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Abstract: To better utilize multimodal information for agriculture applications, this paper 
proposes a cherry tomato bunch detection network using dual-channel cross-feature fu-
sion. It aims to improve detection performance by employing the complementary infor-
mation of color and depth images. Using the existing YOLOv8_n as the baseline frame-
work, it incorporates a dual-channel cross-fusion attention mechanism for multimodal 
feature extraction and fusion. In the backbone network, a ShuffleNetV2 unit is adopted to 
optimize the efficiency of initial feature extraction. During the feature fusion stage, two 
modules are introduced by using re-parameterization, dynamic weighting, and efficient 
concatenation to strengthen the representation of multimodal information. Meanwhile, 
the CBAM mechanism is integrated at different feature extraction stages, combined with 
the improved SPPF_CBAM module, to effectively enhance the focus and representation 
of critical features. Experimental results using a dataset obtained from a commercial 
greenhouse demonstrate that DCFA-YOLO excels in cherry tomato bunch detection, 
achieving an mAP50 of 96.5%, a significant improvement over the baseline model, while 
drastically reducing computational complexity. Furthermore, comparisons with other 
state-of-the-art YOLO and other object detection models validate its detection perfor-
mance. This provides an efficient solution for multimodal fusion for real-time fruit detec-
tion in the context of robotic harvesting, running at 52fps on a regular computer. 

Keywords: cherry tomato bunch detection; robotic harvesting; multimodal image; feature 
extraction; feature fusion; YOLO network 
 

1. Introduction 
With the aging of the global population and the increasing shortage of agricultural 

labor, modern agriculture is facing unprecedented challenges [1]. Against this backdrop, 
the rapid development of smart agricultural technology becomes an important driving 
force for promoting agricultural transformation. As a popular fruit, cherry tomatoes play 
an important role in global agricultural production due to their appeasing taste and rich-
ness in lycopene [2]. However, due to the small size and uneven distribution, their har-
vesting faces significant challenges. Existing mechanical picking equipment often misses 
fruits or mistakenly picks leaves because it is difficult to accurately identify the location 
of the fruit, making it difficult to effectively improve robotic harvesting efficiency and 
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quality. Therefore, developing efficient and intelligent identification and position detec-
tion for cherry tomatoes is the key to improving production efficiency and fruit quality. 

Fruit detection is one of the core components of fruit-harvesting robots [3]. In recent 
years, Deep Neural Networks (DNNs) have made significant progress in fruit detection. 
These algorithms no longer rely on manually designed features and can automatically 
learn complex patterns in images, effectively overcoming the limitations of traditional 
fruit detection methods when facing complex lighting and background interference. Ob-
ject detection methods based on deep learning are mainly divided into single-stage detec-
tion and two-stage detection. The single-stage detection directly regresses and predicts 
the bounding box of the target. Its advantages are a fast detection speed and high effi-
ciency, and it is one of the most widely used methods. Typical single-stage detection meth-
ods include the YOLO series and the SSD network [4–6]. For example, Lyu et al. improved 
the backbone network and loss function of YOLOv5 in YOLOv5-CS for the detection and 
counting of green citrus in orchard environment [7]. Wang et al. used ShuffleNet v2 as an 
improved backbone and introduced the CBAM attention mechanism to improve detection 
accuracy and reduce the model size [8]. Gai et al. improved YOLOv4 by combining it with 
DenseNet for the maturity detection of small tomatoes [9]. Zhao et al. achieved an accurate 
detection of grapes and picking points by improving YOLOv4, where the average preci-
sion of grape detection reached 93.27% [10]. Another popular single-stage detection 
method is the SSD model by Yuan et al. [11], who verified its performance on cherry to-
matoes using different backbone networks (VGG16, MobileNet, Inception V2). In addi-
tion, Fuentes-Peñailillo et al. proposed a seedling counting model that combines tradi-
tional image processing with MobileNet-SSD, achieving a maximal precision of 96% [12]. 
In contrast, two-stage detection processes candidate region extraction and classification in 
two steps. Although the detection speed is slower, it performs better in precision. Typical 
two-stage detection methods include the RCNN series [13–15] and SPPNet [16]. For ex-
ample, Hu et al. used Faster R-CNN combined with color space conversion and fuzzy set 
method to realize bounding box detection and the segmentation of tomatoes [17]. It per-
formed well in cases where the fruit edges were blurred or overlapped. Song et al. built a 
Faster R-CNN model based on VGG16 and achieved kiwifruit detection under different 
lighting conditions [18]. The average detection accuracy reached 87.61%. Gao et al. used 
Faster R-CNN to detect and classify apples under four different growth conditions, with 
an average precision of 87.9% [19]. 

