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Abstract: The effective diagnosis of mild nutrient stress across the complete growth cycle 
of facility-grown tomatoes is challenging. This study proposes a deep learning framework 
based on CNN + LSTM, using canopy near-infrared spectroscopy from different growth 
stages of tomatoes as input, to diagnose mild stress of nitrogen (N), potassium (K), and 
calcium (Ca) throughout the entire growth cycle of facility-grown tomatoes. The study 
compares the diagnostic performance of Random Forest (RF), Support Vector Machine 
(SVM), Partial Least Squares (PLS), Convolutional Neural Networks (CNNs), and CNN + 
Long Short-Term Memory (LSTM) models for detecting mild nutrient stress in facility-
grown tomatoes. Firstly, the preprocessing method of spectral characteristic bands com-
bined with Savitzky‒Golay (SG) + Standard Normal Variate (SNV) was determined. Sub-
sequently, all sample data were divided into six groups: N-deficient, K-deficient, Ca-defi-
cient, N-excess, K-excess, and Ca-excess. The aforementioned models were then used for 
classification prediction. The results show that RF and CNN + LSTM models demon-
strated good predictive performance. Specifically, RF achieved accuracy rates of 70.14%, 
90.81%, 88.59%, and 85.37% in the classification tasks of Ca-deficient, N-excess, K-excess, 
and Ca-excess, respectively. The CNN + LSTM model achieved accuracy rates of 93.33%, 
63.33%, 99.2%, 83.33%, and 98.52% in the classification tasks of K-deficient, Ca-deficient, 
N-excess, K-excess, and Ca-excess, respectively. Finally, in the Leave-One-Group-Out 
Validation (LOGOV) for validating the model’s generalisation performance, RF per-
formed better in the N-deficient, K-deficient, and Ca-deficient tasks, achieving diagnostic 
accuracy rates of 80.19%, 81.43%, and 77.02%, respectively. The CNN + LSTM model 
showed a diagnostic accuracy rate of 66.72% in the N-excess classification task. The study 
concludes that, given complete training data, the CNN + LSTM model can effectively di-
agnose mild nutrient stress (N, K, and Ca) in facility-grown tomatoes in most scenarios. 

Keywords: facility-grown tomatoes; near-infrared spectroscopy; time series; deep  
learning; stress diagnosis 
 

1. Introduction 
Tomatoes are an important economic crop widely cultivated worldwide, and their 

growth, development, and yield quality are significantly influenced by nutrient supply 
[1]. However, the antagonistic interactions between elements make nutrient management 
for tomatoes quite complex [2]. Nitrogen (N), potassium (K), and calcium (Ca) are the 
three elements that tomatoes require in the greatest amounts for growth. High summer 
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temperatures can inhibit Ca absorption in tomatoes [3]; for Ca supplement, N nitrogen is 
often introduced, resulting in excessive nitrogen; excessive N, in turn, suppresses the ab-
sorption of both K and Ca by tomatoes [4,5]. Therefore, the rapid and accurate diagnosis 
of whether tomatoes are under nutrient stress is of vital importance for ensuring the qual-
ity of the crop. 

Traditional nutrient stress diagnosis relies on sampling plant tissues and analysing 
the nutrient content within them using laboratory chemical methods [6]. However, this 
approach is not only time-consuming and labour-intensive, but it may also interfere with 
the normal growth and development of the plants [7]. In recent years, non-destructive 
detection technologies, such as 2D/3D imaging, hyperspectral imaging, and near-infrared 
spectroscopy, have significantly improved the efficiency and accuracy of plant phenotype 
acquisition [8,9], providing new methods for diagnosing plant nutrient stress. 

