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Abstract: A method for apple phenotypic feature extraction and growth anomaly identifi-
cation based on deep learning and natural language processing technologies is proposed
in this paper, aiming to enhance the accuracy of apple quality detection and anomaly
prediction in agricultural production. This method integrates instance segmentation, edge
perception mechanisms, attention mechanisms, and multimodal data fusion to accurately
extract an apple’s phenotypic features, such as its shape, color, and surface condition, while
identifying potential anomalies which may arise during the growth process. Specifically,
the edge transformer segmentation network is employed to combine deep convolutional
networks (CNNs) with the Transformer architecture, enhancing feature extraction and
modeling long-range dependencies across different regions of an image. The edge percep-
tion mechanism improves segmentation accuracy by focusing on the boundary regions
of the apple, particularly in the case of complex shapes or surface damage. Additionally,
the natural language processing (NLP) module analyzes agricultural domain knowledge,
such as planting records and meteorological data, providing insights into potential causes
of growth anomalies and enabling more accurate predictions. The experimental results
demonstrate that the proposed method significantly outperformed traditional models
across multiple metrics. Specifically, in the apple phenotypic feature extraction task, the
model achieved exceptional performance, with accuracy of 0.95, recall of 0.91, precision
of 0.93, and mean intersection over union (mIoU) of 0.92. Furthermore, in the growth
anomaly identification task, the model also performed excellently, with a precision of
0.93, recall of 0.90, accuracy of 0.91, and mIoU of 0.89, further validating its efficiency and
robustness in handling complex growth anomaly scenarios. The method’s integration of
image data with agricultural knowledge provides a comprehensive approach to both apple
quality detection and growth anomaly prediction, offering reliable decision support for
agricultural production. The proposed method, by integrating image data with agricultural
domain knowledge, provides precise decision support for agricultural production, not only
improving the efficiency and accuracy of apple quality detection but also offering reliable
technical assurance for agricultural economic analysis.

Keywords: apple phenotype feature extraction; growth anomaly recognition; deep learning;
agricultural economic analysis
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1. Introduction
Apple phenotype characteristics are an important aspect of agricultural research

and production, including the apple shape index (the ratio of longitudinal to transverse
diameters), apple size (based on the transverse diameter), color (surface coloration rate), and
surface condition (such as freshness and damage) [1]. These characteristics are not only key
indicators for evaluating apple quality but also crucial for guiding agricultural production,
improving cultivation techniques, and enhancing the commercial value of apples [2].
In recent years, with the development of agricultural automation and intelligence, computer
vision and deep learning-based object detection and semantic segmentation technologies
have demonstrated great potential in extracting apple phenotype data [3]. Traditional
methods for apple phenotype analysis typically rely on manual measurement and empirical
judgment, which are not only inefficient but also subject to subjective biases [4]. In contrast,
instance segmentation-based techniques can precisely locate the boundaries of apples and
simultaneously perform automatic extraction of various phenotype features, enabling large-
scale apple quality detection and analysis [5]. However, apple growth is often influenced
by environmental factors (such as climate change and soil conditions), leading to growth
anomalies such as deformed apple shapes and surface damage, which significantly impact
an apple’s quality and market value [6].

To achieve precise extraction of apple phenotype characteristics and efficient identifi-
cation of growth anomalies, a comprehensive method combining instance segmentation
and natural language processing (NLP) is proposed in this study [7,8]. On the one hand,
the edge transformer segmentation network based on instance segmentation can precisely
extract various phenotype features of apples [9]. On the other hand, the NLP module
parses and analyzes agricultural text data (such as expert notes, planting records, and mete-
orological data) to reveal potential causes of and development trends in growth anomalies
from multiple dimensions [10]. This integration of image analysis and text parsing not
only enhances the comprehensiveness and accuracy of apple phenotype data extraction
but also provides new insights for apple quality management and anomaly prediction [11].
In recent years, object detection technologies such as the YOLO series and Mask R-CNN
have been widely applied in apple recognition and classification, demonstrating excellent
performance in both real-time detection and accuracy [12]. Additionally, semantic segmen-
tation techniques, such as UNet and DeeplabV3+, have been proven to be highly effective
in apple surface feature extraction and disease detection tasks [13,14]. Complementing
these technologies, the rapid development of NLP has provided new tools for automating
the processing of agricultural text data. For instance, Anand et al. proposed a deep learning
framework, AgriSegNet, for multi-scale, attention-based semantic segmentation using
drone-acquired images to automatically detect agricultural field anomalies [15]. Zhang et al.
proposed a segmentation method which outperforms traditional PSO clustering methods
in terms of stability and accuracy. It can accurately and effectively segment agricultural
product images in various complex environments, facilitating automated agricultural prod-
uct picking robots [16]. Su et al. introduced a novel data augmentation framework based on
random image cropping and patching (RICAP), which effectively improves segmentation
accuracy. The proposed framework boosts the average accuracy of deep neural networks
from 91.01% to 94.02% by enhancing the original RICAP approach [17]. Zhang et al. de-
veloped a pruning inference method which automatically deactivates part of the network
structure based on different conditions, reducing network parameters and operations and
significantly increasing the network speed. The proposed model achieved accuracy, recall,
and mAP rates of 90.01%, 98.79%, and 97.43% in detecting apple flowers, respectively [18].
These advancements demonstrate the promising potential of integrating image analysis
with NLP technologies in agricultural production. Therefore, the method proposed in
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this paper aims to address the limitations of single-image analysis methods and provides
technical support for improving agricultural production efficiency and economic benefits
through multimodal data fusion. The contributions of this paper are as follows:

• Integration of Instance Segmentation and Natural Language Processing: For the first
time, instance segmentation technology is combined with natural language processing
(NLP) to achieve multi-dimensional data fusion in apple phenotype feature extraction
and anomaly identification. Instance segmentation ensures the precise extraction
of critical phenotype features such as an apple’s size, color, and surface condition
by accurately delineating an apple’s boundaries and surface features. Meanwhile,
the NLP module analyzes agricultural text data (e.g., expert notes, planting records,
and meteorological data) to reveal potential causes of growth anomalies, providing a
comprehensive and accurate analysis which overcomes the limitations of traditional
single-image analysis.

• Innovative Application of the Edge Transformer Segmentation Network: The edge
transformer segmentation network introduced in this paper integrates Transformer
mechanisms with edge-aware modules to better handle complex boundary informa-
tion of apples. This innovation improves segmentation precision and robustness,
especially when dealing with damaged or irregular apple shapes. The method shows
excellent performance in extracting key phenotype features from apple surface char-
acteristics and provides reliable support for apple quality assessment and growth
anomaly monitoring.

• Multi-Modal Data Fusion for Anomaly Recognition: In contrast to traditional single-
image analysis, this study proposes a method for multi-modal data fusion. By com-
bining image data with agricultural text data (e.g., meteorological data and planting
records), the NLP module conducts multi-dimensional analysis, leading to more accu-
rate identification of growth anomalies (such as apple deformities and surface damage)
and revealing potential causes from a broader context. This cross-modal data fusion
offers new perspectives for anomaly prediction and apple quality management in
agricultural production.