Although single-modal visual data processing based on deep learning has made sig-
nificant progress in fruit detection, they still face many challenges in complex environ-
ments. First, single-modal methods (e.g., RGB only detection) are highly susceptible to 
illumination changes, occlusion, and background clutter, leading to insufficient detection 
accuracy and robustness. For instance, in low-light conditions or when fruits are partially 
occluded by leaves, the performance of these methods degrades significantly. Second, 
most existing models rely heavily on large-scale annotated datasets, which are labor-in-
tensive and time-consuming to acquire, especially for small and densely distributed fruits 
like cherry tomatoes. Third, while some studies have attempted to improve detection ac-
curacy by increasing model complexity, this usually comes at the cost of increased com-
putational cost, making them unsuitable for real-time applications, such as robotic har-
vesting. To address these issues, multimodal fusion has gradually become an important 
research direction to meet these challenges. Especially when picking, robots are usually 
equipped with multiple sensors, such as color and depth cameras. Fusing information 
from different modalities can not only improve the precision of fruit detection but also 
enhance the system’s ability to adapt to environmental changes. In recent years, multi-
modal methods combining color (RGB) and depth images have been widely used in fruit 
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detection and made remarkable progress. Tu et al. developed a fruit and maturity detec-
tion model using RGB-D images [20]. Their ablation experiment showed that the intro-
duction of depth improved the detection accuracy by 3.03%. Cui et al. proposed a single 
cherry tomato detection method that combines RGB-D inputs. The RGB image is con-
verted into the LAB color space and then fused with the depth map and normal vector 
map obtained from the point cloud as the inputs of an improved YOLOv7 to detect cherry 
tomatoes [21,22]. Similarly, Rong et al. optimized YOLOv5 by fusing RGB and depth im-
ages to improve the detection performance of cherry tomato clusters/bunches [23]. In ad-
dition, Kaukab et al. used multimodal data as the input of YOLOv5 and effectively re-
duced the impact of depth image noise via a deep fusion method of non-targeted back-
ground removal and achieved an precision of 96.4% for apple detection [24]. 

The fusion methods of multimodal images can be divided into three types, early fu-
sion, mid-term fusion, and late fusion, according to its introduction at different processing 
stages. In early-fusion methods, images from different modalities are directly integrated 
at the image level before being fed into the network. For example, Liu et al. significantly 
improved the average precision of kiwifruit detection to 90.7% by superimposing RGB 
and near-infrared images to form a four-dimensional tensor as the input of the VGG16 
[25]. However, this method is prone to pixel misalignment due to offset between images 
of different modalities. In contrast, late fusion linearly combines independent predictions 
at the decision stage. Sa et al. combined the detection results of RGB and NIR images in 
the last step of the shared feature extraction network Faster R-CNN and improved the 
detection accuracy from 81.6% to 83.8% [26], especially effective for fruits with similar 
colors, such as green peppers and melons. However, in late fusion, different modality fea-
tures cannot learn from each other, resulting in poor interactions between different net-
work branches. As a feature-level fusion method, mid-term fusion combines multimodal 
feature maps and can effectively balance the depth and efficiency of feature integration. 
For example, Wei et al. designed a multi-branch backbone network that includes color, 
infrared, and polarization image inputs [27]. By using operations such as feature connec-
tion, dimensionality reduction, and activation, they achieved higher target-recognition 
precision in complex environments. However, it also significantly reduces the inference 
speed. 

Despite the progress in multimodal fusion, several challenges remain unresolved. 
First, early-fusion methods often suffer from pixel misalignment due to the spatial offset 
between RGB and depth images, leading to inaccurate feature extraction. Second, late-
fusion methods lack effective interaction between modalities, as they process each modal-
ity independently until the final decision stage, which limits their ability to leverage com-
plementary information. Third, mid-term-fusion methods, while achieving better feature 
integration, often introduce high computational complexity, making them unsuitable for 
real-time applications such as robotic harvesting. Additionally, most existing multimodal 
fusion methods do not fully exploit the potential of attention mechanisms to enhance the 
saliency of critical features and suppress irrelevant information, which is crucial for im-
proving detection accuracy in complex environments. These limitations underscore the 
need for a more efficient and robust multimodal fusion approach that can address these 
challenges while maintaining real-time performance. 

In order to further optimize the performance of multimodal fusion, in recent years, 
researchers began to introduce attention mechanisms to highlight critical information and 
reduce the interference of irrelevant features. Woo et al. introduced self-learning weight 
parameters in the CBAM module, which effectively improves the weight of the region of 
interest and suppresses invalid features [28]. Li et al. proposed a solution using Dense-
Block combined with the attention mechanism to achieve image denoising when fusing 
RGB and NIR images for multimodal segmentation tasks [29]. Inspired by their work, this 
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paper proposes a dual-channel cross-fusion attention YOLO (DCFA-YOLO) network to 
meet the needs of accurate and fast multimodal cherry tomato bunch detection. Specifi-
cally, we introduce a parallel attention mechanism in the mid-term-fusion stage. By en-
hancing the learning ability and saliency of the region of interest, it overcomes the inter-
ference introduced by pixel offset in early fusion and the high independence of each mo-
dality feature in late fusion. DCFA-YOLO integrates multimodal data of color and depth 
images and uses dual-channel cross-fusion and attention mechanisms to effectively ex-
tract and fuse features of different modalities. At the same time, the model is designed 
with the goal of being lightweight for real-time applications. Even when multimodal fu-
sion is used, the size of its model parameters remains similar to that of the single-modal 
method, ensuring its high efficiency and ease of deployment. The design of this model not 
only enhances the ability to understand and process multimodal data but also takes into 
account the conservation of computing resources. It provides a reliable and efficient solu-
tion for precision agriculture and intelligent fruit harvesting. The contributions of this pa-
per can be summarized as follows: 

