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Abstract: Digital innovation in agriculture has become a powerful force in the modern
world as it revolutionizes the agricultural sector and improves the sustainability and efficacy
of farming practices. In this context, the study examines the effects of digital technology, as
reflected by the digital economy and society index (DESI), on key agricultural performance
metrics, including agricultural output and real labor productivity per person. The paper
develops a strong analytical method for quantifying these associations using predictive
models, such as exponential smoothing, ARIMA, and artificial neural networks. The
method fully illustrates how economic and technological components interact, including
labor productivity, agricultural output, and GDP per capita. The results demonstrate that
digital technologies significantly impact agricultural output and labor productivity. These
findings illustrate the importance of digital transformation in modernizing and improving
agriculture’s overall efficacy. The study’s conclusion highlights the necessity of integrating
digital technology into agricultural policy to address productivity problems and nurture
sustainable growth in the sector.

Keywords: digital technologies; productivity; agricultural output; digital economy and
society index; digital agriculture

1. Introduction
The digital agricultural revolution is a transformative phenomenon with extensive

implications for agricultural practices. Estimates suggest that the global population will
reach nearly 10 billion by 2050 [1]. This demographic surge will significantly increase the
demand for essential resources, particularly food, requiring higher quantity and improved
quality. Global food production must increase by approximately 60–70% to meet the needs
of a growing population [2,3].

Meeting this demand poses challenges, including climate changes that will exacerbate
existing risks and introduce new ones, compounded by the complex interplay between
environmental and socio-economic factors [4]. Climate change amplifies the vulnerability
of traditional agricultural systems, directly impacting crop productivity, soil health, and
the availability of critical resources such as water. Addressing these challenges requires
adopting innovative solutions, such as advanced digital technologies, sustainable farming
practices, and international collaboration to manage food resources [5]. Agriculture can
only evolve to meet present and future global demands through an integrated approach
driven by collaboration and innovation.

Expanding agricultural production sustainably hinges mainly on advances in technol-
ogy and innovation research [6]. Digital technologies offer a promising strategy to enhance
agricultural growth by increasing agricultural production processes’ scale, efficiency, and
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effectiveness. Precision agriculture, for instance, utilizes technologies such as artificial
intelligence (AI), advanced sensors, and data-driven management systems to optimize
inputs like water, fertilizers, and pesticides according to specific crop needs [7].

Moreover, drones and remote sensing technologies provide detailed insights into crop
conditions and environmental factors, enabling quick and informed decision-making. This
approach improves agricultural yields and addresses soil erosion and biodiversity loss. Thus,
digital agriculture becomes essential for modernizing the sector and ensuring a sustainable
future that responsibly and efficiently addresses demographic and climate challenges.

This research aims to develop a robust analytical framework to evaluate the rela-
tionship between digitalization and agricultural efficiency while offering perspectives for
integrating digital technologies into agricultural development strategies. The research
deepens the understanding of interactions between economic and technological variables,
including the DESI, labor productivity, agricultural output, and GDP per capita, by em-
ploying predictive models such as artificial neural networks, ARIMA, and exponential
smoothing. This analysis provides a solid foundation to demonstrate the significant impact
of digitalization on agriculture and underscores the urgency of adapting swiftly to new
technological realities.

While the impact of digital technologies on other economic sectors is well-documented,
agriculture still needs to be explored. Key challenges include the need for standardized
methodologies for quantifying these technologies’ effects and the complexity of adapt-
ing them to the agricultural sector’s unique characteristics, such as high variability and
dependence on natural factors. Furthermore, only some studies predictively analyze the
influence of digitalization on agricultural production and productivity to ensure the food
system’s sustainability. The originality of this study lies in integrating advanced predictive
models to examine the influence of the DESI on agricultural output and productivity. The
findings contribute significantly to the literature by highlighting the importance of digital
transformation for modernizing agriculture.

The paper has six sections: introduction, literature review and hypothesis formulation,
materials and methods, results, discussions, and conclusions. Together, these sections
provide a comprehensive perspective on the influence of digital technologies on agriculture.

2. Literature Review and Hypotheses
2.1. The Influence of Digitalization on Total Production and Agricultural Productivity

Numerous strategies shape agriculture within the European Union. The European
Green Deal is a set of policy initiatives to make Europe the first climate-neutral continent
by 2050, relying on a sustainable growth strategy integrating all economic sectors [8]. The
“Farm to Fork” strategy has revolutionized agri-food systems and sped up the shift to a
clean, circular economy [9]. These programs highlight how important it is for citizens,
businesses, and governments to work together to guarantee a smooth transition.

Digital agriculture incorporates advances and digital technologies into food systems,
value chains, and agricultural production [10]. It includes ideas like precision agricul-
ture [11] and smart farming [12], which use data and cutting-edge technologies to maximize
agricultural operations [13].

Digital agriculture, formally introduced in 1997, uses information and GIS technologies
to improve agricultural productivity, farmer incomes, and product competitiveness [14].
With the addition of detecting technologies like remote and proximity sensors, it has de-
veloped into precision agriculture [15–17] and is becoming increasingly compatible with
digital governance and mobile connectivity. Agricultural data management, accurate
component distribution, and production tool control are the main areas of research in
developed nations [10]. Sensors and other Internet of Things (IoT) devices help farm-
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ers by enhancing production management through interconnected networks. Planting
schedules could be established by farmers using technological devices [18]. Despite the
lack of agreement on digitalized agriculture, research is concentrated on evaluating agri-
cultural informatization and creating digital infrastructures [14,19–25]. These innovative
methods enhance farm competitiveness by increasing agricultural production sustainably
and resource-efficiently [26], allowing farmers to achieve higher profits while reducing
environmental impacts, aligning with global sustainability and environmental protection
goals [23,24,27].

Implementing precision agriculture involves a more detailed and personalized ap-
proach than conventional farming practices. It enables farmers to apply the right amounts
of fertilizers, water, or pesticides required for each section of land based on specific soil and
crop conditions [28]. This approach boosts productivity and protects the environment by
reducing the risks of pollution and resource depletion. Furthermore, by leveraging these
technologies, farmers can achieve higher yields of superior quality and more accurately
anticipate market demands, fostering conditions for long-term sustainable and competitive
agriculture [29].

Precision farming emphasizes leveraging advanced technologies to integrate relevant
data into decision-making processes, aiming to optimize production and address the com-
plex challenges of the global agricultural sector [30]. Its impact transcends crop production,
extending to fields such as water management in viticulture [31,32], horticulture [33,34],
livestock production [35,36], and pasture management [37,38]. These applications highlight
its versatility and relevance across various contemporary agricultural domains [13,39].
More than just a collection of technologies, precision farming represents an integrated
system that transforms resource management practices, nurturing more sustainable, com-
petitive agriculture adaptable to current socio-economic and environmental demands.

Digital agriculture relies on sensors, smart machinery, drones, and satellites to collect
and analyze vast datasets. These include information on location, weather conditions, crop
or livestock behaviors, plant health, resource consumption, energy use, market prices, and
economic indicators [10]. The objective is to enhance efficiency, reduce costs, and minimize
environmental impact. By adopting these technological solutions, agriculture evolves into a
more sustainable practice, addressing challenges such as climate change, global population
growth, and food security needs. Simultaneously, it facilitates greater product traceability
and transparency across supply chains, strengthening consumer trust [11–13].

Data collected through digital technologies optimize agricultural production systems,
tackle societal concerns, and ensure better monitoring of controversies within agricultural
chains and sectors [40]. Innovative concepts like precision agriculture and precision farm-
ing, emerging in the 1990s [41], use diverse sensors, drones, and monitoring devices to
gather detailed crop data [42]. These technologies improve agricultural yield and sustain-
ability while reducing waste in resources such as water and chemical fertilizers. Precision
farming also enables custom-made interventions, adapting practices to the specific needs
of individual plots, enhancing efficiency, and minimizing environmental impact [13,43].