In the following sections, we provide a detailed overview of the proposed method
and its components. Section 2 reviews the foundational methods in object detection,
semantic segmentation, and related techniques, which serve as the building blocks for our
approach. Section 3 introduces the materials and methods used in this study, including the
dataset collection, preprocessing steps, and detailed architecture of the proposed model.
Section 4 presents the experimental results and discusses the performance of our method
in comparison to existing baseline models. Finally, Section 5 concludes this paper by
summarizing the findings and discussing potential future research directions.

2. Related Work
Object detection, semantic segmentation, and natural language processing (NLP) are

three critical technologies in modern computer science and artificial intelligence, with broad
application prospects in agricultural fruit recognition and phenotype data analysis [19,20].

2.1. Object Detection

Object detection is a core task in computer vision, primarily aimed at locating and
classifying target objects within an image [12,21]. The core of object detection lies in
predicting the bounding box and category label for each target object [22]. The optimization
objective of object detection generally consists of both classification loss and bounding box
regression loss, with common loss functions including cross-entropy loss and intersection
over union (IoU) loss [23]. The task of object detection can be divided into two main parts:
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object localization and object classification. Object localization refers to accurately finding
the location of the target in an image and determining its shape, usually by predicting the
bounding box through a regression model. Object classification involves determining the
category of the target based on its appearance and features. These two tasks are typically
trained simultaneously by minimizing both the classification loss and localization loss.
The difference between the predicted bounding box and the true values can be expressed
as follows:

Lbbox =
N

∑
i=1

(
|xi − x̂i|+ |yi − ŷi|+ |wi − ŵi|+

∣∣∣hi − ĥi

∣∣∣), (1)

where xi, yi, wi, hi are the predicted values, x̂i, ŷi, ŵi, ĥi are the ground truth values, and N
is the number of targets. Common methods for object detection include region proposal-
based methods (such as the R-CNN series [24]) and regression-based methods (such as the
YOLO series [25]). In agricultural fruit recognition tasks, object detection technology is
widely applied to quickly locate the positions and categories of fruits [26]. These models
learn the visual features of fruits in images, enabling efficient classification and localization
of fruits amd allowing agricultural producers to monitor the growth status of crops in real
time and optimize agricultural management. For instance, the Faster R-CNN model, by
combining region proposal networks (RPNs) with convolutional neural networks (CNNs),
enhances detection accuracy, particularly for smaller fruits like tomatoes and grapes [27].

2.2. Semantic Segmentation

Semantic segmentation is another crucial task in computer vision, aimed at classifying
each pixel in an image to achieve fine-grained segmentation of the target objects [28]. Unlike
object detection, which focuses on bounding box prediction, semantic segmentation is con-
cerned with pixel-level prediction, requiring more complex model architectures to capture
the fine-grained features of an image [29]. The UNet model, through its encoder-decoder
structure, progressively extracts deep features from an image and gradually recovers the
spatial resolution to achieve fine pixel-level segmentation [30]. DeepLabV3+ integrates
dilated convolutions (atrous convolutions) to expand the receptive field, effectively captur-
ing contextual information in the image while enhancing segmentation accuracy through
multi-scale features [31]. The loss function for semantic segmentation is typically defined
based on the pixel-level cross-entropy:

Lseg = − 1
HW

H

∑
i=1

W

∑
j=1

C

∑
c=1

yijc log ŷijc, (2)

where H and W represent the height and width of the image, C is the number of categories,
yijc is the true label indicating that the pixel (i, j) belongs to category c, and ŷijc is the predicted
probability from the model. To address class imbalance, the weighted cross-entropy or Dice
loss is often introduced to improve segmentation accuracy, particularly when handling smaller
or less-common classes [32]. In the agricultural domain, semantic segmentation is widely
applied in fruit phenotype analysis to extract the contours and surface features of fruits, such
as measuring a fruit’s size, shape, and surface damage [33–35].

2.3. Natural Language Processing

NLP is a core technology for processing and understanding textual data, with signif-
icant applications in agricultural data analysis [36,37]. In agricultural text data analysis,
text classification tasks can be used to classify fruit planting records by variety or growth
stage, assisting agricultural experts in taking appropriate management measures accord-
ing to different stages. NER can extract specific key information from large volumes of
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agricultural texts, such as climate conditions, soil types, and management practices, which
significantly influence fruit growth and pest control [38–40]. Sentiment analysis can help
agricultural managers understand the quality of crops, market demand, and other factors
based on feedback from farmers or market evaluations, providing a foundation for subse-
quent agricultural planning and production. Text data embedding is the foundation of NLP,
where word embeddings represent the semantic information of words [41]. Common text
embedding technologies, such as Word2Vec and GloVe, capture the relationships between
words through statistical methods. For example, word vectors w represent words, and
contextual information is used to learn the semantic representation of each word in a
specific context. The optimization objective can be expressed as follows:

LNLP = −
N

∑
i=1

log p(wi|context), (3)

where p(wi|context) represents the probability of predicting the word wi given the context
and N is the total number of words. As agricultural production increasingly relies on digital
records, NLP technologies can also be used for automated agricultural log analysis, disease
identification, and predictive analysis. For example, NLP-based models can automatically
extract fruit growth patterns under different environmental conditions from historical
planting records, providing data support for future agricultural decisions [10].

3. Materials and Methods
3.1. Image Construction

In this study, the collection of image datasets and image annotation are key steps
in fruit phenotypic analysis and anomaly recognition tasks. To ensure the diversity and
representativeness of the data, a large number of apple images were collected from multiple
regions, covering different growth environments and climatic conditions. The image data
were primarily collected from apple orchards in Changping District, Beijing, Qixia City,
Yantai, Shandong Province from March 2023 to August 2024, with some images also sourced
from the internet, as shown in Table 1, totaling 24,042 images. The image acquisition
equipment and methods employed in this study are critical. The image acquisition method
and samples are shown in Figure 1.

360°

360°

Figure 1. Image acquisition scheme and examples.

A Canon EOS 5D Mark IV camera, manufactured by Canon Inc., headquartered in
Tokyo, Japan, was utilized due to its exceptional imaging quality and ability to capture
fine details, meeting the requirements for precise acquisition of fruit details. This camera
was paired with a Canon EF 100mm f/2.8L Macro IS USM macro lens, which is particularly
suited for capturing high-precision images at close distances. To minimize the impact of
shadows and reflections on the image quality, all images were captured under soft natural
light conditions during early morning or late afternoon. However, in real-world agricultural
settings, images may sometimes still contain shadows or overexposure due to fluctuating
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lighting conditions. To handle such cases, we employed image preprocessing techniques
such as histogram equalization and contrast adjustment to reduce the effects of shadows
and overexposure. Additionally, images with excessive overexposure or shadows which
significantly obscured fruit features would be identified and excluded from the dataset
during the quality control process. This ensured that only high-quality images suitable for
phenotypic analysis were included in the final dataset. During image acquisition, particular
attention was paid to capturing fruits from multiple angles to document their morphological
characteristics and surface abnormalities. To ensure the dataset’s representativeness, images
were collected covering various fruit types, maturity stages, varieties, shapes, colors,
and symptoms of different diseases. The images were obtained from apple orchards in
Changping District, Beijing, and Qixia City, Yantai, Shandong Province. These two regions
differ in terms of climate and soil conditions, resulting in diverse image backgrounds and
fruit states. For image annotation, a semi-automated approach was adopted using the
LabelMe tool. Annotators first manually outlined the fruit positions and drew bounding
boxes around them. Subsequently, detailed annotations were added regarding each fruit’s
shape index, size, color grading, and surface conditions.