• A new feature fusion method is developed to combine different modal features ef-
fectively. It integrates a dual-channel cross-fusion attention mechanism into YOLO 
to enhance the fusion of color and depth images in a balanced way, significantly im-
proving fruit detection accuracy and robustness. 

• An efficient lightweight design is proposed by replacing the C2f module with the 
ShuffleNetV2 unit, optimizing the backbone network for faster and more efficient 
early feature extraction, while reducing computational complexity. 

• The attention mechanism is enhanced by introducing a SPPF_CBAM unit to the early 
feature extraction stage, improving the model’s ability to focus on key features 
through dynamic channel and spatial attention. 

• The proposed DCFA-YOLO has been evaluated for cherry tomato bunch detection 
using a dataset obtained from a commercial greenhouse, achieving an mAP50 of 
96.5%, outperforming multiple YOLO models while being relatively lightweight. 

The paper is organized as follows: Section 1 provides an overview of related work 
and existing challenges in fruit detection as well as multimodal object detection. Section 2 
describes the proposed DCFA-YOLO method in detail. Section 3 experimentally verifies 
and analyzes the effectiveness of DCFA-YOLO. Section 4 discusses the results and impli-
cations and potential directions for future research, while Section 5 concludes the work. 

2. Proposed Methods 
The proposed DCFA-YOLO is based on the YOLOv8_n model [30]. Through targeted 

improvements in the backbone network, feature fusion mechanism, and attention mecha-
nism, the feature extraction and fusion capabilities of multimodal images were signifi-
cantly improved. At the same time, the computational complexity of the model was effec-
tively reduced. In view of the long-tail characteristics of the target distribution of fruits in 
complex harvesting environments, the Distribution Focus Loss (DFL) was employed to 
optimize the model’s ability to focus on targets of different sizes. This provided an effi-
cient solution for the multimodal fruit detection task. The overall structure of DCFA-
YOLO is shown in Figure 1. 
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Figure 1. The overall architecture of the proposed DCFA-YOLO. 

2.1. Cross-Fusion Mechanism 

The input to the cross-fusion mechanism consisted of three groups of features ini-
tially extracted by the backbone network at different depths (Figure 2): two initial modal-
ity features (RGB and depth) and one additional set of features obtained by adding 
Feat3_rgb and Feat3_depth, followed by upsampling. These three groups served as the 
basic feature inputs for the cross-fusion process. To enhance the semantic information of 
these features, the two Feat3 basic feature layers were first added, which were upsampled 
and cross fused with other two sets of feature layers sequentially. Since the relatively shal-
low Feat1 and Feat2 contained more detailed information, we directly fused the independ-
ent upsampled RGB and depth feature layers using the Concat_BiFPN module. 

 

Figure 2. The structure of the backbone network. 

The Concat_BiFPN module has many advantages over the traditional BiFPN_Add 
and simple Concat concatenation [31]. First, unlike BiFPN_Add, Concat_BiFPN not only 
implements dynamic weighting of features through learnable weight parameters but also 
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retains the independence of each input feature. The BiFPN_Add directly sums the input 
features after weighting, which may lead to the loss of modal feature details despite the 
tight fusion. Concat_BiFPN, on the other hand, combines features along the specified di-
mension by weighting, which can not only integrate multimodal information but also re-
tain the differences of the original features. This provides a richer and more complete fea-
ture expression for subsequent processing. Second, compared with the single Concat op-
eration, Concat_BiFPN introduces a dynamic weighting mechanism, which enables the 
contribution of features from each modality to be adaptively adjusted according to task 
requirements. This overcomes the feature imbalance problem in simple concatenation. 
Third, Concat_BiFPN supports a flexible adjustment of the dimension and number of in-
put features, making it more adaptable. 