The current mainstream non-destructive plant nutrient stress diagnosis methods are 
based on plant image information. Numerous studies have demonstrated that by using 
deep learning networks to analyse tomato leaf images, high-precision nutrient stress di-
agnosis can be achieved [10–12]. However, these studies have mainly focused on the ef-
fective identification of tomatoes with severe nutrient deficiencies. When tomatoes expe-
rience mild nutrient deficiencies (here, we provide the definitions for mild nutrient stress: 
we define tomato plants that exhibit a certain degree of nutrient deficiency but do not 
show significant deficiency symptoms (such as leaf yellowing, dark green leaves, unex-
panded tips of new leaves, or dried leaf tips and edges. Refer to Figure S1 in the Supple-
mentary Materials) as mild nutrient deficiencies. Similarly, tomato plants that experience 
over-fertilisation but do not exceed twice the standard nutrient application rate for any 
nutrient are defined as mild nutritional excesses), their leaves do not exhibit typical symp-
toms such as scorching, yellowing, or chlorosis. As a result, research on diagnosing mild 
nutrient deficiencies remains insufficient. Furthermore, the aforementioned studies have 
only distinguished cases of nutrient insufficiency, without considering the situation of nu-
trient excess. The reason for this is that the plant physiological information contained in 
plant images is limited, providing insufficient discriminatory basis to support further in-
depth research. 

Near-infrared spectroscopy is a technique for collecting and analysing the spectral 
characteristics of an object in the near-infrared region (700–2500 nm). It is commonly used 
in agriculture to assess various traits and characteristics of plant leaves, stems, and fruits 
[13,14]. Near-infrared spectra contain excess plant physiological information, while the 
amount of sample data required is relatively small. Therefore, near-infrared spectroscopy 
offers advantages such as speed, non-destructiveness, and accuracy in the analysis of tar-
get components [15]. 

A complete near-infrared spectral curve typically contains several hundred data 
points. Common data analysis methods do not perform particularly well when handling 
samples with large data volumes [16]. To improve data processing efficiency and predic-
tion accuracy, researchers often select specific spectral regions or use spectral indices for 
analysis. Furlanetto [17] compared the performance of data processed using feature band 
selection algorithms (such as continuous projection algorithm, competitive adaptive re-
weighting sampling, Partial Least Squares (PLS), and principal component analysis) and 
raw spectral data in predicting K content in soybean leaves. The results showed that the 
prediction accuracy of the spectral regression model with selected bands was approxi-
mately 7.65% higher than that of the model using the full spectrum. These studies focus 
solely on a single nutrient element and do not achieve the goal of multi-nutrient simulta-
neous prediction. Fang [18] used PLS regression and gradient boosting regression trees to 
establish a full-band spectral prediction model for Ca, K, and boron (B) content in pear 
fruit flesh and skin. The results showed that the prediction models for the three elements 
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had R² values greater than 0.8 for the prediction sets. Lyu [19] employed support vector 
regression to analyse the spectral reflectance of grape leaves, achieving high-accuracy pre-
dictions for K and Ca content in the leaves, with R2 values of 0.7 and 0.62, respectively, 
and Root Mean Squared Error (RMSE) values of 0.0006 and 0.0011. These studies achieved 
simultaneous predictions for multiple nutrient elements, but they focused on nutrient 
content analysis of plant tissues at specific sampling time points, without considering the 
entire plant growth cycle. They overlooked the potential impact of plant differences at 
various growth stages on the experimental results. 

Currently, research on tomatoes based on near-infrared spectroscopy is mainly fo-
cused on disease diagnosis, maturity analysis, or biomass analysis [20], with limited stud-
ies on nutrient stress. Furthermore, existing studies often overlook an important fact: even 
when fertiliser application remains constant, there are significant spectral differences in 
the same tomato plant at different growth stages [21]. Therefore, when modelling using 
spectral sampling data from a single time point, errors may be introduced in nutrient 
stress diagnosis. For example, spectral variations caused by the growth stage might be 
misinterpreted as signals of nutrient stress, leading to inaccurate diagnostic results. 