Table 1. Number of apple images for different data types.

Index Number

Fruit shape index 6794
Fruit size 5703

Color 6003
Surface condition 5542

Building on the large-scale image data acquisition, additional data were collected by
scraping open-source datasets and agriculture-related websites. These sources included
expert notes, cultivation records, and meteorological data which, combined with the image
data, contributed to the construction of a multimodal dataset. This dataset serves as a
valuable resource for fruit phenotypic analysis and anomaly detection while also establish-
ing a foundation for agricultural economic analysis [42,43]. By integrating expert notes,
cultivation records, and meteorological data, it is possible to analyze the influence of envi-
ronmental factors, management practices, and production decisions on fruit quality and
yield during the growth process. This provides scientific guidance for agricultural produc-
tion, optimizing management strategies, and enhancing economic benefits. Expert notes
represent a significant component of the dataset, encompassing 20,432 entries documenting
common issues and practical experiences throughout the apple cultivation process. These
entries span various stages from planting to harvesting and include information on climate,
soil, pest management, and irrigation techniques. Cultivation records provide detailed data
on apple cultivation processes, including planting times, fertilization practices, irrigation
frequencies, and soil treatments, amounting to 19,267 entries. Additionally, meteorological
data are another vital source, consisting of 22,803 entries. The growth of apples is closely
associated with climatic conditions, as factors such as temperature, humidity, and precipi-
tation directly impact growth cycles, fruit quality, and pest outbreaks. In-depth analysis of
these data sources offers valuable references for agricultural economic studies [44,45].

3.2. Data Preprocessing

Data preprocessing is the process of cleaning and adjusting raw images to eliminate
noise, correct color biases, and crop regions of interest (ROIs) to improve data effectiveness.
Common preprocessing operations in image processing include image cropping, flipping,
rotation, resizing, denoising, and white balance correction, as shown in Figure 2.
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A B C D FE

Figure 2. Data preprocessing: (A) original image, (B) horizontal flip, (C) perspective transformation,
(D) rotation, (E) translation, and (F) center crop.

Image cropping involves selecting ROIs to remove irrelevant background informa-
tion, thereby reducing computational redundancy and emphasizing the target object.
This method is particularly important in fruit phenotype analysis as cropping eliminates
background interference, allowing the model to focus more on the features of the fruit itself.
Denoising is achieved through techniques such as filtering to reduce random noise in the
image, thereby improving image quality. Gaussian filtering is a commonly used denoising
method. White balance correction is used to correct color distortion in images and restore
the true color information of the fruit. This process adjusts the mean values of the red,
green, and blue (RGB) channels of the image such that they align with the target values.

3.3. Data Augmentation

Data augmentation is the process of applying various transformations to the original
images to generate a more diverse set of training samples, thereby enhancing the robustness
and generalization ability of the model. Common data augmentation techniques include
Cutout, Mixup, and CutMix. Cutout involves randomly masking a rectangular region on
an image to simulate scenarios where the target is partially occluded. This augmentation
technique effectively improves the model’s prediction ability under occlusion. Let the size
of the image I be (H, W) and a region of a size h × w be randomly occluded at position
(x0, y0). The augmented image A can be expressed as follows:

A(x, y) =

0, if x0 ≤ x < x0 + h, y0 ≤ y < y0 + w,

I(x, y), otherwise.
(4)

Mixup involves linearly mixing two images at a certain ratio, with the aim of improv-
ing the model’s smoothness and prediction ability for unseen samples. The augmentation
formula for Mixup is

A = λI1 + (1 − λ)I2, y = λy1 + (1 − λ)y2, (5)

where λ ∼ Beta(α, α) is the mixing coefficient sampled from a Beta distribution, I1 and I2

are the two original images, and y1 and y2 are the corresponding labels. CutMix combines
the ideas of Cutout and Mixup by pasting a portion of one image onto another and adjusting
the labels to reflect the proportion of the mixed region. Let I1 and I2 be the two images.
The augmented image A can be expressed as

A(x, y) =

I1(x, y), if (x, y) ∈ Region1,

I2(x, y), otherwise.
(6)

The label adjustment formula is

y = λy1 + (1 − λ)y2, (7)
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where λ is the proportion of Region1.

3.4. Hyperparameters

Dataset partitioning is a key step in training and validating machine learning models.
The goal is to appropriately allocate data for model training, validation, and testing to
ensure the scientific and representative evaluation of the model’s performance. In this study,
the dataset was divided into training and validation sets with a ratio of 8:2. Additionally, to
enhance the stability and robustness of the model, K-fold cross-validation was employed.
Specifically, the dataset was divided into K non-overlapping subsets, with K − 1 subsets
used for training and the remaining subset used for validation. After repeating this process
K times, the average performance was computed. The formula for calculating the average
performance of K-fold cross-validation is

Performance =
1
K

K

∑
k=1

Pk, (8)

where Pk represents the performance metric (such as the accuracy or mIoU) for the kth
validation. In fruit phenotype analysis, through proper data preprocessing, augmentation,
and partitioning, a high-quality dataset was built to provide a reliable foundation for
subsequent model training and performance evaluation. This method not only enhances
the model’s robustness but also provides important support for practical deployment.

3.5. Proposed Method

The method presented in this study, from its overall design to specific implementa-
tion, aims to extract fruit phenotype features and identify growth anomalies through a
multimodal data fusion approach, combining instance segmentation and NLP techniques.
The overall framework of the model is a continuous flow from input data to final output
predictions, involving the collaborative work of multiple modules, as shown in Figure 3.

Agriculture Knowledge Data

Zero-shot Tile
Classification 

Diffrent Task head

Images

Detection

Classification

...

B
ERT

...

Image 
Descriptions

Discription Text

ViT

Semantic Alignment

B
ERT

Knowledge Encoding

Feature Space

Image 
DescriptionsThe fruit 

shape index

Image Features

Semantic Features

Feature
Transformation

Aligned Feature 
Space

Figure 3. Flowchart of the whole process in the proposed method, where the Agriculture Knowledge
Data block integrates domain-specific agricultural knowledge to enhance model performance and
decision making.

First, after the input data were preprocessed, it entered the instance segmentation
network for feature extraction from the images. The extracted image features were then
processed by subsequent modules, such as the feature transformation and alignment stages,
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to refine and integrate the information. Concurrently, the Agricultural Knowledge Data
block, which includes textual data such as planting records, climate data, and expert notes,
was parsed by the NLP module. This NLP process extracted meaningful insights from the
textual data to complement the visual features extracted from the images. The integration
of both image and agricultural knowledge data allowed for more accurate fruit phenotype
recognition and the identification of growth anomalies. Finally, the combined results
from both the image-based and text-based analyses were used to make precise predictions
regarding the fruit phenotype and detect potential growth anomalies.

3.5.1. Edge Transformer Segmentation Network

In this study, the proposed edge transformer segmentation network is a key component
for fruit phenotype analysis and growth anomaly identification, combining agricultural
images with agricultural knowledge (text data).