The formula for the Concat_BiFPN module is �̂� = concat (𝑤ଵതതതത ⋅ 𝑥ଵ,  𝑤ଶതതതത ⋅ 𝑥ଶ,  𝑤ଷതതതത ⋅ 𝑥ଷ, dim) (1)

where x1, x2, and x3 are input feature maps from different modalities; 𝑤ଵതതതത, 𝑤ଶതതതത, and 𝑤ଷതതതത are 
learned weights used to adjust the contribution of different modal features; and dim is the 
concatenated dimension, which can usually be selected as the channel dimension of the 
feature map. [𝑤ଵതതതത, 𝑤ଶതതതത, 𝑤ଷതതതത] = [𝑤ଵ, 𝑤ଶ, 𝑤ଷ] (𝑤ଵ + 𝑤ଶ + 𝑤ଷ +⁄ 𝜖) (2)

where w = [w1, w2, w3] is the weight vector, ϵ is a small constant used to avoid division by 
zero, and the value 3 refers to the three input modalities (RGB, depth, and the fused fea-
ture) that are being combined in the Concat_BiFPN module. The normalization ensures 
their contributions are adjusted appropriately during fusion. 

It is worth noting that we used bilinear interpolation in the upsampling of feature 
cross fusion. This allowed for smoother feature map enlargement with more information 
preservation. 

2.2. Model Simplifications 

Compared with the networks using a single-modal input, DCFA-YOLO uses multi-
modal cross fusion and dual-channel feature extraction, leading to a significant increase 
in the amount of computation. To effectively reduce the computational complexity and 
parameter size while maintaining high-precision detection performance, we propose tar-
geted optimizations. Specifically, we replaced the C2f module in the backbone with the 
ShuffleNetV2 unit, the C2f module in cross-feature fusion was replaced by the 
C2f_RepGhost. These modifications were designed to balance computational efficiency 
with high-quality feature extraction by considering the distinct roles of the backbone and 
feature fusion stages. 

As shown in Figure 2, the backbone w responsible for preliminary feature extraction. 
Its goal is to extract global features from the input multimodal data. In order to reduce the 
computational complexity at this stage, C2f was replaced by the ShuffleNetV2 unit, as 
shown in Figure 3a. ShuffleNetV2 is a lightweight convolutional neural network that sig-
nificantly reduces the amount of computation and number of parameters through sophis-
ticated techniques such as Channel Split, grouped convolutions, and multi-scale feature 
fusion. In addition, Channel Shuffle helped to enhance feature representation by breaking 
information isolation in group convolutions, resulting in more effective feature extraction 
with reduced computational overhead. These optimizations allowed for ShuffleNetV2 to 
significantly reduce GFLOPs and parameter size while maintaining relatively efficient fea-
ture extraction. 
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Figure 3. (a) The structure of the ShuffleNetV2 unit; (b) the structure of the SPPF_CBAM unit. 

The feature-cross-fusion stage served as the neck of the network, a crucial component 
for enhancing feature extraction and improving model performance. As shown in Figure 
4, the C2f module was replaced by the C2f_RepGhost module in the feature-cross-fusion 
stage to achieve efficient feature extraction. It combined depth-wise convolution 
(DWConv) for spatial feature extraction and pointwise convolution (PWConv) for channel 
interaction, improving feature expression capabilities while reducing computation. In ad-
dition, the module introduced shortcut connections to achieve residual learning, mitigat-
ing gradient vanishing during training and promoting feature reuse. Moreover, re-param-
eterization techniques during the inference phase merged the module’s complex struc-
tures into efficient inference configurations, further reducing the computational complex-
ity for inference. Through these designs, the C2f_RepGhost module enhanced the deep-
level feature expression capability while ensuring computational efficiency. 

 

Figure 4. The structure of the C2f_RepGhost module. The module adds skip links during the train-
ing phase compared to the inference phase. 

These targeted lightweight improvement strategies consider the characteristics of 
each stage to maximize the respective functions of the backbone and feature fusion. It not 
only meets the lightweight requirements of preliminary feature extraction but also meets 
the high performance requirements of enhanced feature fusion. 
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2.3. Attention Mechanism 

To further improve the model’s ability to extract and fuse multimodal features, an 
attention mechanism was introduced into the backbone network. The improvements were 
reflected in the optimization of the SPPF module and the enhanced attention in the early 
feature extraction layer. At the last backbone layer, the original SPPF module was replaced 
by the SPPF_CBAM, as shown in Figure 3b. The details of the CBAM module are shown 
in Figure 5. Through the parallel channel and spatial attention modules, the weights of 
different channels and spatial positions in the feature map can be adaptively adjusted. 
This strengthens key features and suppresses redundant information, improving the fea-
ture expression ability of the model. 

In addition, to fully utilize the advantages of multimodal inputs, the model added 
CBAM modules to the early-feature layers of RGB and depth maps in the backbone net-
work. This allowed for the features of each modality to be enhanced through the attention 
mechanism at early stage. The channel attention captured the importance of different fea-
ture channels, while the spatial attention focused on the salient regions in the feature map. 
Ultimately, these enhanced multimodal feature layers were able to fully complement and 
interact with each other during the fusion stage. This effectively improved the robustness 
of feature extraction, providing more accurate features for subsequent detection tasks. 

