowfall enhanced water reserves, which subsequently promoted
vegetation growth and improved vegetation indices [17–19]. These findings aligned with
earlier studies of Barrett et al. [67] that emphasized the importance of adequate water
availability for plant growth, particularly in semi-arid and arid regions such as the APENC.

Warmer pre-season temperatures accelerated snowmelt, leading to enhanced soil
water storage before the growing season began. The analysis demonstrated that pre-season
temperatures exerted a stronger influence on vegetation productivity than growing-season
temperatures. This outcome was likely a consequence of rising pre-season temperatures al-
tering precipitation patterns, shifting precipitation from snow to rain [67,68]. The resulting
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early snowmelt increased soil moisture storage during critical periods when plants were
most sensitive to moisture deficits [20]. These conditions established favorable water avail-
ability well in advance of the growing season. Conversely, growing-season precipitation
and temperatures had comparatively limited effects as plants were already in their active
growth phase and are more responsive to immediate water availability.

Precipitation patterns, including both amount and intensity, had positive effects on
vegetation productivity in arid regions. Increased precipitation alleviated water stress, en-
hancing physiological processes such as photosynthesis and reducing water limitations on
growth [69]. For example, Wang et al. [65] pointed out that precipitation was a key factor in-
fluencing vegetation productivity, particularly in arid and semi-arid regions. Furthermore,
single large rainfall events had been shown to result in greater productivity gains com-
pared to multiple smaller events of equivalent total precipitation, particularly in grassland
ecosystems [69]. Conversely, light precipitation events below 5 mm often had negligible
effects on vegetation indices, as observed in grasslands across northern China [70].

In contrast, vapor pressure deficit (VPD) and dry-day fraction exerted negative impacts
on vegetation productivity, highlighting potential vulnerabilities. Elevated VPD reduced
humidity and increased evaporative stress, which impaired photosynthesis and transpi-
ration, thereby diminishing productivity [71]. Similarly, prolonged periods of drought,
reflected in an increased dry-day fraction, exacerbated water stress by limiting stomatal
conductance and reducing carbon uptake [72]. These findings underscored the importance
of effective water resource management, particularly given the growing aridity associated
with climate change [73]. Despite these challenges, vegetation in the APENC region ex-
hibited adaptive mechanisms to cope with increasing VPD and prolonged droughts. For
instance, plants may have reduced stomatal conductance to minimize water loss under
high evaporative demand, enhancing water-use efficiency even at the cost of reduced
carbon uptake [74]. Additionally, deeper root systems enabled certain species to access
groundwater during droughts [75]. At the community level, shifts in species composition
favored drought-tolerant plants with traits such as high water use efficiency or drought-
deciduous behavior further enhancing ecosystem resilience [76]. Mutualistic relationships,
such as those with mycorrhizal fungi, also played a role in improving water and nutrient
acquisition under stress [77].

These adaptive strategies not only demonstrate the resilience of vegetation in the
APENC region but also emphasize the need for active management to support these natural
responses. Policies promoting ecosystem restoration and the conservation of drought-
adapted species are essential for mitigating the long-term impacts of climate change [78].
Looking ahead, future research should integrate climate models and land-use projections
to predict how vegetation productivity may evolve under different climate scenarios and
land management strategies [79]. Such projections would provide a more comprehensive
understanding of the potential vulnerabilities and resilience of ecosystems, facilitating
the design of adaptive management strategies that ensure ecological sustainability in
the face of climate change [80]. Additionally, including socio-economic factors such as
population growth, urbanization, and land policy changes would help to better capture the
complexities of land-use dynamics and their interaction with climate variables.

4.4. Study Limitations

In this study, climate data with an original spatial resolution of 0.1◦ was resampled
to 0.05◦ to match the resolution of land cover datasets. While resampling facilitated data
integration, it introduced limitations that might have affected accuracy and reliability.
Resampling did not enhance the intrinsic spatial precision of the original data; therefore, lo-
calized climate patterns, particularly in heterogeneous regions such as mountainous, might
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not have been adequately represented [81]. This could have led to oversimplified analyses
of relationships between climate and land surface processes as interpolation-derived finer
resolutions could not fully capture small-scale variability. For example, extreme rainfall
events, critical for understanding vegetation responses and hydrological processes, might
have been masked [82]. Future studies should prioritize climate datasets with higher native
resolutions or use advanced downscaling methods that integrate topographic and atmo-
spheric conditions to reduce uncertainties and better represent spatial heterogeneity [83].

This study examined LUCC in the APENC region using annual data and linear
regression methods. While linear regression was useful for identifying broad trends,
it had limitations in capturing the complexity of LUCC, which was a non-linear and
dynamic process influenced by socio-economic, environmental, and policy factors [84]. The
assumption of linearity in regression models may have oversimplified the relationships
between land use change, climate variability, and ecosystem responses, potentially missing
key non-linear interactions. Additionally, the use of annual data limited the temporal
resolution of the analysis, potentially overlooking intra-annual fluctuations that could have
been critical for understanding LUCC and vegetation sensitivity. LUCC was also influenced
by socio-economic factors, such as population growth and land management practices,
which were not considered in this study due to data constraints [85]. Future research
could address these limitations by employing non-linear modeling, machine learning, or
system dynamics approaches to better capture the complexity of LUCC processes. Higher
temporal resolution data could also provide deeper insights into the dynamics of LUCC
and its impact on vegetation sensitivity to climate change.

5. Conclusions
This study examined the impacts of LUCC and climatic variability on vegetation

primary productivity in the APENC region from 2001 to 2022. The results revealed a
significant decline in grassland areas accompanied by an increase in cropland, driven
by anthropogenic activities and policy changes. The effects of precipitation and VPD on
the vegetation indices varied across different land cover types. Additionally, pre-season
precipitation and temperature exerted a stronger influence on vegetation productivity
than growing season precipitation and temperature. In contrast, both VPD and dry-day
fraction were found to negatively affect vegetation productivity. These findings emphasize
the complexity of climate–vegetation interactions in fragile ecosystems like the APENC.
Moving forward, sustainable land management practices and continued research are
imperative to ensure the ecological and agricultural sustainability of the region.
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