As shown in Figure 4, the network design incorporates a deep fusion of instance
segmentation and NLP techniques, aiming to precisely extract fruit phenotype features
through image segmentation and text analysis, while also integrating agricultural text data
(such as planting records and meteorological data) for anomaly detection. The network
input consists of two parts: (1) agricultural images, which provide visual information about
the fruits, and (2) agricultural knowledge (text data), which supplies multi-dimensional
information regarding the fruit’s growth environment, climate change, and management
practices. The fusion of this multimodal data helps enhance the prediction accuracy of
fruit growth anomalies and provides robust support for fruit quality management and
agricultural production decision making. The network implementation explicitly leverages
the Transformer architecture to model cross-modal interactions rather than applying simple
rules to a 2D matrix. Specifically, both image and text features are projected into a shared
feature space, where multi-head self-attention (MHSA) is employed to dynamically learn
the dependencies between different modalities. First, the network extracts basic features
from the image using convolutional layers, generating an initial feature map. This feature
map then passes through the edge-aware module, which is designed to enhance the
network’s focus on the fruit’s edge areas, especially when the fruit has a complex shape
or surface damage. The edge-aware module further strengthens the edge features in
the image by combining traditional edge detection algorithms (such as Sobel or Canny)
with convolutional operations. The module computes the edge feature map of an image
and merges it with the feature map generated by the convolution layers, enhancing the
sensitivity to fruit contours, cracks, and other detailed regions and thereby improving the
segmentation accuracy. Next, the enhanced feature map enters the Transformer module
for global information modeling. Unlike conventional convolution-based approaches,
which rely on local receptive fields, the Transformer module effectively models long-range
dependencies within an image through self-attention mechanisms. Given an input feature
representation F, the self-attention operation is computed as follows:

Z = softmax

(
(WQF)(WKF)T

√
dk

)
WV F, (9)

where WQ, WK, and WV are the query, key, and value projection matrices, respectively, and
dk is the dimensionality of the key vectors. By leveraging this global attention mechanism,
the network learns contextual relationships across different regions of an image, particularly
addressing cases where fruit morphology spans multiple spatial regions. In addition
to image data, the network’s input also includes textual data related to fruit growth.
The NLP module parses and analyzes agricultural text data (such as climate records,
planting records, and expert notes), providing additional support for predicting fruit
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growth anomalies. To ensure a seamless fusion of text and image data, textual information
is encoded using a Transformer-based embedding model, such as BERT or a domain-
specific language model. This process converts textual descriptions into dense feature
vectors, which are then aligned with the visual embeddings via cross-attention layers.
The NLP module employs a Transformer structure to process the text data, extracting key
information related to fruit growth such as climate changes, fertilization management,
and environmental factors. This information, combined with the image data, provides
more comprehensive background knowledge for the network, helping the model better
understand anomalies in the fruit’s growth process while identifying its phenotype features.
To further refine multimodal interactions, a cross-attention mechanism is incorporated,
where text features serve as queries and image features serve as keys and values, thereby
guiding the visual representation learning process based on domain knowledge. Ultimately,
the edge transformer segmentation network, through the joint processing of image and
text data, is capable of providing high-precision and robust segmentation results for fruit
phenotype analysis and growth anomaly detection. Compared with traditional methods,
the network design presented in this study fully accounts for the fruit’s morphological
features and surface conditions and the influence of external environments. This design,
particularly when dealing with fruits with fuzzy edges, damage, or irregular shapes,
demonstrates stronger accuracy and robustness. The multimodal data fusion approach not
only enhances the accuracy of fruit quality assessment but also provides powerful technical
support for intelligent decision making in agricultural production.
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Figure 4. Architecture of edge transformer segmentation network.

3.5.2. Edge Attention Mechanism

The proposed edge attention mechanism module is an extension of the traditional self-
attention mechanism, with a particular focus on edge information in the image to enhance
the network’s sensitivity to the boundary regions of an apple. The goal of this module is to
introduce an edge-aware mechanism which increases the network’s attention to the fruit’s
boundary regions, thereby optimizing segmentation results, particularly when fruit shapes
are complex, the surface is damaged, or the boundaries are blurred. Compared with the
traditional self-attention mechanism, the edge attention mechanism enables the network to
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prioritize the learning and enhancement of edge features during training, ensuring accurate
segmentation in complex fruit shapes and damaged regions, as shown in Figure 5.

Concepts

Concept Attributes

·The fruit shape index

·Fruit size

·Surface condition

Entities
and

Atrributes

Feature Encoder

Figure 5. Flowchart of edge attention mechanism.

In the design of the edge attention mechanism, the core idea of the network architecture
is to combine the advantages of the standard self-attention mechanism with the edge-
aware module. Specifically, the network first uses traditional convolutional layers to
extract feature maps and then employs edge detection algorithms to generate an edge map,
followed by a weighted self-attention mechanism to increase the network’s focus on the
edge regions. The design of the number of layers in the edge attention mechanism includes
multiple layers of self-attention mechanisms, with each layer containing a multi-head self-
attention module and a feedforward neural network. The width and height of each layer
remain consistent, ensuring spatial consistency of the feature maps across different layers.
The specific design of the network is as follows. The input image size is H × W × C, where
H is the image height, W is the image width, and C is the number of input channels. In the
self-attention layers, the output feature map remains H × W × C and is further enhanced
in the edge-aware module, improving the edge regions of the feature map. To enhance
the self-attention mechanism with edge awareness, an edge-weighting function E(i, j) is
introduced, dynamically adjusting the attention computation such that pixels in the edge
regions receive higher weights. The edge-enhanced attention is formulated as follows:

Zedge = softmax

(
(WQF)(WKF)T

√
dk

)
WV(F · E). (10)

where E represents the edge feature map generated by the edge detection module, and its
influence is adjusted through learnable weights. This formulation ensures that the network
focuses more on fruit contours, even when dealing with irregular shapes or blurred edges,
thereby improving segmentation precision. The parameters for each layer are as follows.
The dimension of each self-attention head is C/N, where N is the number of heads, typically
set to eight. The output from each layer is processed through a feedforward neural network,
with the width and height of the feature map maintained at H × W and the number of
channels remaining being C. To incorporate edge information, a weighting mechanism
is designed by combining the edge feature map E with the feature map F to enhance the
attention weights on the edge regions. The specific weighted calculation is given by

Edge Attention =
exp(Edge Feature)

∑i exp(Edge Featurei)
, (11)

where Edge Feature refers to the edge features generated by the edge detection module
and E represents the edge regions of the image. Through this mechanism, the edge atten-
tion mechanism prioritizes modeling the fruit’s edges, ensuring segmentation precision,
particularly in regions where the fruit shape is complex or damaged. The edge attention
mechanism enhances the network’s attention to the boundaries and surface damage of the
fruit, while the edge transformer segmentation network handles extraction of the over-
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all phenotype features from an image. These two modules work collaboratively in the
segmentation process, improving segmentation precision. By enhancing the network’s
sensitivity to edge regions, the edge attention mechanism provides higher segmentation
accuracy in detailed image parts, particularly in edges and damage areas. Meanwhile, the
edge transformer segmentation network focuses on processing global information and fruit
morphological features. This design ensures that when handling complex scenarios and
fruit with detailed features, the model can perform segmentation with higher precision,
especially when fruit surfaces exhibit cracks, spots, or rot, while still maintaining high recog-
nition accuracy. Therefore, the edge attention mechanism not only improves the model’s
performance in segmentation tasks, but also, by combining edge-aware mechanisms with
global context modeling, greatly enhances the model’s adaptability and robustness in fruit
phenotype analysis.