 

Figure 5. The structure of the CBAM module. 

2.4. Loss Function 

As shown in Figure 6, statistical analysis of the cherry tomato dataset (described be-
low) revealed that the fruit sizes followed a significant long-tail distribution. Among the 
22,965 annotated bounding boxes, the average object width and height were 48.2 and 79.9 
pixels, while the maximal width and height reached 223 and 387 pixels, respectively, and 
the minima were close to zero. Looking further at the distribution of widths, 55.47% of the 
target widths were concentrated in [24.8, 49.6] pixels, while only 0.02% of them exceeded 
198.2 pixels. Likewise, 50.44% of the target heights were within [43.9, 86.8] pixels, and only 
0.02% of them were above 344.1 pixels. In terms of area distribution, 88.42% of the targets 
were below 8319 pixels, while only 0.01% of them were above 66,549 pixels. These statis-
tics indicated that a large number of objects had small sizes, while a very small number of 
objects had significantly larger sizes, resulting in an imbalanced distribution, which poses 
significant challenges to traditional object detection models, especially in balancing the 
high detection rate of small objects and the high position precision of large ones. 

To address the above problem, we used Distribution Focal Loss (DFL) in the bound-
ing box loss function [32]. Unlike traditional methods that predict bounding boxes as dis-
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crete values, DFL represents the bounding box locations as continuous probability distri-
butions. This can more accurately describe the uncertainty of the target location and opti-
mize the model’s attention to targets of different sizes. Specifically, DFL converts the pre-
dicted bounding boxes into a probability distribution and applies a focal loss on it to ad-
dress the data class imbalance. It is able to strike a balance between the small objects that 
dominate the dataset and the large objects that are rare but important. Specifically, the 
formula of DFL is DFL(𝑆, 𝑆ାଵ) = −൫(𝑦ାଵ − 𝑦) log(𝑆) + (𝑦 − 𝑦) log(𝑆ାଵ)൯ (3)

where 𝑦 and 𝑦ାଵ are two adjacent discrete points of the predicted bounding box, 𝑦 is 
the true value, and 𝑆 and 𝑆ାଵ are the predicted probabilities corresponding to 𝑦 and 𝑦ାଵ. 

 

Figure 6. Statistical analyses of the cherry tomato dataset used in the current study (unit: pixel). 

3. Experiments and Results 
To verify the effectiveness and performance of the proposed DCFA-YOLO, a series 

of ablation and comparative experiments were designed and implemented. Through ab-
lation experiments, the impact of each component on model performance is analyzed. At 
the same time, the full DCFA-YOLO is compared with a few state-of-the-art YOLO net-
works to comprehensively evaluate its performance in terms of detection accuracy, recall, 
computational complexity, and model parameter quantity. 

3.1. Experimental Setup and Dataset 

The cherry tomato images were acquired at a greenhouse in a plant science and tech-
nology park in Dongguan, China (Figure 7). A Microsoft Azure Kinect DK (Microsoft, 
Redmond, WA, USA) or Litemaze TOF camera (Litemaze Technology, Shenzhen, China) 
installed at the end of the robotic arm collected 843 RGB-D image pairs, including RGB 
and corresponding depth images. The purpose was to simulate the posture and distance 
of the robotic arm during the picking process. More detailed descriptions of the image 
acquisition environment and procedures have been reported in a previous study on single 
cherry tomato detection [22]. The original data were expanded using data augmentation 
methods such as cropping, flipping, and random brightness enhancement, and finally, 
3372 images were obtained. Cherry tomato bunches within 1 m of the camera were labeled 
using LabelImg (version 1.8.1). Finally, the dataset was divided into the training set (2700 
images), the validation set (336 images), and the test set (336 images). 

All experimental were carried out on a desktop workstation with Intel(R) Core (TM) 
i7-14700K CPU (Intel, Santa Clara, CA, USA), 20 cores and 28 threads, 64G memory, and 
Nvidia GeForce RTX 4070 Ti SUPER GPU (Nvidia, Santa Clara, CA, USA), and the Ubuntu 
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22.04 operating system. All deep learning algorithms were executed in the same environ-
ment of Windows 11, Cuda 12.6, Python 3.8, Pytorch-2.4.1, and Torchvision-0.19.1. All 
experiments set the image size to 640 × 640, batch_size to 8, and epochs to 200. 

The initial learning rate was set to 0.01, with the minimal learning rate reduced to 1% 
of the initial value. The optimization utilized the Stochastic Gradient Descent (SGD) opti-
mizer, configured with a momentum of 0.937 and a weight decay factor of 0.0005 to regu-
larize the model parameters. The learning rate scheduling followed a cosine decay strat-
egy, dynamically adjusting the learning rate throughout the training process to enhance 
convergence and performance. 

 

Figure 7. The dataset collection scene. (a) Early harvesting season. (b) Late harvesting season. 