In view of this, this study designed a 1D Convolutional Neural Networks (CNNs) + 
Long Short-Term Memory (LSTM) deep learning network model, using facility-grown to-
mato leaf spectral data as input to predict the stress status of three nutrient elements: N, 
K, and Ca. The classification performance of the PLS, Support Vector Machine (SVM), 
Random Forest (RF), and single CNN structure models was compared with that of the 
proposed model, demonstrating that the model effectively integrates spectral differences 
caused by growth stage variations in facility-grown tomatoes. The model presented in this 
study provides a more accurate basis for diagnosing nutrient stress in facility-grown to-
matoes and contributes to better nutrient management for facility-grown tomatoes. 

2. Materials and Methods 
2.1. Experimental Materials 

In this study, tomato breeding was initiated in an indoor holding tank on 19 February 
2024, and tomato seedlings were transplanted into rockwool blocks (GRODAN, The Neth-
erlands, 100 × 100 × 100 mm) on 15 March 2024. The experimental site was located on a 
field farm in Pukou District (118.6465° E, 32.1788° N), Nanjing city, Jiangsu Province, 
China, in a film greenhouse (8 × 11 × 3 m), which was closed in the east‒west direction, 
ventilated in the north‒south direction 24 h a day, and covered with shade netting on the 
top of the greenhouse in the case of high temperatures. A total of 54 tomato plants of the 
“Zhejiang Powder 202” variety were planted, with the test site shown in Figure 1. From 
the date of transplanting, all seedlings were treated with Yamazaki Tomato Standard Nu-
trient Solution (Ec = 2.435 mS cm−1) [22]. From 21 March to 21 June 2024, a gradient design 
of Yamazaki tomato hydroponic nutrient solution formulation components was carried 
out in a controlled trial with three replicates in each group. The cultivation substrate con-
sisted of double-stacked rockwool blocks (100 × 100 × 100 mm) placed in pots of uniform 
size (200 × 200 mm) with perlite sprinkled around the rockwool blocks. Manual irrigation 
was applied once per day at 9 a.m and 5 p.m. Each irrigation event was considered com-
plete when the nutrient solution began oozing from the bottom of the rockwool blocks. 
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Figure 1. (a) Overhead view of plants; (b) overall view of experimental site. 

The Yamazaki tomato nutrient solution formula was developed according to plant 
water and fertiliser uptake requirements and is considered a stable nutrient solution. The 
nutrient solution used in the gradient test was formulated according to the Yamazaki To-
mato Nutrient Solution Formula, and the dosages of nutrient compounds with variations 
are shown in Table 1. The dosages of nutrient compounds without variations are shown 
in Table 2, and the micronutrients were formulated according to the general formula. 

Table 1. Nutrient compounds with dosage variations. 

Group Number Ca(NO3)2·4H2O Dosage (mg L−1) KNO3 Dosage (mg L−1) 
a 354 404 
b 177 202 
c 531 606 
d 708 808 
e 118 404 
f 236 404 
g 531 404 
h 708 404 
i 354 135 
j 354 270 
k 354 606 
l 354 808 

m 177 202 
n 177 808 
o 708 202 
p 708 808 

Group a represents the standard dosage of the Yamazaki tomato nutrient solution 
formulation (including only the nutrient compounds with adjusted dosages). Groups b, c, 
and d represent all nutrient compounds scaled proportionally on the basis of group a, and 
groups e~p represent only the nutrient compounds in the dosage adjustment table. 
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Table 2. Nutrient compounds with no change in dosage. 

 Nutrient Compound Names Nutrient Compound Content (mg L−1) 