Integrating advanced digital technologies at every stage of agricultural processes,
from planning and planting to harvesting and distribution, marks the onset of the digital
agricultural revolution or Agriculture 4.0 [44]. Agriculture 4.0 reshapes traditional practices
by providing integrated solutions to global challenges such as rising food demand, climate
change, and limited natural resources. This approach relies on widespread technologies
like the IoT, AI, big data, and robotics, enabling precise and efficient agricultural resource
management [45–48].

Through data exchange and technological solutions, farmers worldwide may access
innovations that improve production, lessen environmental impact, and promote sustain-
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ability. Consequently, Agriculture 4.0 changes how food is produced and reinterprets
how technology, the environment, and society interact [49,50]. A highly flexible produc-
tion model based on digitization and customization is the goal of the so-called “Industry
4.0” [46,47,50–52], which parallels this fourth agricultural revolution and allows for real-
time interactions between people, products, and devices across production processes [53].
With cutting-edge technologies like IoT, drones, robotics, and artificial intelligence, adopt-
ing Industry 4.0 paradigms significantly changes agriculture [54–56].

Alongside Industry 4.0, Agriculture 4.0 is developing and embracing new digital
technologies [5,46–52]. Resilience, innovation, and sustainability are encouraged when
comparable concepts and technology are applied to agricultural systems. The parallels
between these two revolutions underscore the importance of technological innovation and
convergence in transforming the agricultural and industrial sectors. Both Industry 4.0
and Agriculture 4.0 have the potential to transform how resources are used, increasing
resilience and sustainability in a world that is changing quickly [53].

Although AI has enormous potential in many domains, including agriculture, its use
in reducing crop loss risks is still in its infancy. AI contributes by monitoring and analyzing
data from diverse sources (sensors, drones, satellite imagery), providing farmers with
precise insights into crop conditions and forecasting potential risks like pest infestations or
extreme weather events [29,57].

The adoption of digital tools in agriculture has been widely studied through the lens
of the technology acceptance model (TAM) and the diffusion of innovations theory, which
emphasize the role of perceived usefulness and ease of use in fostering technology adoption.
Recent studies have applied these models to precision agriculture, demonstrating how
farmers’ attitudes and external factors like access to resources shape the uptake of innova-
tive solutions [58–60]. Innovation network theory highlights the collaborative dynamics
among farmers, technology providers, and researchers, which are pivotal in promoting
knowledge exchange and resource sharing, facilitating the effective implementation of
advanced technologies in agriculture [61,62].

Moreover, the socio-technical perspective provides an integrated view by addressing
the interaction between technical innovations and social dimensions, such as farmer educa-
tion, infrastructure development, and supportive policies. Socio-technical systems theory
suggests that the successful adoption of digital solutions is contingent on addressing these
interconnected factors, corroborated by recent findings on the barriers and facilitators of
digital transformation in agriculture [63–65].

This study is grounded in the resource-based view (RBV), which provides a robust the-
oretical framework for understanding how strategic resources, such as digital technologies,
contribute to enhanced agricultural performance. Empirical evidence underscores how
these technologies contribute to improved productivity and cost reduction, framing them
as indispensable tools for modern agrarian systems [66,67]. By framing digital technologies
as valuable, rare, inimitable, and non-substitutable resources, the RBV underscores their
role in driving agriculture productivity, efficiency, and sustainability. This perspective
enables the analysis to highlight how integrating digital solutions can create a competitive
advantage for farms, facilitating resilience and adaptability in the face of economic and
environmental challenges.

The first hypothesis suggests that digitalization indicators significantly influence over-
all production and agricultural productivity, emphasizing the importance of implementing
digital technologies in the agricultural sector to ensure the food system’s sustainability.

Hypothesis H1. The evolution of digitalization levels, measured using the DESI, significantly
influences agricultural output and productivity.
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2.2. The Impact of Digitalization on Future Trends in Agricultural Output and
Productivity Evolutions

Digital agriculture incorporates advanced technologies to optimize resource use, en-
hance efficiency, and reduce costs in farming while improving management across the
agricultural sector [10,68–70]. By integrating emerging tools like the IoT, big data analyt-
ics, and AI, digital agriculture fosters a more sustainable agro-industrial system. These
technologies enable real-time monitoring and precise adaptation of agricultural processes,
supporting both productivity and rural transformation. Farmers gain new opportuni-
ties through innovative solutions to achieve higher profits and contribute to the local
economy [58].

Investments in technological research contribute to developing sustainable solutions
within the agricultural sector, which is increasingly needed in addressing global challenges
such as population growth, climate change, and limited natural resources [5]. Agriculture
4.0 introduces an innovative paradigm that integrates advanced technology across all
aspects of agricultural production. Advanced sensors allow real-time monitoring of soil
and plant conditions, facilitating informed decision-making to reduce waste and optimize
resource use [71]. Simultaneously, AI and big data enable predictive analyses of risks such
as drought or crop diseases, offering proactive solutions to minimize losses [48].

Robotics advances automation in agricultural processes like harvesting, reducing
reliance on manual labor and enhancing operational efficiency. Cloud computing technolo-
gies ensure seamless storage and access to complex data, promoting global collaboration
in research and the swift implementation of innovations [44]. These technological ad-
vancements drive productivity growth and mitigate environmental impact, promoting
sustainable agricultural practices.

Enhancing productivity, alongside environmental and sustainability motivations, re-
mains an important driver of digital agriculture adoption [72]. By increasing productivity,
agriculture can meet the demands of a growing population without exceeding ecosystems’
natural limits. Researchers employ various econometric and statistical methods to measure
productivity in agriculture, analyzing diverse temporal and spatial contexts [14,73–76].
These approaches provide detailed insights into shifts in technological efficiency and agri-
cultural progress, forming a robust foundation for comparing performance across regions
and economic contexts. Furthermore, these methods guide policymakers in crafting effec-
tive public policies to support the transition toward more sustainable and environmentally
responsible agriculture.

Technological progress is central to productivity improvement in agriculture [77]. Envi-
ronmental regulations significantly influence agricultural practices by shaping how natural
resources are managed, with appropriate legal frameworks encouraging the adoption of
greener technologies [78]. Furthermore, human capital and urbanization are essential in
accelerating agricultural modernization as young workers migrate to urban centers and
research and education hubs emerge to equip farmers with innovative solutions [79,80].
Internal agricultural sector restructuring, including administrative modernization and
adaptation to new economic and ecological conditions, is fundamental for enhancing
process efficiency and competitiveness [81].

Technical efficiency and optimal resource allocation are decisive for achieving desired
yields within the constraints of finite agricultural resources [82,83]. Financial support, espe-
cially regarding farm size and access to credit, is instrumental in ensuring balanced sectoral
development [84,85]. Emerging digital technologies, including AI, machine learning [86],
and IoT devices [87–91], improve agricultural precision and sustainability while reducing
environmental impact and increasing output. Better data integration in agricultural opera-
tions is made possible by these technologies, which support data-driven decision-making
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and encourage a modern strategy that satisfies the ecological and economic objectives of
the 21st century.

The enormous collection of agriculture data raises serious concerns about data privacy.
This data must be protected from breaches and unauthorized access [13,92,93]. Creating
strong legislative frameworks to handle data security and privacy concerns is important.
To foster confidence between farmers and consumers regarding digital technology in
agriculture, protecting data entails avoiding illegal access and maintaining openness.
Regulations must change quickly to handle new issues with storing, processing, and sharing
sensitive data as digital technologies proliferate. Industries must adopt safe technology and
invest in state-of-the-art security solutions to fully realize the potential of digital agriculture
and pave the way for a more sustainable and effective agricultural future [94].