3.2. Evaluation Metrics 

We used precision, recall, F1-score, and mAP as the basic detection performance eval-
uation metrics. The mean average precision (mAP) is an important indicator to measure 
the global detection performance of the model. AP is defined as the area under the preci-
sion–recall curve, which represents the comprehensive evaluation of single-category de-
tection performance [33]. mAP50 represents the average precision value calculated when 
the Intersection over Union (IoU) threshold is 0.5 and is a commonly used evaluation cri-
terion in object detection tasks. mAP75 is the average precision calculated under a higher 
IoU threshold (0.75), which requires the model to predict the target position more accu-
rately and can reflect the positioning ability of the model. mAP50-95 represents the aver-
age mAP at different IoU thresholds (from 0.5 to 0.95, with an interval of 0.05), which can 
more comprehensively evaluate the detection performance of the model under different 
precision requirements. The precision (𝑃𝑟𝑒), recall (𝑅𝑒𝑐), and F1-score (𝐹𝑆) are calculated 
as Pre = TPTP + FP , Rec = TPTP + FN , FS = Pre ൈ RecPre + Rec (4)

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 represent the true positives, false positives, and false negatives. 
The AP and mAP are calculated as follows: AP =   (Rୀଵ − Rିଵ)P  (5)

mAP = ଵ ∑ AP ൈ 100% ୀଵ   (6)

where N is the number of recall levels; R and Rିଵ are consecutive recall levels; P is 
the the precision at recall level; R and 𝐶 is the number of classes. 

In addition, we also considered GFLOPs to measure the computational complexity 
of the model and parameters to reflect the size and complexity of the model. Together, 
these metrics provided us with a comprehensive perspective to evaluate the precision, 
robustness, efficiency, and resource consumption of models in object detection tasks. 
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3.3. Ablation Experiments 

The baseline model is the YOLOv8_n implemented by a third party. Compared with 
the official YOLOv8_n, this version of the model is easier to integrate multimodal feature 
extraction branches and lightweight improvements. All ablation experiments were con-
ducted based on this model to incrementally verify the effectiveness of each additional 
module. 

The design of the ablation experiment is shown in Table 1. First, the single-modal 
RGB input was used as the baseline to build the initial detection framework (Single-RGB). 
Then, by adding a depth channel, a basic model of dual-modal input (Base_DM) was con-
structed to verify the performance improvement of multimodal input. On this basis, sev-
eral improved modules were introduced, including the interpolation module (+Interpo-
late), the multimodal cross-fusion module (+Concat_BiFPN), the lightweight structure 
C2f_repghost module (+C2f_repghost), the ShuffleNetV2 lightweight module (+Shuf-
fleNetV2), the channel and spatial attention module CBAM (+CBAM), and the fusion 
module combining the SPPF and CBAM (+SPPF_CBAM). The last case was the full DCFA-
YOLO model. 

Table 1. Comparison results of precision, recall, F1-score, mAP50, mAP50–95, mAP75, GFLOPs, and 
parameters (M) of the ablation experiments. The bold value in each column indicate the best per-
formance in the corresponding metric, and the underlined value the second best. 

Algorithm Precision Recall F1-Score mAP50 mAP50–95 mAP75 GFLOPs Parameters (M) 
Single-RGB 0.938 0.886 0.911 0.950 0.650 0.769 8.224 3.011 
Base_DM 0.947 0.889 0.917 0.950 0.639 0.745 11.573 4.370 

+Interpolate 0.949 0.898 0.923 0.950 0.646 0.765 11.573 4.370 
+Concat_BiFPN 0.959 0.891 0.924 0.957 0.659 0.781 11.573 4.370 
+C2f_repghost 0.956 0.887 0.921 0.953 0.655 0.775 10.765 3.968 
+ShuffleNetV2 0.949 0.900 0.924 0.958 0.654 0.778 7.218 2.078 

+CBAM 0.951 0.906 0.928 0.958 0.648 0.762 7.225 2.122 
+SPPF_CBAM (Full) 0.949 0.914 0.931 0.965 0.661 0.775 7.589 2.679 

The baseline model achieved a basic performance of 0.938 precision, 0.886 recall, and 
0.911 F1-score in single mode. With multimodal input, the precision and F1-score in-
creased to 0.947 and 0.917, confirming the positive impact of multimodal input. Adding 
the interpolation module (+Interpolate) further improved the precision and F1-score to 
0.949 and 0.923. The addition of the multimodal cross-fusion module (+Concat_BiFPN) 
further improved the precision to 0.959, F1-score to 0.924, and mAP50 to 0.957. After fur-
ther replacing it with the lightweight C2f_repghost module, although GFLOPs dropped 
to 10.765 and the model complexity was reduced, various metrics only decreased slightly. 
After adding the ShuffleNetV2 module, GFLOPs further dropped to 7.218, while the pre-
cision was 0.949 and F1-score remained at 0.924. The introduction of the CBAM module 
increased the recall to 0.906 and F1-score to 0.928. Finally, the introduction of the 
SPPF_CBAM module resulted in the best performance. These results confirm that the im-
proved model achieves a good balance between improving performance and maintaining 
a lightweight design. 