Major elements NH4H2PO4 77 
MgSO4·7H2O 246 

Trace elements 

EDTA-NaFe 30 
H3BO3 2.86 

MnSO4·4H2O 2.13 
ZnSO4·7H2O 0.22 
CuSO4·5H2O 0.08 

(NH4)6Mo7O24·4H2O 0.02 

2.2. NIR Spectral Data Acquisition and Preprocessing 

A handheld Near-infrared (NIR) spectrometer (NIR-R210, PTNECT, CHINA) [23] 
was used to collect spectral data from the top layer (vertical direction without blade shade) 
of the tomato leaves. Each targeted leaf blade had an area of no less than 50 mm2, and 
spectral data were collected only once per leaf. The spectral range was 900–1700 nm, the 
spectral rate was 3.5 nm, and the total number of spectral sampling points was 228. Sam-
pling was performed by covering the front of the tomato canopy leaves on the sampling 
window (5 × 10 mm), and the back of the leaves was pressed with a pure white acrylic 
plate to ensure a tight fit (the detailed sampling methodology is provided in Figure S2 of 
the Supplementary Materials). The sampling time point was chosen after sunset to reduce 
the impact of light variations on data collection. Between 21 March and 21 June 2024, 11 
rounds of data collection were conducted, yielding a total of 6548 spectral samples (more 
details on the trial are available in the Supplementary Materials ʺExperimental Detailsʺ). 
Feature band screening was performed for all the spectral data, and 50 spectral samples 
were identified as feature bands via the Successive Projection Algorithm (SPA) (the char-
acteristic wavelength ranges: [903.5 nm~938.5 nm] and [963 nm~1096 nm]). All subsequent 
data processing was based on the above wavelength ranges. 

2.3. Modelling Approach 

2.3.1. Overall Model 

The spectral absorbance of a tomato blade contains many physiological and biochem-
ical features. To fully extract the detailed features embedded in the spectral absorbance 
curve, a CNN is used as the input processing module to extract features from the prepro-
cessed spectral absorbance curve. Considering the existence of temporal features among 
the spectral data collected throughout the experimental cycle, the LSTM network is used 
as the postprocessing module. As shown in Figure 2a, the deep learning model takes the 
spectral absorption rate of the tomato canopy as input and the stress status of N, K, and 
Ca as output. 

CNNs are widely used in image processing because of their excellent feature extrac-
tion ability [24]. Spectral data can be considered as images with 1 × n pixels, so a 1D CNN 
can be used to extract spectral features [25]. A two-layer 1D CNN is used in this study, 
and the network configuration is shown in Figure 2b. The input data are first passed 
through a 1 × 3 convolutional kernel with a step size of 1 to extract the detailed features. 
After the data are passed through 16 channels, a rectified linear unit (ReLU) is applied, 
followed by maximum pooling of 2 × 2. Further features are extracted via a convolution 
kernel with step sizes of 1 and 1 × 3 and finally output via 32 channels. 
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Figure 2. The structure of the model. (a) The main structure of the model; (b) CNN; (c) LSTM; (d) 
the fully connected layers. 

The LSTM network is a recurrent neural network architecture whose core compo-
nent, the LSTM unit, allows information in long sequences to be selectively retained or 
discarded [26]. In this study, an LSTM network with one hidden layer is used to mine the 
temporal connections between multimodal data over the full tomato growth cycle, and 
the details of the network are shown in Figure 2c. The network consists of an input layer 
with 32 units, a hidden layer with 64 units, and an output layer directly connected to a 
fully connected layer containing 256 units. The fully connected layer, as the final output 
layer of the model, has three layers with sizes of 256, 128, and 3, whose detailed parame-
ters are shown in Figure 2d. 

To provide an intuitive demonstration of the model’s performance, the study com-
pared the results of RF, SVM, PLS, and the single CNN model with those of the proposed 
model in performing nutrient stress diagnosis tasks. 