3.5.3. Edge Loss Function

The proposed edge loss function in this study is a novel loss function designed
to optimize edge accuracy in image segmentation tasks, especially for fruit phenotype
analysis. Traditional loss functions, such as cross-entropy loss and Dice loss, are effective in
optimizing models in most cases. However, they typically overlook the details of the edge
regions, especially when dealing with complex shapes, blurred boundaries, or damaged
areas, leading to unclear segmentation results at the boundaries. To address this issue, the
edge loss function introduces an edge-aware mechanism which assigns more weight to
the edge regions of an image, enabling finer segmentation. The core idea of the edge loss
function is to incorporate specific optimization for the edge regions on top of traditional
loss functions. Traditional loss functions are usually optimized at the pixel level across the
entire image, neglecting the importance of edge regions in image segmentation. In fruit
phenotype analysis, accurate segmentation of the fruit’s contours, surface damage, and
deformed areas is crucial for the quality of the results. The edge loss function, by weighting
the loss of the edge regions, ensures that the model focuses more on the boundary areas
during training, thereby improving segmentation precision. The mathematical formula for
edge loss function can be expressed as follows:

LEdge =
N

∑
i=1

(
|ŷi − yi| ·⊮edge(i)

)
, (12)

where ŷi is the predicted value, yi is the ground truth value, N is the total number of
pixels, and ⊮edge(i) is the indicator function. When pixel i belongs to the edge region,
⊮edge(i) = 1; otherwise, it is zero. This weighted loss allows the network to place more
learning emphasis on the fruit’s edge regions while reducing overemphasis on non-edge
areas, resulting in more precise boundary segmentation. In traditional loss functions, such
as cross-entropy loss, the formula is

LCE = −
N

∑
i=1

(yi log ŷi + (1 − yi) log(1 − ŷi)) (13)

These loss functions typically optimize all pixels with equal weight, ignoring the
uniqueness of edge regions in segmentation. The edge loss function, on the other hand,
addresses this by adding specialized weighting for the edge areas, allowing the network to
focus more on precise segmentation of the edges, especially when handling complex fruit
shapes and surface damage. This design significantly improves the recognition accuracy of
edge parts, particularly when fruit surfaces exhibit cracks, spots, or rot, preventing mis-
segmentation due to blurred edges. The integration of the edge attention mechanism and
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edge loss function within the edge transformer segmentation network plays a critical role
in fruit phenotype analysis and anomaly detection. The Transformer-based segmentation
model captures both global context and fine-grained local details, while the edge-specific
enhancements ensure that boundary information is accurately preserved and learned. Com-
pared with traditional segmentation methods which rely solely on pixel-wise classification,
this approach effectively models complex shape variations and enables precise contour
extraction, making it particularly useful in agricultural applications where fruit shape and
surface characteristics are crucial quality indicators. By incorporating both attention-based
edge enhancement and an edge-sensitive loss function, the proposed approach not only
improves the segmentation accuracy but also enhances robustness in real-world agricul-
tural scenarios. The ability to distinguish subtle fruit defects and deformations makes this
method valuable for automated quality assessment, early disease detection, and optimized
resource management in smart agriculture.

3.6. Experimental Design
3.6.1. Hardware and Software Platforms

In this study, the choice and configuration of the hardware and software platform
played a critical role in ensuring efficient execution of the experiments and the reliability
of the results. On the hardware side, an NVIDIA A100 GPU was used, which is designed
specifically for artificial intelligence and high-performance computing. Based on the Am-
pere architecture, the A100 supports multi-precision computations (including FP64, FP32,
TF32, and FP16), with up to 6912 cores and 40 GB or 80 GB of memory, providing excep-
tional data processing capabilities. During large-scale data training and deep learning
model execution, the A100 GPU significantly accelerates computation and supports parallel
processing of multiple tasks. The experimental platform also includes a high-performance
CPU, more than 256 GB of memory, and high-speed NVMe solid-state drives, ensuring
efficient data loading, processing, and storage. For the software platform, the experiment
was run on a Linux operating system, specifically Ubuntu 20.04 LTS, which is widely used
for its stability and good support for deep learning frameworks. The deep learning models
were developed and trained using the PyTorch framework version 1.12.0, with CUDA
11.6 and cuDNN 8.3 installed to fully leverage GPU acceleration. The Adam optimizer
was chosen for its fast convergence and adaptability, making it one of the mainstream
optimization algorithms in deep learning. The learning rate was set to 0.001, which was
determined through several experimental adjustments to be the optimal value, ensuring
quick convergence without oscillation. Additionally, the OpenCV and Albumentations
libraries were used for efficient data preprocessing and augmentation, while model perfor-
mance evaluation and visualization were performed using tools such as Matplotlib and
Seaborn. The entire experimental environment was deployed through Docker containeriza-
tion, which not only improved the reproducibility of the experiments but also facilitated
cross-platform migration.

3.6.2. Baseline Models

To comprehensively assess the performance of the proposed method, several classic
deep learning models were chosen as baseline models, including Tiny-Segformer [23],
Mask R-CNN [33], UNet [30], UNet++ [46], and DeepLabV3+ [31]. These models represent
different technological directions and architectural characteristics in the field of image
segmentation. Tiny-Segformer is a lightweight Transformer architecture which combines
an efficient self-attention mechanism with convolution operations, maintaining computa-
tional efficiency while offering strong feature extraction capabilities, making it particularly
suitable for resource-constrained scenarios. Mask R-CNN is a dual-task model based on
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object detection and segmentation capable of generating pixel-level segmentation masks
in addition to bounding box detection. Its loss function includes the classification loss
Lcls, bounding box regression loss Lbbox, and segmentation loss Lmask. Both UNet and its
improved version, UNet++, use an encoder-decoder structure at their core, integrating
multi-scale features through skip connections. These architectures are particularly suitable
for fine-grained segmentation tasks in medical and agricultural imaging, with UNet++
further enhancing the network’s expressive power by redesigning the skip connection mod-
ules. DeepLabV3+ uses dilated convolution (atrous convolution) and the Atrous Spatial
Pyramid Pooling (ASPP) module to effectively capture multi-scale contextual information,
with the loss function typically based on pixel-level cross-entropy.

To ensure a fair comparison, all baseline models were trained and tested on the
same dataset, using the same image data for phenotype feature extraction and growth
anomaly detection. However, since most of these models (such as UNet, UNet++, Mask
R-CNN, and DeepLabV3+) are designed primarily for image-based segmentation tasks,
they were not originally built to process multimodal information. Therefore, for these
models, only the image input was utilized, without directly integrating meteorological data
or other agricultural textual information. In contrast, the proposed method incorporates
both image and textual data, leveraging a dedicated NLP module to process agricultural
knowledge (such as planting records and meteorological data) and fusing it with visual
features through an attention-based multimodal learning approach. To maintain a fair
experimental set-up, Tiny-Segformer, which is a Transformer-based segmentation model,
was extended with an NLP component similar to the one in the proposed system. However,
due to its original lightweight design, its capacity for processing and integrating textual
information remains more limited than the proposed method. These baseline models
provide a reference standard for performance comparison in this study and help thoroughly
verify the effectiveness of the proposed method.