It should be noted that after adding the CBAM module to the backbone’s six feature 
outputs, the performance improves notably with better feature extraction. However, 
when we further replace the final layer’s SPPF module with the SPPF_CBAM module, this 
small adjustment leads to the best overall performance in terms of precision, recall, F1-
score, and mAP50 while still maintaining a lightweight model. This improvement is pri-
marily due to the effective combination of spatial and channel attention from CBAM with 
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the spatial pyramid pooling (SPPF) module, which enhances multi-scale feature extrac-
tion, ensuring better performance without a significant increase in computational cost. 

Figure 8 shows the heat map comparison for the ablation experiments. The baseline 
Single-RGB model exhibits focused attention on most targets but struggles with partially 
occluded cherry tomato clusters. The multimodal Base_DM model improves attention on 
these targets. Subsequent modules, such as +Interpolate, +Concat_BiFPN, and 
+C2f_repghost, show increasingly accurate and concentrated attention across all cherry 
tomato bunches. The +ShuffleNetV2 and +CBAM modules enhance the attention distribu-
tion, with +SPPF_CBAM achieving the best focus across all targets, particularly improving 
the detection of partially occluded clusters. 

 

Figure 8. Comparison of heat maps for ablation experiments. 

3.4. Comparison of Different Detection Algorithms 

To compare the detection performance of DCFA-YOLO to other DNN models, we 
selected state-of-the-art YOLO models, YOLOv5_n [34], YOLOv8_n [30], YOLOv9_t [35], 
YOLOv10_n [36], YOLO11_n [37], EfficientDet [31], SSD [6], and CenterNet [38], for quan-
titative and qualitative comparison in terms of evaluation metrics and visual effects. The 
quantitative results are summarized in Table 2. 

Table 2. Comparison results of precision, recall, F1-score, mAP50, mAP50–95, mAP75, GFLOPs, and 
parameters (M) of different detection models. The bold value in each column indicates the best 
performance in the metric and the underlined value the second best. 

Algorithm Precision Recall F1-Score mAP50 mAP50–95 mAP75 GFLOPs Parameters (M) 
YOLOv5_n 0.865 0.838 0.851 0.905 0.565 0.626 7.100 2.503 
YOLOv8_n 0.871 0.859 0.865 0.923 0.617 0.708 8.100 3.005 
YOLOv9_t 0.912 0.879 0.895 0.946 0.656 0.770 7.600 1.970 
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YOLOv10_n 0.888 0.880 0.884 0.930 0.638 0.749 8.200 2.694 
YOLO11_n 0.883 0.838 0.861 0.921 0.616 0.705 6.300 2.582 
EfficientDet 0.948 0.781 0.860 0.900 0.549 0.627 7.401 3.828 

SSD 0.870 0.896 0.880 0.929 0.609 0.716 58.363 11.671 
CenterNet 0.952 0.797 0.870 0.919 0.572 0.654 109.710 32.665 

DCFA-YOLO 0.949 0.914 0.931 0.965 0.661 0.775 7.589 2.679 

DCFA-YOLO shows significant improvements in almost all key metrics. Compared 
with YOLOv5_n, YOLOv8_n, and YOLOv9_t, DCFA-YOLO achieves a notable increase 
in precision, recall, F1-score, and mAP50. Specifically, its precision improves from 0.871 
(YOLOv8_n) to 0.949, and its F1-score rises from 0.865 to 0.931. Even compared with the 
higher-performance YOLOv9_t, DCFA-YOLO also shows obvious advantages, especially 
in F1-score and mAP50, with notable improvement in both. Though YOLOv10_n and 
YOLO11_n have lower GFLOPs and parameters, DCFA-YOLO outperforms them in key 
metrics like precision and mAP50. Moreover, it surpasses models such as EfficientDet and 
CenterNet. This further shows that DCFA-YOLO has achieved a good balance between 
performance and being lightweight, making it an excellent model for both accuracy and 
computational efficiency. 

Figure 9 compares precision–recall curves across various detection models, showing 
that DCFA-YOLO consistently outperforms other models in terms of both precision and 
recall. By closely inspecting the PR curve, it is clear that the performance improvements 
noted in Table 2, especially in precision, recall, and F1-score, are visually reflected, demon-
strating the model’s strong overall detection capabilities. 

 

Figure 9. Precision–recall curves of different detection models. 
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Figures 10–12 present the visualization of detection results under normal lighting, 
high-light, and low-light scenarios, respectively. Under normal lighting (Figure 10), the 
compared models exhibit varying degrees of incomplete detection, frequently missing 
small, or overlapping objects and displaying suboptimal boundary precision. In contrast, 
DCFA-YOLO can detect cherry tomato bunches more accurately, significantly reducing 
missed and false detections. 