The second hypothesis states that digitalization indicators can influence patterns in
agricultural output and productivity trends, highlighting the necessity of integrating digital
technologies in the agricultural sector.

Hypothesis H2. As measured using the DESI, the evolution of digitalization levels significantly
positively influences future trends in total agricultural output and productivity.

The following section outlines the research design and methodologies employed
to examine the impact of digital technologies on agricultural productivity based on the
insights gathered from the literature.

3. Materials and Methods
3.1. Research Design

The research design began with the establishment of its objectives. The primary aim
was to explore how digital technologies, quantified using the digital economy and society
index (DESI), influence key agricultural performance indicators, such as real labor produc-
tivity per person and agricultural output. The analysis explores dynamic temporal relation-
ships between digitalization and agricultural performance metrics. This methodological
choice enables the study to capture trends and immediate effects over time, providing
actionable insights relevant to the specific context of agricultural digital transformations.

Once the objectives were defined, the next step involved a comprehensive review of
the specialized literature. This review aimed to situate the study within the broader context
of digital transformations shaping modern agriculture. Prior studies were analyzed to
identify knowledge gaps and construct a solid theoretical foundation.

Based on the literature and stated objectives, research hypotheses were formulated to
examine the direct impact of the DESI on labor productivity and agricultural output. The
research employed robust predictive models, including artificial neural networks, ARIMA,
and exponential smoothing, enabling temporal analysis and future trend estimation. The
selection of the ARIMA model is grounded in its suitability for analyzing direct temporal
relationships and capturing dynamic interactions between digitalization indicators and
agricultural performance metrics. The rigorous validation process associated with the
ARIMA model (including applying Akaike and Bayesian criteria) ensures its predictions’
reliability and practical relevance. This level of precision supports its integration into
agricultural planning processes, enabling informed decision-making driven by insights
into digital trends.

Furthermore, the ARIMA model adapts seamlessly to specific data characteristics,
avoiding unnecessary analytical complications often associated with latent-factor models.
The ARIMA model maintains a thoughtful balance between detail and interpretability by
leveraging the DESI, a composite index that encapsulates complex digitalization data. The
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model’s robustness in contexts with relatively short time series enhances its applicability
in rapidly evolving fields such as digitalization, where extensive historical panel data
were unavailable.

The results were presented clearly and coherently, using graphical visualizations
and statistical interpretations to highlight identified relationships. The discussion and
conclusions extensively interpreted the results, contextualizing them within agricultural
development practices and strategies.

3.2. Selected Variables

The study analyzed the relationship between the digital economy and agricultural
sector performance by integrating essential variables, offering insights into economic and
social dynamics. The digital economy indicator selected was the DESI, a weighted score
from 0 to 100 provided by the European Commission. The DESI synthesizes the level
of digitalization across European economies, analyzing domains such as connectivity,
human capital, digital public services, and digital technology integration [95]. This index is
well-known for its ability to reflect digitalization progress and impact on economic sectors.

The research included the variable agricultural output (AGROUT), which represents
the value of agricultural output at basic prices [96]. Data provided by Eurostat for this
indicator enabled a detailed analysis of agriculture’s contribution to the overall economy,
highlighting production dynamics and sector adaptability facing economic and technologi-
cal changes.

The study employed the variable real GDP per capita (RGDPpc), expressed in euros
per capita and adjusted to chain-linked volumes with the reference year 2010 [97]. Also
sourced from Eurostat, this indicator evaluates living standards and overall economic
performance, serving as a central element in understanding digitalization’s influence on
various economic sectors, including agriculture.

Lastly, the analysis incorporated the real labor productivity per person (RLPpp), mea-
sured as an index with a 2015 base of 100 [98]. This indicator reflects the real productivity
of labor per employed person, offering valuable insights into resource efficiency across
sectors, including agriculture. Productivity data provide evidence of digitalization’s impact
on labor efficiency, a vital aspect of an innovation and sustainability-driven economy.

Table 1 presents variables used in empirical research.

Table 1. Research variables.

Variable Dataset Measures References

DESI Digital economy and society index Weighted score (0 to 100) [95]
AGROUT Agricultural output Production value at basic price—million euro [96]
RGDPpc Real GDP per capita Chain linked volumes (2010), euro per capita [97]
RLPpp Real labor productivity per person Index, 2015 = 100 [98]

Source: author’s design based on [95–98].

The research aims to highlight the complex links between digital transformation and
economic performance in the agricultural sector. Integrating digital technologies into
agriculture may significantly impact productivity and long-term sustainability.

3.3. Research Methods

Artificial neural networks (ANNs) analysis represents an innovative approach for
analyzing complex relationships between variables, successfully applied across various
economic and social domains. In this study, ANNs were used to assess the influence of
digitalization, measured using the DESI, and economic growth, represented by real GDP
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per capita (RGDPpc), on agricultural output (AGROUT) and real labor productivity per
person (RLPpp). This method effectively interprets subtle and nonlinear interdependencies
that traditional approaches might miss [99].

By employing ANNs, the study offers a fresh perspective on digitalization’s impact and
economic growth, providing a foundation for informed decision-making in public policies
and economic and social development strategies. This approach delivers predictions and
enhances understanding of variable dynamics, paving the way for more efficient agriculture
and higher labor productivity.

The multilayer perceptron (MLP) model was chosen to determine these influences (1):

y = (∑n
i=1 wixi + b) = φ(WTX + b) (1)

w, x—vectors of weights and inputs;
b—bias;
i—cases;
φ—activation functions.
As activation functions, we used a hyperbolic tangent function (2):

f (n) =
1

1 + e−n (2)

n—input variables;
f(n)—output variables.
The autoregressive integrated moving average (ARIMA) model is one of the most

robust and widely applied methods for time series analysis. Its effectiveness lies in captur-
ing complex relationships among variables over time and delivering accurate short- and
medium-term forecasts. Initially developed by Box and Jenkins [100], the model integrates
three fundamental components, granting flexibility and applicability across various fields.

Implementing the ARIMA model follows a well-defined process that includes param-
eter identification, estimation, and validation [101]. Analyzing autocorrelation and partial
autocorrelation plots during the identification phase helps determine the optimal values for
the parameters. Subsequently, parameter estimation involves specialized algorithms, while
model validation employs statistical criteria such as the Akaike Information Criterion (AIC)
and tests for residual autocorrelation [102]. This rigorous process ensures the development
of robust models capable of reliable forecasts [103]. The general formula of the ARIMA
model (3) reflects this comprehensive approach.(

1 −
p

∑
i=1

φiLi

)
(1 − L)dXt =

(
1 + ∑q

i=1 θiLi
)

εt (3)

Xt—data series
L—lag operator
φi—parameters of the autoregressive part of the model
θi—parameters of the moving average part
εt—error
In parallel with the ARIMA model, exponential smoothing methods offer another

valuable approach to time series forecasting. Developed by Brown [104], an exponential
smoothing model relies on a simple yet powerful methodology that assigns greater weight
to recent values, effectively capturing current trends and seasonality. It is particularly
advantageous for long-time series characterized by cyclical variations, seasonality, or
abrupt changes.
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Successful application of this method requires precise parameterization. The coeffi-
cients α (level), β (trend), and Ft+m (forecast for the next step) are iteratively calibrated to
minimize forecast errors (4)–(6).