3.6.3. Evaluation Metrics

In this study, several evaluation metrics were used to comprehensively assess the
model’s performance, including the precision, recall, accuracy, and mean intersection over
union (mIoU). These metrics measure the model’s performance in fruit phenotype analysis
and anomaly detection from different dimensions. Precision measures the proportion
of true positive samples among all samples predicted to be positive, focusing on the
correctness of the predictions, which is particularly important in high-precision scenarios.
Recall measures the proportion of true positive samples which were correctly predicted
to be positive, reflecting the model’s ability to capture positive samples and serving as
an important metric for evaluating false negatives. Accuracy represents the proportion
of correctly classified samples among all predictions, suitable for evaluating the overall
performance of the model. The mIoU, commonly used in semantic segmentation tasks,
calculates the ratio of the intersection to the union between the predicted and ground truth
regions, averaging this ratio across all categories to measure the global consistency of the
model’s segmentation results. The mathematical definitions of these evaluation metrics are
as follows:

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

IoU =
Prediction ∩ Ground Truth
Prediction ∪ Ground Truth

, (16)
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mIoU =
1
C

C

∑
c=1

IoUc, (17)

where TP represents true positives, FP represents false positives, FN represents false
negatives, TN represents true negatives, ∩ denotes the intersection, ∪ denotes the union, C
is the total number of classes, and IoUc is the intersection over union for class c.

4. Results and Discussion
4.1. Experimental Results of Phenotype Feature Extraction Models

The experimental design presented in this study aims to evaluate the performance of
different deep learning models in the task of extracting fruit phenotype features. By compar-
ing the precision, recall, accuracy, and mIoU metrics of various models, the study analyzed
the advantages and shortcomings of each model in fine segmentation tasks, providing a
theoretical foundation for subsequent model optimization. The models used in the ex-
periments included UNet, Mask R-CNN, DeeplabV3+, UNet++, Tiny-Segformer, and the
proposed method. Through these comparative experiments, the influence of the model
architecture, loss functions, and optimization strategies on the accuracy of phenotype
feature extraction could be deeply understood, offering theoretical support for intelligent
fruit analysis in agricultural production.

As shown in Table 2, the experimental results demonstrate different levels of perfor-
mance across all models in terms of precision, recall, accuracy, and the mIoU. The UNet
model achieved a precision of 0.84, recall of 0.82, accuracy of 0.83, and mIoU of 0.80, in-
dicating good performance in basic segmentation tasks but with room for improvement
in handling finer details. Compared with UNet, Mask R-CNN showed improvements in
its precision and recall, achieving scored of 0.86 and 0.83, respectively, with an accuracy
and mIoU of 0.85 and 0.83, respectively, indicating better handling of object boundaries
and details in the instance segmentation task. DeeplabV3+ introduced atrous convolution
and spatial pyramid pooling modules, which enhanced the model’s ability to capture
multi-scale features, with precision, recall, and mIoU scores of 0.89, 0.86, and 0.86, re-
spectively, demonstrating an advantage in processing multi-scale contextual information.
UNet++ further improved the precision to 0.90, the recall to 0.88, and the mIoU to 0.87,
showing that its enhanced skip connections improved detail recovery. Tiny-Segformer, a
lightweight Transformer architecture, demonstrated strong feature extraction capabilities
with efficient self-attention and convolution operations, achieving precision and recall
scores of 0.92 and 0.89, respectively, and an mIoU of 0.89, indicating that the model could
provide strong feature extraction while maintaining computational efficiency. The proposed
method outperformed all other models, with a precision of 0.95, recall of 0.91, accuracy of
0.93, and mIoU of 0.92, demonstrating that the model, through combining edge perception
mechanisms and global contextual modeling, provided higher precision and robustness in
the complex task of fruit phenotype feature extraction. From a theoretical perspective, the
architectures of the models significantly influenced the experimental results. Both UNet
and UNet++ employ encoder-decoder structures and fuse multi-scale features through skip
connections, but UNet++ further enhances network expressiveness through improved skip
connections, leading to better performance in detail recovery. Mask R-CNN, a dual-task
model for object detection and segmentation, not only provides bounding box detection
but also generates pixel-level segmentation masks, which contribute to better segmentation
results when handling object boundaries and complex structures. DeeplabV3+ effectively
captures multi-scale contextual information through atrous convolution and spatial pyra-
mid pooling modules, which is particularly advantageous when dealing with complex
backgrounds and large objects. The lightweight Transformer architecture of Tiny-Segformer,
which combines efficient self-attention mechanisms with convolution operations, enables
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the model to extract strong global features while maintaining computational efficiency,
which is why it achieves high precision. The proposed method combines the advantages
of these models by incorporating edge perception mechanisms and global contextual in-
formation modeling, enabling more precise capture of fruit contours, surface damage,
and other detailed features, which is why it outperformed the other models across all
evaluation metrics. These results highlight the significant impact of the model structure,
loss functions, and optimization strategies on segmentation performance, especially in
complex scenarios. The models which incorporated edge information and a global context
had greater robustness and accuracy.

Table 2. Experimental results of phenotype feature extraction models.

Model Precision Recall Accuracy mIoU

UNet 0.84 0.82 0.83 0.80
Mask R-CNN 0.86 0.83 0.85 0.83
DeeplabV3+ 0.89 0.86 0.87 0.86

UNet++ 0.90 0.88 0.99 0.87
Tiny-Segformer 0.92 0.89 0.91 0.89

Proposed Method 0.95 0.91 0.93 0.92

4.2. Experimental Results of Growth Anomaly Recognition Models

The design of this experiment aims to evaluate the performance of various deep
learning models in the task of growth anomaly recognition, particularly in identifying
abnormal conditions during fruit growth, such as pest damage and cracks. As shown in
Table 3, the experiment compared the performance of different models based on various
metrics to analyze their advantages and limitations in handling growth anomalies and to
provide a theoretical basis for practical applications in fruit quality monitoring and pest
warning systems.

Table 3. Experimental results of growth anomaly recognition models.

Model Precision Recall Accuracy mIoU

UNet 0.82 0.80 0.81 0.79
Mask R-CNN 0.84 0.82 0.83 0.81
DeeplabV3+ 0.87 0.84 0.85 0.82