Figures 11–12 illustrate detection results under challenging lighting conditions. In 
the high-light case (Figure 11), excessive brightness causes the image to appear washed 
out, leading to increased missed detections in most YOLO-based models and over-detec-
tion in CenterNet. In the low-light scenario (Figure 12), the darkness of the image exacer-
bates missed detections for YOLO-based models, while CenterNet again suffers from 
over-detection. Despite these challenges, DCFA-YOLO demonstrates superior adaptabil-
ity in both scenarios, maintaining high detection accuracy with minimal false positives or 
missed targets. 

 

Figure 10. Visualization of detection results of different models under normal lighting conditions. 



Agriculture 2025, 15, 271 15 of 19 
 

 

 

Figure 11. Visualization of detection results of different models under high-light scenarios. 

 

Figure 12. Visualization of detection results of different models under low-light scenarios. 
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4. Discussion 
The proposed DCFA-YOLO method for multimodal cherry tomato bunch detection 

achieves the best results in six evaluation metrics (precision, recall, F1-score, mAP50, 
mAP75, and mAP50–95) among nine compared DNNs. It ranks the 5th among the nine 
models in terms of parameter size, and its GFLOPs rank the 4th lowest. For robotic fruit 
harvesting, the detection algorithm typically runs on edge computing devices, so the ac-
curacy and computational cost of detection are both important, and we believe DCFA-
YOLO strikes an excellent balance between the two. The computing platform in the cur-
rent study is essentially a regular PC, and DCFA-YOLO runs cherry tomato bunch detec-
tion at a frame rate of 52.93 fps, which is sufficient for practical real-time robotic harvest-
ing. By achieving high accuracy with lower computational costs, DCFA-YOLO reduces 
the burden on hardware, which could lead to lower energy consumption and operational 
costs in real-world applications. It can be integrated into agricultural systems like robotic 
harvesters or drones, enhancing their perception for precise and efficient fruit picking and 
measurement. 

In a previous cherry tomato bunch detection study, precision, recall, and an F1-score 
of 98.9, 92.1, and 95.4 have been reported [39], higher than the corresponding values of 
0.949, 0.914, and 0.931 in the current study. However, the two studies were conducted 
with two very different datasets that were collected by different cameras (Intel RealSense 
structured light stereo vs. Microsoft Kinect TOF) at different plantations. The code and 
dataset are not available for apple-to-apple comparisons. To partly address this, we make 
the code publicly available on Github (see Data Availability Statement). Unfortunately, 
the dataset cannot be made fully public due to a non-disclosure agreement. 

In this study, we only tested cherry tomato bunch detection. For clustered fruits like 
cherry tomatoes, whether harvesting by single fruits or by bunches depends on the pro-
duction needs in a commercial setting, and both have been performed in previous studies 
[22,39,40]. We believe DCFA-YOLO can be applicable to single fruit detection as well, 
which will be investigated in future work. However, it is important to note that the current 
model may face challenges in more complex scenarios, such as severe occlusions or highly 
dense clusters, where the accuracy of detection could be compromised. Future improve-
ments could focus on enhancing the model’s robustness to these conditions, potentially 
through advanced attention mechanisms or multi-scale feature fusion techniques. 

We would also like to explore applying DCFA-YOLO to other fruits; for example, it 
may be partially transferable to detecting other fruits in clusters/bunches, such as grape, 
longan, or lychee. It should be noted that for these fruits, even at maturity, the color fea-
tures are less salient compared to cherry tomatoes. As such, we expect that the impact of 
adding depth information for these fruits is likely to have a more significant impact than 
for cherry tomatoes. 

Moreover, when integrated with harvesting robots, DCFA-YOLO can contribute to 
agricultural sustainability by improving harvesting efficiency and reducing fruit waste. 
Its high detection accuracy minimizes missed or damaged fruits, while its real-time capa-
bilities enable faster and more precise harvesting, ultimately supporting more sustainable 
and resource-efficient agricultural practices. 

5. Conclusions 
This study introduces DCFA-YOLO, a lightweight fruit detection model with multi-

modal cross fusion. By integrating the dual-channel cross-fusion mechanism, a dynami-
cally weighted feature-fusion module, and optimized lightweight design alongside atten-
tion mechanisms, the model demonstrates notable improvements in efficiency and robust-
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ness for multimodal detection tasks. Specifically, the model leverages complementary in-
formation from color and depth images through targeted enhancements to the backbone 
network and feature-fusion stages. These improvements effectively reduce computational 
complexity and model parameters while maintaining high detection accuracy, addressing 
the challenges of small fruit detection in complex scenarios. The experimental results on 
cherry tomato bunch detection further validate the model’s superiority, showcasing its 
potential for practical application in precision agriculture as a core component of robotic 
cherry tomato harvesting. 
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