2.3.2. Pre-Adjustment of Model Parameters 

To eliminate misjudgements caused by inappropriate initial parameter settings in the 
models, this study first designed a classification task for all experimental groups (a~p) (16-
class classification) and pre-adjusted the parameters of each model. The confusion matri-
ces for the classification results of each model are shown in Figure 3. The SVM, CNN, and 
CNN + LSTM models demonstrated good classification performance, with overall accu-
racies of 94.83%, 92.81%, and 96.01%, respectively. Among them, the CNN model showed 
significant misclassification in group g, where the majority of g test samples were misclas-
sified as group h, suggesting that the model may have overfitted. Although the RF model 
had an overall accuracy of only 71.1%, the misclassified samples were more dispersed, 
without any concentrated misclassification. Additionally, since PLS almost completely 
failed in this multi-class task, the final confusion matrix for PLS is not presented. As an 
alternative, the parameters of PLS were pre-adjusted based on binary classification tasks 
for any two groups. The final parameters for each model are shown in Table 3. 
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Figure 3. Confusion matrix of classification results for each model. (a) SVM; (b) RF; (c) CNN; (d) 
CNN + LSTM. 

Table 3. Key parameters of each model. 

Model Key Parameters 

RF 
max_depth: 20, min_samples_leaf: 1, min_sam-
ples_split: 2, n_estimators: 40 

SVM 
C: 100, 
gamma: 0.001, 
kernel: rbf 

PLS n_components: 15 

CNN 
CNN layers: 4, 
activation function: ReLU, dropout: 0.5, 
epoch: 1000, learning rate: 0.01→0.005 

CNN + LSTM 

CNN layers: 2, 
LSTM layers: 1, 
activation function: ReLU, dropout: 0.5, 
epoch: 1000, learning rate: 0.01→0.005 

2.3.3. Model Evaluation 

To determine the most suitable spectral preprocessing method, the impact of differ-
ent preprocessing techniques (Savitzky‒Golay (SG), SG + First-Order Derivative (FD), SG 
+ Second-Order Derivative (SD), SG + Standard Normal Variate (SNV), and SG + Multi-
plicative Scatter Correction (MSC)) on model performance was compared, and a unified 
data preprocessing approach was determined. A 5-fold cross-validation method [27] was 
applied, where the spectral data from each sampling round (a total of 11 sampling rounds) 
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was randomly split into training and test sets in a 7:3 ratio (with 4583 samples in the train-
ing set and 1965 samples in the test set). To validate the model’s generalisation perfor-
mance, a Leave-One-Group-Out Validation (LOGOV) was designed. This method is anal-
ogous to Leave-One-Out Cross-Validation (LOOCV) [28], with the distinction that 
LOOCV retains only a single sample for validation, whereas LOGOV treats a group of 
samples belonging to the same category as a collective unit, performing cross-validation 
on a group-wise basis. In this study, the designed LOGOV approach considers the 16 
groups (a–p) listed in Table 1 as 16 distinct sets, where all samples within 1 set are used 
as the test set, while the samples from the remaining 15 sets are utilised for training. Com-
pared to LOOCV, where each sample is treated as independent, in LOGOV, samples are 
inherently divided into groups, and all samples within the same group correspond to the 
same prediction target. 

All models in this study were implemented using Python 3.11 in Pycharm software® 
(version 2023.2.5), and the deep learning model was executed on an NVIDIA GTX 1650® 
graphics card within the Pytorch software® environment. 

3. Results 
3.1. Spectral Features 

The spectral absorbance of the tomato canopy blades reveals rich details into the 
growth state. As shown in Figure 4a,b, two sets of tomato canopy spectral (900–1700 nm) 
absorbance curves preprocessed under different nutrient management practises were 
compared. As shown in Figure 4a, the spectral absorbance curves of half-standard nutri-
ent dosage and double-standard nutrient dosage were significantly different in two band 
intervals, 900–1300 nm and 1600–1700 nm. Tomatoes under half-nutrient management ex-
hibited significantly greater spectral absorptivity in this band. As shown in Figure 4b, the 
spectral absorbance curves of one-third of the standard CaNO3 dosage and double-stand-
ard CaNO3 dosage were different in the 1400–1550 nm band interval, and tomatoes under 
one-third of the standard CaNO3 dosage management had significantly lower spectral ab-
sorbance in this band. Thus, although the trends in spectral absorptance were similar for 
all tomato canopy leaves, the spectral absorptance curves under different nutrient man-
agement levels were still significantly different, specifically in the subdivided band inter-
val, suggesting that it is possible to use spectroscopy to diagnose nutrient stress conditions 
in tomatoes. 