UNet++ 0.89 0.87 0.88 0.84
Tiny-Segformer 0.91 0.88 0.90 0.86

Proposed Method 0.93 0.90 0.91 0.89

From the experimental results, it is evident that all models exhibited varying degrees of
performance in the growth anomaly recognition task. The UNet model achieved a precision
of 0.82, recall of 0.80, accuracy of 0.81, and mIoU of 0.79, demonstrating basic performance.
Compared with UNet, Mask R-CNN showed improvements in precision, recall, and mIoU,
with values of 0.84, 0.82, and 0.81, respectively. This indicates that its dual-task structure (ob-
ject detection and instance segmentation) played an active role in recognizing fruit growth
anomalies. DeeplabV3+, with the incorporation of atrous convolution and spatial pyramid
pooling modules, showed an advantage in handling multi-scale contextual information,
achieving a precision of 0.87, recall of 0.84, and mIoU of 0.82. This suggests that DeeplabV3+
performs better than the previous models in complex scenarios. UNet++, with its improved
skip connection module, demonstrated excellent performance in terms of both precision
(0.89) and recall (0.87), with an mIoU of 0.84, confirming its advantage in detail recovery
and multi-scale information fusion. Tiny-Segformer, a lightweight Transformer-based
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architecture, combined self-attention mechanisms and convolution operations, achieving a
precision of 0.91, recall of 0.88, and mIoU of 0.86, indicating its powerful feature extraction
ability and global information modeling capabilities. The proposed method outperformed
all other models in all metrics, with a precision of 0.93, recall of 0.90, accuracy of 0.91, and
mIoU of 0.89, demonstrating that combining edge perception mechanisms and global infor-
mation modeling significantly improves recognition accuracy and robustness in handling
complex growth anomaly scenarios. From a theoretical analysis perspective, the architec-
tural characteristics of the models directly influenced the experimental results. Both UNet
and UNet++ use an encoder-decoder structure and fuse multi-scale features through skip
connections. However, UNet++ further optimizes skip connections, improving its abil-
ity to recover details, which is why it performed better in growth anomaly recognition.
Mask R-CNN, with its dual-task structure for object detection and instance segmentation,
can simultaneously precisely segment a fruit’s location and area, making it superior to
UNet in handling anomalies with clear boundaries. DeeplabV3+ benefits from atrous
convolution and spatial pyramid pooling modules, enabling it to capture richer contextual
information in multi-scale contexts and thereby improving its ability to recognize complex
backgrounds and irregular anomalies. Tiny-Segformer, through the combination of effi-
cient self-attention mechanisms and convolution operations, excels in feature extraction
and global information modeling, allowing it to better capture long-range dependencies,
which contributed to its high precision and recall scores. The proposed method introduces
an edge perception mechanism, enabling the network to focus more on fruit edges and
anomaly regions. By combining this mechanism with global information modeling, the
model effectively improves performance in complex growth anomaly scenarios. The edge
perception mechanism strengthens the precise recognition of anomaly regions, while the
Transformer architecture enhances the understanding of the global context, allowing the
model to maintain high precision when dealing with complex fruit shapes and surface
damage. These experimental results suggest that optimizing the model architecture, en-
hancing feature extraction capabilities, and introducing edge perception mechanisms are
crucial for improving the accuracy and robustness of growth anomaly recognition.

4.3. Accuracy Results of Different Models for Various Phenotype Features

As shown in Table 4, the design of this experiment aimed to evaluate the performance
of various deep learning models in extracting and recognizing fruit phenotype features
such as the fruit shape index, fruit size, color, and surface state. By comparing the accuracy
of different models on these phenotype features, the goal was to analyze the performance
differences among models when handling various fruit features and to investigate the
impact of different model architectures on feature extraction and recognition accuracy.
The analysis of the experimental results provides theoretical support for selecting the
optimal model in fruit phenotype analysis tasks and reveals the role of model architecture
and optimization strategies in enhancing fruit feature extraction accuracy.

Table 4. Accuracy results of different models for various phenotype features.

Model Fruit Shape Index Fruit Size Color Surface State

UNet 0.81 0.82 0.83 0.84
Mask R-CNN 0.83 0.84 0.85 0.87
DeeplabV3+ 0.85 0.87 0.87 0.89

UNet++ 0.86 0.89 0.89 0.91
Tiny-Segformer 0.90 0.91 0.92 0.92

Proposed Method 0.92 0.93 0.94 0.95
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The experimental results show significant differences in the performance of all models
for different phenotype features. The UNet model exhibited relatively lower accuracy
scores across all phenotype features, with values of 0.81, 0.82, 0.83, and 0.84, indicating
its basic ability in fruit feature extraction but struggles in capturing complex feature re-
lationships due to its relatively simple architecture. Mask R-CNN showed improvement
over UNet, especially in recognizing fruit surface states, with an accuracy of 0.87 compared
with 0.84 for UNet. This suggests that the model’s dual-task structure (object detection and
instance segmentation) enhances boundary detail extraction in the instance segmentation
task. DeeplabV3+ incorporates atrous convolution and spatial pyramid pooling modules,
which better handle multi-scale features, leading to improved recognition accuracy for the
fruit size and surface state, with values of 0.87 and 0.89, respectively. UNet++ improves
upon the skip connection in the encoder-decoder structure, further enhancing the accuracy
of all phenotype features, especially the fruit size and surface state, with accuracy values
of 0.89 and 0.91, respectively, indicating its advantage in handling complex structural fea-
tures. Tiny-Segformer, a lightweight Transformer-based model, significantly improved the
accuracy across all features, especially fruit color and surface state, reaching 0.92 for both,
demonstrating the advantage of the self-attention mechanism in global feature modeling.
The proposed method outperformed all other models in feature extraction, with accuracy
values of 0.92, 0.93, 0.94, and 0.95 for the various phenotype features, especially in surface
state recognition. By combining edge perception mechanisms with global contextual infor-
mation modeling, the proposed model significantly enhanced its detail capture, allowing
it to more precisely identify the surface features of the fruit. From a theoretical analysis
perspective, the differences in the experimental results were directly influenced by the
model architectures. Both UNet and UNet++ adopt an encoder-decoder structure and
fuse multi-scale features through skip connections, but UNet++ further optimizes skip
connections, enhancing its ability to integrate multi-scale features, which led to better
performance in fruit phenotype feature extraction. Mask R-CNN, as a multi-task learning
model, leverages object detection mechanisms to effectively extract object boundaries and
generate accurate segmentation masks. This ability enabled the model to achieve better
results when handling surface state and complex fruit shape features. DeeplabV3+ uses
atrous convolution and spatial pyramid pooling modules, which expand the receptive
field and capture multi-scale contextual information, giving it an advantage in handling
large objects and complex backgrounds. Tiny-Segformer combines self-attention mecha-
nisms with convolution operations, allowing it to better capture long-range dependencies
and efficiently utilize global information during feature extraction, resulting in improved
performance in terms of fruit color and shape recognition. The proposed method, with
the introduction of an edge perception mechanism, not only improved the segmentation
accuracy of the surface state but also effectively captured subtle changes in fruit shape,
demonstrating strong robustness and high precision when identifying complex fruit shapes
and surface damage. These results indicate that model architecture innovation, enhanced
feature extraction capabilities, and effective utilization of edge information are crucial
factors in improving the accuracy of phenotype feature extraction.

4.4. Ablation Experiment with Different Attention for Phenotype Features

As shown in Table 5, the design of this experiment aimed to evaluate the impact of
different attention mechanisms on model performance, particularly in the precise extraction
of features and recognition of anomalies in fruit phenotype analysis tasks. Specifically,
the experiment compared the performance of the standard self-attention mechanism, the
channel and spatial attention mechanism (CBAM), and the proposed improved attention
mechanism across various metrics. The objective of these comparisons was to clarify the ef-
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fectiveness of different attention mechanisms in capturing image features, thereby verifying
whether the proposed method could effectively enhance model performance, particularly
in the tasks of fruit phenotype feature extraction and growth anomaly recognition.

Table 5. Ablation experiment with Different attention for phenotype feature.