St = αyt + (1 − α)(St−1 + bt−1) (4)

bt = β(S t − St−1) + (1 − β)bt−1 (5)

Ft+m = St + mbt (6)

yt—the observed value at time t;
St—the smoothed value for the level at time t;
bt—the estimated trend at time t;
α—the smoothing parameter for the level;
β—the smoothing parameter for the trend;
Ft+m—the forecasted value for m steps ahead of time t.
By fine-tuning these parameters, the method adapts to changes in the time series,

delivering accurate and relevant predictions.
The ARIMA and Brown’s exponential smoothing models are reliable tools for time

series analysis, each with strengths custom-made to specific contexts. While the ARIMA
model is particularly effective when capturing recent data trends is decisive, exponential
smoothing models long-term relationships. Both methods find applications across various
domains, supporting informed decision-making based on rigorous forecasts.

The following section presents the results derived from the applied models and hy-
potheses investigations, providing a deeper understanding of the influence of digitalization
on agricultural performance.

4. Results
Examining hypothesis H1 involved leveraging artificial neural network analysis to

establish relationships among the model variables. The input layer comprises independent
variables that feed into the model: DESI (digital economy and society index) and RGDPpc
(real gross domestic product per capita). These variables connect to the hidden layer
units through weights adjusted during training. The input layer also includes a bias term,
enabling the network to capture more complex relationships.

The hidden layer contains two units (neurons): H(1:1) and H(1:2). These units are
responsible for capturing nonlinear relationships between inputs and outputs. H(1:1) may
represent the direct effects of digitalization on labor productivity and agricultural output,
while H(1:2) might reflect indirect influences, such as improved agricultural infrastructure.
The output layer features two dependent variables: RLPpp (real labor productivity per
person) and AGROUT (agricultural output). The model summary shows that the training
and testing phases of MLP exhibit robust performance (Table 2).

Table 2. Model Summary.

Phase Indicators Values

Training

Sum of squares error 0.058
Average overall relative error 0.021

Relative error for scale
Dependents

RLPpp 0.024
AGROUT 0.019

Stopping rule used Training error ratio criterion (0.001)
achieved

Training time 0:00:00.00
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Table 2. Cont.

Phase Indicators Values

Testing

Sum of squares error 0.018
Average overall relative error 0.009

Relative error for scale
Dependents

RLPpp 0.008
AGROUT 0.010

Source: author’s design using SPSS v.27 (IBM Corporation, Armonk, NY, USA).

Figure 1 illustrates the relationships within the MLP model, while Table 3 presents the
estimated parameters of the model.
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Table 3. Parameter estimates.

Predictor

Predicted

Hidden Layer 1 Output Layer

H(1:1) H(1:2) RLPpp AGROUT

Input layer
(Bias) −0.175 0.671
DESI 1.353 2.136

RGDPpc 0.323 0.856

Hidden
layer 1

(Bias) 0.723 −0.506
H(1:1) 1.100 0.784
H(1:2) 1.715 1.730

Source: author’s design using SPSS v.27 (IBM Corporation, Armonk, NY, USA).

Input terms with weights of 1.353 influence the H(1:1) unit for the DESI and 0.323 for
RGDPpc and a bias contribution of −0.175. Similarly, H(1:2) receives inputs weighted at
2.136 for the DESI and 0.856 for RGDPpc, with a bias of 0.671. RLPpp is affected by the
hidden units with weights of 1.100 for H(1:1) and 1.715 for H(1:2), accompanied by a bias
of 0.723. These values indicate that both hidden units play a significant role in determining
labor productivity. AGROUT is similarly influenced by H(1:1) and H(1:2), with weights of
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0.784 and 1.730, respectively, and a bias of −0.506. These values underscore the significant
contribution of the hidden layer to estimating agricultural output.

The model structure reveals how the complex relationships among digitalization,
economic growth, labor productivity, and agricultural output are captured and processed
within the neural network layers. The results highlight a positive relationship between
the DESI and the output variables AGROUT and RLPpp, suggesting that digitalization
drives productivity and agricultural output. Farmers can more effectively monitor crops,
optimize resource use, and reduce losses by adopting AI, IoT, agricultural drones, and
crop management software. Furthermore, economic growth, measured through RGDPpc,
facilitates access to these technologies, creating a conducive environment for sustainable
agricultural development.

Hypothesis H1 asserts that the evolution of digitalization, as measured using the
DESI, exerts a significant positive influence on the future trajectory of agricultural output.
Validating this hypothesis carries important implications for both research and public
policy. On the one hand, it emphasizes how important digitalization is for promoting
sustainable agriculture and economic prosperity, setting the stage for more research into the
precise mechanisms in which it works. However, to optimize the benefits of digitization for
agriculture, it highlights the necessity of funding rural digital infrastructure and enhancing
farmers’ digital literacy.

Investigating hypothesis H2 required the application of predictive models (Brown
and ARIMA) to forecast trends in the study variables over future periods. The first step
involved identifying variable trends based on past developments.

The predictive models using Brown’s exponential smoothing approach revealed a
consistent upward trend for RGDPpc and RLPpp. This analysis used historical data from
2001 to 2022 and provided projections for 2023–2028, highlighting economic growth stability
and sustained productivity improvements.

For RLPpp, the smoothing coefficient Alpha (0.461) was statistically significant
(p < 0.001), demonstrating that the model balanced the influence of recent and older data
points. Similarly, the Alpha coefficient for RGDPpc (0.427) was also statistically significant
(p < 0.001), reflecting an equally distributed impact of historical and recent trends on the
forecasted trajectory. The fit statistics underline the robustness and reliability of the Brown
model in capturing trends and providing accurate predictions for the variables analyzed
(Table 4).

Both the stationary R-squared and R-squared values average of 0.930 indicate high
explanatory power and a strong ability of the model to capture the variation in the data.
The RMSE (root mean square error) and MAE (mean absolute error) values highlight the
precision of the model’s predictions, with relatively low average error measures. The
MAPE (mean absolute percentage error) value of 2.013% confirms the model’s accuracy in
predicting outcomes, reflecting minimal deviation from actual values. While MaxAPE and
MaxAE values show some higher extremes, these are likely outliers and do not diminish
the overall model reliability. The normalized BIC value suggests that the model balances fit
quality and complexity well.

RLPpp forecasts indicate steady growth from 116.96 in 2023 to 125.10 in 2028, signaling
continuous improvements in labor productivity. Technological advancements, enhanced
human resource efficiency, and modernized economic practices will likely drive these
improvements. This upward dynamic suggests a favorable framework for long-term
economic growth.
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Table 4. Brown models parameters for RGDPpc and RLPpp depending on the previous annual evolution.

Model Estimate SE t Sig.

RLPpp-Model_1 No transformation Alpha (level and trend) 0.461 0.093 4.979 0.000

RGDPpc-Model_2 No transformation Alpha (level and trend) 0.427 0.090 4.742 0.000

Model fit

Fit statistic Mean SE Min Max
Percentile

5 10 25 50 75 90 95

Stationary R-squared 0.930 0.066 0.883 0.977 0.883 0.883 0.883 0.930 0.977 0.977 0.977
R-squared 0.930 0.066 0.883 0.977 0.883 0.883 0.883 0.930 0.977 0.977 0.977

RMSE 307.906 431.740 2.620 613.192 2.620 2.620 2.620 307.906 613.192 613.192 613.192
MAPE 2.013 0.247 1.839 2.188 1.839 1.839 1.839 2.013 2.188 2.188 2.188

MaxAPE 6.520 3.301 4.186 8.854 4.186 4.186 4.186 6.520 8.854 8.854 8.854
MAE 241.548 338.958 1.869 481.227 1.869 1.869 1.869 241.548 481.227 481.227 481.227

MaxAE 562.975 786.323 6.961 1118.989 6.961 6.961 6.961 562.975 1118.989 1118.989 1118.989
Normalized BIC 7.663 7.715 2.207 13.118 2.207 2.207 2.207 7.663 13.118 13.118 13.118

Source: author’s design using SPSS v.27 (IBM Corporation, Armonk, NY, USA).
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Projections for RGDPpc demonstrate consistent growth, from 29452 euro per capita in
2023 to 31605 euro per capita in 2028. These values reflect sustained economic expansion,
implying a robust macroeconomic environment with strong adaptability to evolving factors.
RGDPpc growth underscores a macroeconomic context where investments and public
policies support steady development.