 

Figure 4. (a) Comparison of spectral absorbance curves after treatment with half- and double-stand-
ard concentration of nutrient solution; (b) comparison of spectral absorbance curves after treatment 
with one-third or double concentration of CaNO3. 
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3.2. Comparison of Overall Prediction Accuracy Under Different Data Preprocessing Methods 

As shown in Table 1, all experimental groups were divided into N-deficient, N-ex-
cess, K-deficient, K-excess, Ca-deficient, and Ca-excess categories. The SG, FD, SD, SNV, 
and MSC preprocessing methods were combined to compare the prediction accuracy rates 
of each model under different data preprocessing strategies, with the results presented in 
Table 4. The results indicate that the highest average accuracy rate for the training set was 
achieved with the SG + MSC combination, yielding an average accuracy rate of 83.64%. 
Similarly, the highest average accuracy rate for the test set was achieved with the SG + 
SNV combination, at an average accuracy rate of 67.24%. The accuracy rates for the other 
three preprocessing methods were comparatively lower. However, the cumulative differ-
ence in accuracy rates between the training and test sets for the SG + MSC combination 
was 32.21% higher than that for the SG + SNV combination. A large discrepancy in accu-
racy rates between the training and test sets often indicates overfitting. Therefore, the SG 
+ SNV spectral preprocessing method was selected. 

Table 4. Accuracy of classification models under various preprocessing methods. 

 SG SG + FD SG + SD SG + SNV SG + MSC 
RF 

Training set 68.60% 71.14% 51.07% 80.98% 85.21% 
Test set 57.42% 65.27% 54.22% 74.47% 71.10% 

SVM 
Training set 93.23% 62.17% 48.33% 90.91% 86.72% 

Test set 64.25% 42.15% 50.80% 59.22% 54.83% 
PLS 

Training set 56.65% 48.63% 53.42% 59.09% 52.74% 
Test set 48.34% 59.61% 44.11% 54.45% 57.89% 

CNN 
Training set 80.04% 90.23% 84.18% 83.22% 95.17% 

Test set 58.31% 23.36% 37.55% 67.63% 62.81% 
CNN + LSTM 

Training set 81.45% 75.50% 80.47% 95.64% 98.36% 
Test set 64.59% 45.96% 52.77% 80.42% 76.01% 

3.3. Comparison of Tomato Nutrient Stress Diagnosis Results Using Cross-Validation 

Based on the results from Section 3.2, the accuracy rates for the diagnosis of stress in 
N, K, and Ca under SG + SNV preprocessing for each model are presented, with the over-
all results shown in Table 5. The detailed diagnostic results for each group are illustrated 
in Figure 5. Among them, the SVM model did not achieve over 50% accuracy in diagnos-
ing nutrient deficiency for any of the three elements, whereas the accuracy for diagnosing 
nutrient excess in all three elements exceeded 86%, clearly indicating severe overfitting. 
The PLS model, except for Ca-excess diagnosis, achieved accuracy rates below 60% for the 
other stress diagnoses. Thus, SVM and PLS are considered to have almost completely 
failed. The CNN model achieved an accuracy of over 60% in diagnosing stress for N, K, 
and Ca in five scenarios. However, in four of these scenarios, the accuracy did not exceed 
75%. As shown in Figure 5b, the CNN model also exhibits significant overfitting in the K 
diagnosis. Considering that this is a binary classification task, the CNN model is also 
deemed ineffective. The RF model demonstrated diagnostic accuracy above 70% in four 
scenarios, with three of them exceeding 85%. Furthermore, as shown in Figure 5a,b, the 
RF model achieved accuracy above 50% in diagnosing N-deficient and K-deficient, which 
suggests that its lower performance in these two categories is due to inherent challenges 
in the task rather than overfitting. The CNN + LSTM model performed excellently in four 
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scenarios, with diagnostic accuracy above 83%. Similarly to the RF model, the CNN + 
LSTM model does not exhibit significant overfitting. 