Model Precision Recall Accuracy mIoU

Standard Self-Attention 0.76 0.72 0.74 0.71
CBAM 0.85 0.81 0.83 0.80

Proposed Method 0.95 0.91 0.93 0.92

From the experimental results, it can be observed that the standard self-attention
mechanism exhibited relatively worse performance, with a precision of 0.76, recall of 0.72,
accuracy of 0.74, and mIoU of 0.71. This suggests that while the standard self-attention
mechanism can capture global information, its ability to focus on local features and details
is limited. In comparison, the CBAM showed significant improvements across all metrics,
with a precision of 0.85, recall of 0.81, accuracy of 0.83, and mIoU of 0.80. This indicates
that the combination of channel and spatial attention mechanisms effectively enhanced
the model’s focus on different regions and features of an image, especially improving
sensitivity to fruit features and anomaly areas. The proposed method, which combines
edge perception mechanisms and global contextual information modeling, achieved the
best results in terms of precision (0.95), recall (0.91), accuracy (0.93), and mIoU (0.92),
demonstrating that the method effectively enhances feature capture in edge and complex
regions, improving the precision of fruit phenotype feature extraction and growth anomaly
recognition. From a theoretical perspective, the standard self-attention mechanism models
global information by calculating the similarity between image features, but it lacks spe-
cialized attention to key local regions. As a result, it may overlook edge information and
details when processing complex image features. The CBAM improves upon the standard
self-attention mechanism by introducing attention mechanisms in both the channel and spa-
tial dimensions, enhancing the model’s attention to different channels and spatial regions.
This improvement effectively boosts the model’s ability to extract features, particularly in
handling the details of fruit shapes and surface states. The proposed method further refines
this approach by introducing an edge perception mechanism, which enables the network
to focus on the edge regions of a fruit during training. This is especially crucial when
dealing with surface damage or deformities, as it allows for precise identification of these
complex regions. Mathematically, the standard self-attention mechanism typically models
global information by calculating the relationships between each pixel in the input feature
map, but its expression of local details, particularly the surface details of a fruit, is weak.
The CBAM, by introducing attention mechanisms in both the channel and spatial dimen-
sions, not only allows the model to focus on global features but also enables it to weight
the important regions of an image, enhancing its ability to recognize details. The proposed
method improves this further by incorporating an edge perception mechanism, which
focuses more attention on edge regions, maintaining high segmentation accuracy even in
cases where a fruit shape is complex, the surface is damaged, or boundaries are unclear.
This design illustrates the advantage of the self-attention mechanism in combining both
local and global features, significantly enhancing the model’s robustness and precision,
especially when dealing with complex image tasks.

4.5. Application in Agricultural Economics

The model proposed in this study, by integrating agricultural knowledge with deep
learning techniques, has made significant contributions to the agricultural economy.
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Through the precise extraction of fruit phenotypic features and the effective identifica-
tion of growth anomalies, the model not only enhanced the ability to monitor fruit quality
but also provided data support for quantifiable economic assessments in agricultural pro-
duction. In the context of agricultural economics, the quality of fruit directly influences
the market value and production efficiency. Therefore, accurate fruit quality assessment is
crucial for improving agricultural productivity and economic benefits. By comprehensively
analyzing the shape, surface condition, size, and color of a fruit, the model provides agricul-
tural producers with detailed fruit quality information, enabling farmers to monitor crop
growth in real time and take timely measures to optimize production processes and reduce
losses. This model further contributes to economic optimization by reducing post-harvest
losses through precise defect detection and classification, allowing for better sorting and
market positioning of agricultural products.

Additionally, the incorporation of agricultural knowledge for anomaly detection al-
lows the model to address the impact of environmental factors such as climate change
and soil conditions on fruit growth, offering targeted warnings and recommendations.
This not only helps improve the sustainability of agricultural production but also reduces
the occurrence of pests and diseases, thus minimizing pesticide usage and promoting the
development of green agriculture. By leveraging real-time phenotypic analysis, producers
can adopt data-driven strategies to adjust cultivation practices dynamically, aligning re-
source investment with the predicted yield and market demand. Practical application of
the model in agricultural economics has facilitated the optimization of resource allocation.
By accurately identifying anomalies in fruit growth and pest occurrences, producers can
precisely deploy fertilization, irrigation, and pest control measures, avoiding excessive
resource use and further reducing production costs. The model’s ability to integrate phe-
notypic analysis with environmental and economic parameters provides a foundation
for cost-benefit assessments, allowing for more informed decision making regarding in-
vestment in precision farming technologies. In large-scale agricultural production, this
intelligent fruit monitoring technology significantly increases labor productivity, reduces
labor costs, and enhances the digitalization and automation levels of the agricultural supply
chain, promoting the modernization of agriculture.

4.6. Future Work in Smart Agriculture

In future work, the focus will be placed on the practical application of the proposed
model in real-world agricultural production. To achieve this, efforts will be directed toward
optimizing the model for deployment on edge computing devices such as the Jetson Nano,
enabling real-time processing with reduced computational complexity, as shown in Table 6.

Table 6. Performance on different hardware platforms.

Hardware Platform Precision Recall Accuracy mIoU FPS

GPU platform (baseline) 0.95 0.91 0.93 0.92 47.1
Jetson Nano (lightweight version) 0.91 0.89 0.90 0.89 30.5

Huawei P40 pro (lightweight version) 0.88 0.85 0.85 0.83 18.3

By designing a lightweight version of the proposed edge transformer segmentation
network, the feasibility of implementing the model in resource-constrained environments,
such as automated agricultural machinery and intelligent monitoring systems, will be
explored. This will allow for real-time fruit phenotype analysis and anomaly detection in
the field, providing immediate feedback for decision making in agricultural management.
Additionally, the integration of the model into unmanned aerial vehicles (UAVs) and
robotic harvesting systems will be investigated to enhance precision agriculture practices.
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These developments will further bridge the gap between theoretical advancements and
practical applications, ensuring that the proposed methodology contributes to improving
agricultural efficiency, reducing resource waste, and supporting intelligent agricultural
decision making in real-world scenarios.

5. Conclusions
With the rapid development of intelligent agriculture, efficiently and accurately as-

sessing fruit growth status and quality in apple production has become a critical factor in
enhancing agricultural productivity and economic benefits. This study aimed to propose a
deep learning-based approach for apple phenotype analysis and growth anomaly recog-
nition by integrating instance segmentation, NLP, and innovative attention mechanisms.
The method addresses the limitations of traditional fruit quality detection and anomaly
recognition techniques, providing robust technical support for intelligent agriculture and
agricultural economic analysis.

The proposed approach introduces several innovations. First, a comprehensive
method combining instance segmentation and NLP is presented. By integrating image
analysis and text parsing, the method accurately extracts fruit phenotype features, such as
the fruit shape, color, and surface condition, while simultaneously utilizing agricultural
textual data, including meteorological information and cultivation records, to identify
growth anomalies. This multimodal data fusion overcomes the limitations of traditional
image-based methods, enabling a holistic improvement in the accuracy of fruit quality
detection and anomaly prediction from multiple perspectives. Moreover, this study in-
troduced innovative edge attention modules and edge loss mechanisms, which enhance
the model’s focus on fruit edge regions and refine its handling of abnormal areas. These
advancements significantly improve the model’s performance in scenarios involving com-
plex fruit morphology, surface damage, and growth anomalies. Through these innovative
designs, the proposed method not only enhances the precision of fruit phenotype fea-
ture extraction but also provides more accurate and reliable data support for agricultural
production decision making. The experimental results demonstrate that the proposed
approach achieved significant improvements in accuracy and offers new perspectives and
technological support for agricultural economic analysis.
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