Figure 2 and Table A1 in Appendix A present detailed projections for RGDPpc and
RLPpp using exponential smoothing.
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These forecasts emphasize the ongoing importance of investing in technology and
human capital development as key drivers of economic performance and productivity.
Furthermore, they highlight the necessity of balancing stability with innovation to support
sustainable and competitive growth.

The ARIMA models for the DESI and AGROUT variables, based on data from 2017 to
2022, provided significant insights into digitalization and agricultural performance over the
2023–2028 forecast period. For the DESI, the model suggested an average annual growth
of approximately 3.62, supported by statistically significant trends, reflecting the steady
progress of digitalization. The model’s negative constant (−7266.648) is an adjusted starting
point, with the year coefficient indicating an upward trajectory.

AGROUT forecasts based on the ARIMA model showed an average annual growth
of approximately €23,038 million, supported by statistically significant year coefficients.
Although the model’s negative constant (−46,079,931.086) might appear counterintuitive,
the positive long-term trend is far more relevant. The ARIMA models provide reliable
results, effectively capturing temporal patterns and offering meaningful predictions for the
DESI and AGROUT depending on the previous annual evolution. (Table 5).
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Table 5. ARIMA models parameters for DESI and AGROUT depending on the previous annual evolution.

Model Estimate SE t Sig.

DESI-
Model_1

DESI No transformation Constant −7266.648 719.199 −10.104 0.001
Year No transformation Numerator Lag 0 3.619 719.199 −10.104 0.001

AGROUT-
Model_2

AGROUT No transformation Constant −46,079,931.086 15,748,772.572 −2.926 0.043
Year No transformation Numerator Lag 0 23,037.691 7798.482 2.954 0.042

Model Fit

Fit statistic Mean SE Min Max
Percentile

5 10 25 50 75 90 95

Stationary R-squared 0.824 0.196 0.686 0.963 0.686 0.686 0.686 0.824 0.963 0.963 0.963
R-squared 0.824 0.196 0.686 0.963 0.686 0.686 0.686 0.824 0.963 0.963 0.963

RMSE 16,312.229 23,066.869 1.490 32,622.969 1.490 1.490 1.490 16,312.229 32,622.969 32,622.969 32,622.969
MAPE 3.742 1.705 2.536 4.948 2.536 2.536 2.536 3.742 4.948 4.948 4.948

MaxAPE 6.294 3.199 4.032 8.555 4.032 4.032 4.032 6.294 8.555 8.555 8.555
MAE 11,327.328 16,017.760 1.061 22,653.595 1.061 1.061 1.061 11,327.328 22,653.595 22,653.595 22,653.595

MaxAE 21,581.467 30,518.222 1.825 43,161.108 1.825 1.825 1.825 21,581.467 43,161.108 43,161.108 43,161.108
Normalized BIC 11.389 14.134 1.395 21.383 1.395 1.395 1.395 11.389 21.383 21.383 21.383

Source: author’s design using SPSS v.27 (IBM Corporation, Armonk, NY, USA).
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The ARIMA model fit statistics indicate a solid performance in capturing the data
dynamics. The stationary R-squared and R-squared values average 0.824, demonstrating
a substantial ability to explain variability within the dataset. The RMSE and MAE val-
ues show the model’s predictive precision, although higher than in some other models,
reflecting variability in the data.

The MAPE value of 3.742% suggests that the ARIMA model maintains a reasonable
level of accuracy in predictions, with deviations remaining within acceptable limits.

The DESI is projected to increase from 54.07 in 2023 to 72.16 in 2028, indicating
accelerated digital transformation with potentially significant impacts across economic
sectors, including agriculture. AGROUT forecasts predict growth from 525317 million euros
in 2023 to 640506 million euros in 2028, reflecting gradual improvements in agricultural
output. This growth may stem from modernized agricultural technologies and direct
digitalization effects.

Figure 3 and Table A1 in Appendix A illustrate RGDPpc and RLPpp projections using
ARIMA models.
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The DESI’s growth indicates widespread adoption of digital technologies, which
optimize agricultural processes, reduce operational costs and improve yields.

ARIMA models exploring the influence of the DESI on AGROUT and RLPpp reveal
positive impacts of digitalization on agricultural performance and labor productivity for
the 2023–2028 forecast period. For AGROUT, the DESI coefficient (6911.650), statistically
significant (p = 0.010), shows that each additional DESI unit correlates with an approximate
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6912 million euros increase in agricultural output. These values underscore the substantial
role of digital transformation in agriculture. The model constant (158,519.754) reflects a
baseline level of agricultural output, adjusted for other variables.

For RLPpp, the DESI coefficient (0.460) indicates a statistically significant positive
relationship (p = 0.047), with each DESI unit contributing approximately 0.46 to RLPpp. This
finding highlights how digitalization enhances economic activities and labor productivity
in agriculture and related sectors. The constant (92.403) denotes the adjusted baseline
for labor productivity. The ARIMA models provide reliable results, effectively capturing
temporal patterns and offering meaningful predictions for AGROUT and RLPpp depending
on the DESI’s evolution. (Table 6).

Table 6. ARIMA models parameters for AGROUT and RLPpp depending on the DESI’s evolution.

Model Estimate SE t Sig.

AGROUT-
Model_1

AGROUT No transformation Constant 158,519.754 63,269.269 2.505 0.066
DESI No transformation Numerator Lag 0 6911.650 1510.735 4.575 0.010

RLPpp-
Model_2

RLPpp No transformation Constant 92.403 6.777 13.634 0.000
DESI No transformation Numerator Lag 0 0.460 0.162 2.842 0.047

Model Fit

Fit statistic Mean SE Min Max
Percentile

5 10 25 50 75 90 95

Stationary R-squared 0.754 0.121 0.669 0.840 0.669 0.669 0.669 0.754 0.840 0.840 0.840
R-squared 0.754 0.121 0.669 0.840 0.669 0.669 0.669 0.754 0.840 0.840 0.840

RMSE 11,655.607 16,479.987 2.497 23,308.718 2.497 2.497 2.497 11,655.607 23,308.718 23,308.718 23,308.718
MAPE 2.690 1.331 1.749 3.632 1.749 1.749 1.749 2.690 3.632 3.632 3.632

MaxAPE 4.480 2.496 2.715 6.245 2.715 2.715 2.715 4.480 6.245 6.245 6.245
MAE 8216.568 11,617.224 1.950 16,431.186 1.950 1.950 1.950 8216.568 16,431.186 16,431.186 16,431.186

MaxAE 13,123.967 18,555.744 3.075 26,244.860 3.075 3.075 3.075 13,123.967 26,244.860 26,244.860 26,244.860
Normalized BIC 11.569 12.928 2.427 20.710 2.427 2.427 2.427 11.569 20.710 20.710 20.710

Source: author’s design using SPSS v.27 (IBM Corporation, Armonk, NY, USA).

The ARIMA model fit summary indicates a strong ability to capture data variability, as
evidenced by the stationary R-squared and R-squared values averaging 0.754. These values
reflect a high level of explanatory power and consistency across predictions. The RMSE
and MAE values highlight the model’s accuracy, with moderate deviations in absolute
terms, while the MAPE of 2.69% suggests that the model maintains a reliable degree of
predictive precision relative to the magnitude of the data. The MaxAPE and MaxAE values
point to occasional more significant deviations, which could arise from specific anomalies
or high-variability observations. The normalized BIC score suggests a reasonable trade-off
between model complexity and goodness-of-fit.