 

 

 

Figure 5. Detailed diagnosis results of N, K, and Ca nutrient stress in tomatoes by different models. 
(a) N; (b) K; (c) Ca. 

Table 5. Diagnosis results of N, K, and Ca nutrient stress in tomatoes by different models. 

 Method N K Ca 

Nutrient deficien-
cies accuracy 

RF 55.14% 56.74% 70.14% 
SVM 32.06% 43.75% 0% 
PLS 43.55% 57.37% 33.51% 
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CNN 62.07% 66.67% 41.02% 
CNN + LSTM 44.83% 93.33% 63.33% 

Nutrient excess ac-
curacy 

RF 90.81% 88.59% 85.37% 
SVM 93.44% 86.07% 100% 
PLS 51.49% 48.28% 92.55% 

CNN 73.69% 100% 62.31% 
CNN + LSTM 99.2% 83.33% 98.52% 

3.4. Comparison of Tomato Nutrient Stress Diagnosis Results Using LOGOV 

Although this study evaluated stress diagnosis for 15 controlled experimental 
groups, the actual planting conditions are much more complex than the experimental 
setup. To compare the generalisation performance of the models, a LOGOV was designed. 
Based on the conclusions from Section 3.3, this section focuses on comparing the RF and 
CNN + LSTM models, and evaluating their accuracy rates for diagnosing stress in N, K, 
and Ca. As shown in Figure 6, the accuracy rates for diagnosing nutrient deficiency stress 
in all subgroups are illustrated for both the RF and CNN + LSTM models. For nutrient 
deficiency stress diagnosis, the RF model achieved an overall accuracy rate of 58.62%, 
while the CNN + LSTM model achieved 42.26%. For nutrient excess stress diagnosis, the 
RF model achieved an overall accuracy rate of 75.15%, compared to 57.77% for the CNN 
+ LSTM model. Specifically, for the subgroups, the RF model performed well in diagnos-
ing Ca-deficient, N-excess, and K-excess, with accuracy rates of 80.19%, 81.43%, and 
77.02%, respectively. The CNN + LSTM model, on the other hand, achieved an accuracy 
rate of 66.72% in diagnosing N-excess. 

 

Figure 6. LOGOV results for RF and CNN + LSTM model. (a) RF_N; (b) RF_K; (c) RF_Ca; (d) CNN 
+ LSTM_N; (e) CNN + LSTM_K; (f) CNN + LSTM_Ca. 
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4. Discussion 
The ideal plant nutrient management model should be dynamically adjusted accord-

ing to changes in the plant’s growth stages [29]. However, this approach incurs high man-
agement costs and is not suitable for large-scale applications. In contrast, practical pro-
duction has demonstrated that using a nutrient solution formula with a constant compo-
sition throughout the plant’s entire growth cycle is feasible. Therefore, although this study 
did not dynamically adjust the nutrient composition in the solution based on the plant’s 
growth stages, it still represents a nutrient management model aligned with actual pro-
duction practises. Existing studies have shown that even when the fertilisation amount 
remains constant throughout the plant’s growth cycle, the nutrient content in the plant’s 
leaves fluctuates [23]. These fluctuations inevitably affect the spectral expression [30], 
which serves as the foundation for current spectral analyses of plant tissue nutrient con-
tent. In other words, a nutrient management model that accommodates most production 
scenarios must inherently account for spectral response changes induced by the plant’s 
growth stage variations. 

A substantial body of research has focused on predicting nutrient content in plant 
tissues [31–33]. However, even with appropriate fertilisation practises, the nutrient con-
tent in plant tissues inevitably fluctuates across different growth stages [23]. Such studies 
should account for the plant’s growth and development stages and aim to establish a com-
prehensive correlation framework linking nutrient content to specific growth stages. 
However, research in this area remains limited. In contrast, this study shifts from the di-
rect quantitative assessment of plant nutrient content to prioritising a full-stage nutrient 
stress diagnosis. This approach provides a practical and effective method for identifying 
stress, aligning with the complexities of real-world production scenarios. 