AGROUT forecasts show steady growth from approximately 532,226 million euros in
2023 to 657,283 million euros in 2028. This upward trend reflects ongoing improvements
in agricultural output, mainly attributable to digital technology adoption. Digitalization
improves production efficiency, optimizes resource use, and reduces losses, enabling the
agricultural sector to meet market demands better.

For RLPpp, the forecasts show gradual growth in labor productivity, from 117.27 in
2023 to 125.59 in 2028. This trend reflects consistent progress supported by increasing
levels of digitalization. Implementing digital technologies facilitates better use of labor and
resources, enhancing efficiency and reducing the time required for various operations.

Figure 4 and Table A1 in Appendix A present projections for RGDPpc and RLPpp
using ARIMA models.

The findings illustrate that digitalization, measured using the DESI, is fundamental in
determining agricultural output and labor productivity. The DESI’s growth signals not just
technological modernization but also the creation of a more competitive and sustainable
agricultural environment.
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For the 2023–2028 period, agriculture and labor productivity are expected to show pos-
itive dynamics as digitalization continues to expand and transform traditional operational
models. These results highlight the importance of policies supporting digital technology
adoption, particularly in rural areas, to fully capitalize on their potential to drive economic
development and agricultural sustainability.

ARIMA models based on RGDPpc as an independent variable reveal trends and
demonstrate how economic growth influences agricultural output and labor productivity
during the 2023–2028 forecast period.

For AGROUT-Model_1, the RGDPpc coefficient is positive (0.034) and marginally signifi-
cant (p = 0.051). These values suggest a modest relationship between overall economic growth
and agricultural output, indicating that improvements in per capita GDP contribute positively
but not decisively to agricultural progress. The negative constant (−299.408) is insignificant.

RLPpp-Model_2’s RGDPpc coefficient is not statistically significant (p = 0.311), suggest-
ing a weaker link between GDP per capita and labor productivity. However, the constant
(7.631) is significant (p = 0.039), indicating an underlying influence on labor productivity
potentially driven by additional unmodeled factors. ARIMA models provide a functional
but not highly precise representation of the data, making it a suitable tool for capturing
general patterns (Table 7).
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The ARIMA model fit summary reflects a moderate level of predictive accuracy.
The stationary R-squared and R-squared values, averaging around 0.45, indicate that the
model captures nearly half of the variability in the data, suggesting room for improvement
in explanatory power. The MAPE value of 3.876% demonstrates acceptable predictive
accuracy, while the MaxAPE and MaxAE highlight occasional more significant deviations,
likely reflecting outliers or high variability within specific data points. The normalized BIC
values suggest that the model maintains a balance between complexity and fit, though they
imply that simpler models may also be explored.

For AGROUT, forecasts predict steady growth from approximately 512,020 million
euros in 2023 to 623,569 million euros in 2028. This upward trend reflects the gradual
consolidation of agricultural output, facilitated by digital technology integration and GDP
per capita growth. RLPpp forecasts indicate slow but steady labor productivity growth,
from 114.62 in 2023 to 119.48 in 2028. This modest increase likely stems from technological
advancements and overall economic conditions.

Figure 5 and Table A1 in Appendix A present projections for RGDPpc and RLPpp
using ARIMA models.
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Table 7. ARIMA models parameters for AGROUT and RLPpp depending on the RGDPpc.

Model Estimate SE t Sig.

AGROUT-
Model_1

AGROUT Square root Constant −299.408 349.314 −0.857 0.440
RGDPpc No transformation Numerator Lag 0 0.034 0.012 2.765 0.051

RLPpp-
Model_2

RLPpp Square root Constant 7.631 2.526 3.021 0.039
RGDPpc No transformation Numerator Lag 0 0.000 0.00009 1.158 0.311

Model Fit

Fit statistic Mean SE Min Max
Percentile

5 10 25 50 75 90 95

Stationary
R-squared 0.454 0.287 0.251 0.656 0.251 0.251 0.251 0.454 0.656 0.656 0.656

R-squared 0.462 0.294 0.254 0.670 0.254 0.254 0.254 0.462 0.670 0.670 0.670
RMSE 16,721.637 23,642.667 3.747 33,439.527 3.747 3.747 3.747 16,721.637 33,439.527 33,439.527 33,439.527
MAPE 3.876 2.092 2.397 5.355 2.397 2.397 2.397 3.876 5.355 5.355 5.355

MaxAPE 5.851 3.016 3.718 7.983 3.718 3.718 3.718 5.851 7.983 7.983 7.983
MAE 12,085.466 17,087.700 2.637 24,168.295 2.637 2.637 2.637 12,085.466 24,168.295 24,168.295 24,168.295

MaxAE 20,453.780 28,920.389 3.977 40,903.583 3.977 3.977 3.977 20,453.780 40,903.583 40,903.583 40,903.583
Normalized BIC 12.336 12.864 3.239 21.432 3.239 3.239 3.239 12.336 21.432 21.432 21.432

Source: author’s design using SPSS v.27 (IBM Corporation, Armonk, NY, USA).
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Overall, the results suggest that GDP per capita plays a moderate role in influencing
agricultural output, while its impact on labor productivity is less pronounced. For the
2023–2028 period, stable agricultural expansion and modest labor productivity growth are
anticipated. These trends reveal untapped potential that could be unlocked through more
targeted policies and increased investment in digitalization.

The analysis of RLPpp and AGROUT forecasts across three scenarios based on annual
evolution, RGDPpc, and DESI trends reveals significant differences among these predictive
models. These differences provide insights into the determinants and allow evaluation of
hypothesis H2’s validity.

For RLPpp, consistent growth across all scenarios is evident (Figure 6).
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However, DESI-based projections systematically exceed those derived from RGDPpc
or annual trends. For instance, in 2023, labor productivity per person projected using the
DESI is 117.27, compared to 114.62 based on RGDPpc. This gap widens by 2028, with
the DESI forecasting a productivity level of 125.59 versus 119.48 from the RGDPpc model.
This discrepancy suggests that digitalization is central to enhancing labor productivity,
supporting the hypothesis that the DESI has a significant positive influence.

For AGROUT, scenario differences are even more pronounced (Figure 7).
DESI-driven projections indicate significantly higher total agricultural output than

those based on RGDPpc or annual trends. For example, in 2023, the DESI-based projection
estimates 532,225.79 million euros compared to 512,020.3 million euros using RGDPpc. By
2028, the DESI-based projection estimates agricultural output at 657,283.23 million euros,
over 33,000 million euros higher than the RGDPpc-based projection.

These findings highlight digitalization’s more substantial and direct influence on
agricultural performance. Comparing the two variables, digitalization’s impact is more
pronounced for total agricultural output than labor productivity. Nonetheless, the DESI con-
sistently demonstrates a significant positive effect, confirming that technological progress
and digital integration yield substantial benefits.

This analysis validates hypothesis H2, reinforcing that digitalization stimulates pro-
duction growth and enhances agricultural resource use efficiency. The results suggest that
digitalization, as captured by the DESI, is a key catalyst for agricultural development, posi-
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tively impacting output and productivity. In a context where sustainability and efficiency
are increasingly indispensable, adopting digital technologies emerges as a fundamental
strategy for the future of agriculture.
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5. Discussion
Digital agriculture has emerged as a transformative approach to agricultural pro-

duction, leveraging advanced technologies to optimize farming practices and enhance
sustainability. By fostering knowledge sharing and promoting the exchange of best prac-
tices among farmers, digital agriculture addresses critical societal concerns such as ensuring
food security, reducing inequalities in access to technology, and enhancing resource effi-
ciency. This transformative potential, underpinned by integrating technologies like sensors,
drones, and artificial intelligence (AI), redefines agricultural processes.

Research has extensively explored the role of data-driven decision-making and big
data analytics in precision agriculture. These tools enable farmers to make informed
and efficient choices, underpinned by the continuous monitoring and analysis of critical
data on soil, climate, crop health, and resource use [105–109]. Technologies like soil
and air sensors allow real-time tracking of crop health and environmental conditions,
enabling timely interventions. Concurrently, AI-driven software analyzes vast datasets,
providing precise forecasts regarding fertilizer requirements, crop behavior, and water
management [110–112]. Such advancements illustrate the practical applications of digital
agriculture, such as optimizing irrigation schedules or customizing nutrient applications,
which directly enhance productivity and sustainability.

The study’s findings confirm hypothesis H1, demonstrating that digitalization signifi-
cantly and positively impacts agricultural output. The relationships between the digital
economy and society index (DESI), RGDPpc, and output variables such as labor produc-
tivity (RLPpp) and agricultural output (AGROUT) were explained using artificial neural
networks. These findings align with existing literature, underscoring the transformative po-
tential of Agriculture 4.0 in enhancing sustainability and efficiency within the agricultural
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sector [50,52]. Advanced technologies, including IoT, AI, and robotics, facilitate resource
optimization, waste reduction, and improved resilience to climate change [113,114]. For ex-
ample, IoT-based systems enable farmers to monitor soil moisture levels remotely, reducing
water wastage while maintaining optimal crop conditions.

This study also highlights the synergistic effects of digitalization when combined
with economic variables such as RGDPpc. These results resonate with other studies that
emphasize the necessity of financial and technological resources for the widespread adop-
tion of Agriculture 4.0 [5,61]. However, the literature also identifies significant challenges,
including unequal access to technology, high costs, and potential ecological risks [25,115].
Addressing these barriers is crucial to realizing the full potential of digitalization. Imple-
menting well-designed public policies that promote equitable access to digital technologies
and prioritize ecological sustainability is essential for ensuring inclusive benefits across
different regions and demographics.

The results of this study not only validate hypothesis H1 but also contribute to the
broader discourse on leveraging Agriculture 4.0 as a strategic tool for agricultural trans-
formation. Digitalization represents both an opportunity and a responsibility, offering a
pathway to a more efficient, resilient, and accountable agricultural sector. For instance, pro-
grams like digital extension services can bridge the knowledge gap by providing farmers
with customized advice and real-time solutions tailored to their contexts.

The findings related to hypothesis H2 further reinforce the transformative role of
digitalization in contemporary agriculture. Recent studies corroborate the increasing in-
fluence of digital technologies on agricultural output and labor productivity, highlighting
their capacity to optimize processes and deliver substantial economic benefits [116]. These
advancements improve operational efficiency and enhance production quality and quan-
tity through minimized losses and more sustainable resource utilization. For example,
Chandio [117] illustrates the role of real-time meteorological data in enhancing cereal
yields in China, while Weltin et al. [118] and Symeonaki et al. [119] document the eco-
nomic advantages of digital technologies for farmers, showcasing both immediate and
long-term benefits. These findings are consistent with the study’s results, which reveal that
the impact of digitalization surpasses traditional determinants like economic growth and
annual trends.

Nevertheless, the benefits of digitalization are not uniformly distributed. Many tech-
nologies are still in developmental stages and face significant challenges in application,
particularly in regions with limited digital resources or technological expertise. Trujillo-
Barrera et al. [120] and Chinseu et al. [121] emphasize the need for localized adaptations
and continuous refinements of emerging technologies to ensure their effectiveness. Further-
more, Visser et al. [122] highlight the risks associated with immature technologies, which
may underperform or fail under specific conditions.

Adopting digital solutions also depends on effectively communicating their benefits
to farmers. Studies by Murendo et al. [123], Dinesh et al. [124], and Kalfas et al. [29]
underscore the importance of efficient information dissemination and ongoing dialogue
between farmers and experts. For example, farmer field schools and participatory training
programs can enhance the understanding and adoption of digital tools, fostering confidence
in their practical utility. Moreover, access to technical support and applicable knowledge
facilitates the transition to modern digital practices [125].

The findings related to hypothesis H2 validate the critical role of digitalization as
a catalyst for agricultural development while highlighting the complexities involved in
its implementation. The successful adoption of digital technologies hinges on factors
such as government support, farmer education, and the development of appropriate
infrastructure. Addressing these prerequisites is essential for ensuring that the advantages



Agriculture 2025, 15, 258 23 of 31

of digitalization are equitably accessible and that its long-term impact on agriculture is
maximized. Investments in rural broadband connectivity can significantly reduce the digital
divide, enabling farmers in remote areas to benefit from advanced technologies. These
insights contribute to a more nuanced understanding of digitalization’s role in agriculture,
emphasizing the need for a collaborative, inclusive, and forward-looking approach to
harness its transformative potential.

The discussion of these results sets the stage for exploring the broader implications,
particularly how digital transformation can be leveraged to improve agricultural produc-
tivity and sustainability.

6. Implications and Limitations
6.1. Theoretical Implications

This research offers valuable insights into the relationship between digitalization and agri-
cultural performance, building on existing perspectives on the transformation of agricultural
systems. By confirming the positive influence of digitalization, as measured using the DESI, on
labor productivity and total agricultural output, this study highlights the importance of inte-
grating digital technologies into theoretical models explaining modern agricultural dynamics.
This study bridges theoretical constructs with practical applications by including real-world
examples, such as the impact of IoT on resource optimization and AI on predictive analytics.
This contribution adds a new dimension to the literature, emphasizing digitalization’s role as
a key driver in creating a more resilient and sustainable agricultural system.

The research supports the European vision of agriculture transformed through digitaliza-
tion, aligning with the European Green Deal and the Farm to Fork strategy. These political
initiatives advocate for harmonizing economic, ecological, and social objectives. The findings
demonstrate how digitalization can become a cornerstone in achieving this balance, providing
a theoretical lens to understand how technology integration addresses global priorities such as
environmental protection, inequality reduction, and food security assurance. This perspective
underscores digitalization as a tool and a platform for systemic transformation.

This study also redefines traditional understandings of agricultural productivity and
performance by proposing an approach where technological progress acts as a transforma-
tive force. By embedding digitalization into theoretical models of agriculture, the research
creates an analytical framework that explains not only economic growth but also adaptation
processes to climate change and global resource pressures. The theoretical implications
extend beyond the conventional economic paradigms, providing an understanding of how
digital innovations facilitate a more adaptive and resilient agricultural sector.

Therefore, this research contributes to expanding modern agricultural theory, fore-
grounding a paradigm where digitalization is both a driver of change and a necessary
condition for shaping a sustainable, adaptable, and inclusive agricultural future. It en-
courages a reconfiguration of theoretical thinking, emphasizing the importance of a global
perspective that integrates technology, policy, and sustainability into a unified vision for
agricultural development.

6.2. Practical Implications

As the world faces rapid population growth and mounting pressures on natural re-
sources, this paper provides valuable insights into reshaping agricultural practices through
digitalization. The research findings underscore the significant influence of digital tech-
nologies on agricultural performance, particularly in labor productivity and output growth.
These results highlight that digitalization is no longer an optional innovation but a strategic
necessity for the future of agriculture.
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The study confirms that agricultural digitalization is a cornerstone of Agriculture 4.0, a
concept that redefines agricultural production through integrated and sustainable solutions.
For instance, real-time meteorological data and AI-based analytics enable farmers to opti-
mize irrigation and fertilizer, leading to substantial productivity gains. This transformation
enhances efficiency and productivity and revitalizes rural communities, yielding significant
economic and social benefits. Furthermore, digital technologies facilitate better market
access, transparency in supply chains, and reduced resource wastage, addressing some of
the most pressing challenges in global agriculture.

Overall, engaging in the digitalization of agriculture represents an investment in
the future, capable of redefining sustainability and food security globally. This strategic
direction is decisive for addressing the growing demands for food production and building
an agricultural system capable of withstanding economic and environmental uncertainties
while offering sustainable solutions for future generations. Practical steps (expanding
rural broadband infrastructure and providing digital education for farmers) are essential to
ensure these benefits are accessible to all.

6.3. Limitations and Further Research

Although the results confirm the hypothesis that digitalization significantly influences
agricultural performance, this study does not encompass all aspects or fully explain the
interdependencies among the analyzed factors.

One limitation pertains to the data used, which, while relevant and current, do not
capture the full spectrum of regional and national variability in digitalization levels and
agricultural contexts. Each region has unique characteristics regarding available resources,
digital infrastructure, and public policies, which can impact how digitalization contributes
to agricultural performance. Expanding the analysis to include more regions and a broader
range of contextual variables could provide more generalizable conclusions.

Furthermore, the dynamic nature of digital technologies poses methodological chal-
lenges. Rapid technological advancements can render some models outdated in a short
time frame. The research utilized data available at the time from Eurostat and the European
Commission’s DESI database.

Another limitation is the difficulty of isolating digitalization’s effects from other
determinants of agricultural performance, such as agricultural policies, climate change, or
global market dynamics. While the methodology attempts to account for these factors by
identifying biases, their influences cannot be excluded. Developing more complex models
that integrate a wider range of variables and account for their interactions could improve
understanding of the mechanisms through which digitalization impacts agriculture.

The research focuses on temporal relationships and does not include a detailed causal-
ity test between digitalization, measured using the DESI, and agricultural indicators such
as labor productivity or agricultural output. Although the models, such as the ARIMA
model and artificial neural networks, allow for trend estimation and predictions, they
cannot provide definitive evidence of causal relationships. Future research could benefit
from complementary approaches, such as structural econometric models, to further explore
the causal mechanisms between digitalization and agricultural performance.

A notable limitation of this study lies in its reliance on time series analysis, which, while
effective for capturing temporal dynamics, does not account for potential cross-sectional
heterogeneity across regions or countries. This approach may limit the generalizability of
the findings to broader contexts, as it focuses solely on temporal relationships without ex-
ploring structural variations. Future research could address this limitation by incorporating
panel data analysis into the methodological framework. By combining temporal and cross-
sectional dimensions, such studies could provide a more nuanced understanding of how
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digitalization impacts agricultural performance across diverse regions or countries. This
multidimensional perspective would enable more robust and comprehensive conclusions,
enhancing the relevance and applicability of the results in varied contexts.

The analysis focuses on the general impact of digitalization on the agricultural sector
without exploring in detail the effects of digital technologies on different agricultural sub-
sectors, such as crop farming, livestock, or aquaculture. Future research can address these
sub-sectors in greater detail, exploring the digital transformations across various areas of
agriculture and providing a more comprehensive understanding of their impact on the
agricultural sector. Furthermore, analyzing the relationship between digitalization and
agricultural sustainability could provide significant insights, particularly in transitioning
to more environmentally friendly farming practices.

The study emphasizes the need for interdisciplinary approaches that combine eco-
nomic, technological, and social perspectives to create an integrated understanding of
agricultural transformation. Such an approach promises to support the formulation of
more effective policies tailored to the agricultural sector’s needs.

7. Conclusions
This research addresses current global challenges, including increasing food demand,

resource pressures, and the need to modernize agriculture. It highlights the essential role of
digitalization in transforming the agricultural sector into a more sustainable, resilient, and
future-oriented system. The findings validate the hypothesis that technological progress, mea-
sured through the DESI, significantly influences agricultural productivity and labor efficiency.

Digitalization emerges not just as a tool for economic growth but as a strategic factor
capable of redefining traditional agricultural practices, making them more adaptable to
current challenges. In a global context marked by growing resource pressures, climate
change, and stringent market demands, adopting digital technologies in agriculture is no
longer an option but a necessity. Through an analysis of DESI effects, this paper highlights
the substantial contributions digitalization can make to enhancing economic returns and
the sustainability of agriculture.

The study also provides a solid theoretical foundation for understanding the rela-
tionship between technology and agriculture, complementing the existing literature with
relevant data and conclusions. Only an integrated approach can lead to an effective transi-
tion to agriculture that produces more and does so responsibly toward the environment and
society, emphasizing the role of digitalization in shaping a sustainable future for agriculture.
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List of Acronyms

Acronym Definition
DESI digital economy and society index
GDP gross domestic product
AGROUT agricultural output
RGDPpc real GDP per capita
RLPpp real labor productivity per person
IoT Internet of Things
AI artificial intelligence
ANN artificial neural network
ARIMA autoregressive integrated moving average

Appendix A

Table A1. Historical and future trends.

Historical Trend

Forecasts Depending
on the Previous

Annual Evolution
Using ARIMA

Forecasts Depending
on the Previous

Annual Evolution
Using Brown

Forecasts Depending on RGDPpc and DESI
Using ARIMA Model

Year DESI RGDPpc AGROUT RLPpp Predicted
DESI

Predicted
AGROUT

Predicted
RGDPpc

Predicted
RLPpp

Predicted
AGROUT/
RGDPpc

Predicted
AGROUT/

DESI

Predicted
RLPpp/

RGDPpc

Predicted
RLPpp/
DESI

2001 - 23,020 - 61.282 - - - - - - - -

2002 - 23,220 - 68.158 - - - - - - - -

2003 - 23,340 - 67.022 - - - - - - - -

2004 - 23,850 - 78.623 - - - - - - - -

2005 - 24,220 - 73.946 - - - - - - - -

2006 - 25,000 - 76.091 - - - - - - - -

2007 - 25,690 - 77.587 - - - - - - - -

2008 - 25,760 - 82.686 - - - - - - - -

2009 - 24,610 - 85.315 - - - - - - - -

2010 - 25,100 - 85.325 - - - - - - - -

2011 - 25,540 - 90.979 - - - - - - - -

2012 - 25,310 - 86.751 - - - - - - - -

2013 - 25,280 - 91.477 - - - - - - - -

2014 33.71595 25,660 385,805.88 98.166 - - - - - - - -

2015 35.92010 26,200 408,601.05 100.000 - - - - - - - -

2016 38.64427 26,660 413,419.03 103.635 - - - - - - - -

2017 41.66519 27,360 424,770.73 106.047 - - - - - - - -

2018 46.19966 27,870 420,250.13 107.132 - - - - - - - -

2019 52.27523 28,340 455,631.66 113.252 - - - - - - - -

2020 33.71595 26,790 545,440.94 112.699 - - - - - - - -

2021 35.92010 28,490 385,805.88 115.296 - - - - - - - -

2022 38.64427 29,300 408,601.05 114.253 - - - - - - - -

2023 - - - - 54.06900 525,317.52 29,452 116.958 512,020.3 532,225.79 114.62 117.27

2024 - - - - 57.68774 548,355.21 29,883 118.586 533,450.5 557,237.28 115.58 118.94

2025 - - - - 61.30649 571,392.90 30,313 120.215 555,320.4 582,248.77 116.55 120.60

2026 - - - - 64.92523 594,430.60 30,744 121.843 577,630.3 607,260.25 117.52 122.27

2027 - - - - 68.54397 617,468.29 31,174 123.471 600,379.9 632,271.74 118.5 123.93

2028 - - - - 72.16272 640,505.98 31,605 125.100 623,569.4 657,283.23 119.48 125.59
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