Using the complete training set, the CNN + LSTM model exhibited excellent predic-
tive performance in four classification scenarios: N-excess, K-deficient, K-excess, and Ca-
excess. It also performed adequately in the Ca-deficient scenario but failed in the N-defi-
cient scenario. However, under LOGOV, the model performed well only in most N-excess 
and K-excess scenarios and in a few K-deficient scenarios, while it failed in all other sce-
narios. This outcome is consistent with the inherent characteristics of deep learning net-
works. To achieve robust performance, deep learning models require a comprehensive 
and high-quality training dataset [34]. Although this study included 15 control groups to 
represent nutrient deficiency and excess, the sample size remains insufficient when com-
pared to the complexity of real-world conditions. Consequently, in the final generalisation 
performance test, the deep learning model was unable to surpass traditional machine 
learning models. 

Under LOGOV, the RF model significantly outperformed the CNN + LSTM model in 
overall prediction performance. The following analysis, based on the characteristics of 
each model [35,36], provides insights into these results: RF inherently excels at handling 
complex nonlinear relationships and demonstrates low sensitivity to noisy data. Given 
that addressing the influence of spectral noise across different growth stages was a key 
objective of this study, RF achieved superior results under LOGOV. The CNN + LSTM 
model, while theoretically capable of leveraging temporal and spatial features, was con-
strained by the limited size and completeness of the dataset. As a result, it could not fully 
exploit the potential advantages of deep learning networks, leading to only average per-
formance under LOGOV. 

Another non-negligible detail is the computational resource consumption of each 
model. With fixed model parameters, machine learning models tend to occupy fewer com-
putational resources and require less training time. Of course, considering practical appli-
cation scenarios, the training phase of the model can be completed on external devices, 
while the testing phase is more relevant to the hardware resource consumption of local 
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devices. Given that the future application scenario of this model is likely to be small em-
bedded devices with limited computational resources, the complexity of the model will 
significantly impact the real-time performance of validation. Here, we compare the time 
taken by each trained model to validate the test set on a personal computer: the validation 
time for machine learning models is generally within 0.1 s; the single CNN model takes 
0.56 s; and the CNN + LSTM model takes 2.03 s. 

It is widely recognised that increasing the complexity of deep learning models and 
extending the number of training epochs can improve a model’s predictive performance 
[37]. However, such strategies often result in overfitting, and in some cases, simplifying 
the model architecture may be necessary to adapt to specific dataset characteristics. Ac-
knowledging this challenge, this study employed relatively simple network architectures 
during the initial model design: a 4-layer CNN and a 2-layer CNN combined with a 1-
layer LSTM. To mitigate overfitting, optimisation techniques such as L2 regularisation, 
dropout, and dynamic learning rates were incorporated (the detailed overfitting optimi-
zation process is provided in Supplementary Materials Figure S3-S5). Nonetheless, both 
the single CNN and CNN + LSTM models exhibited signs of overfitting. Therefore, it is 
necessary to design the deep learning network structure according to the current task. 

5. Conclusions 
This study demonstrated that the CNN + LSTM deep learning model, given a suffi-

ciently complete training dataset, can diagnose most cases of mild nutrient stress in facil-
ity-grown tomatoes throughout their entire growth cycle. Specifically, the model achieved 
accuracy rates of 93.33%, 63.33%, 99.2%, 83.33%, and 98.52% for the classification tasks of 
K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. 

This study focuses on the most common facility-grown tomato growth scenarios in 
practice and designs a diagnostic model to identify mild nutrient stress throughout the en-
tire growth cycle of tomatoes. Although the study has yielded some referenceable conclu-
sions, it remains insufficient. The deep learning model developed in this study can only 
qualitatively describe the stress status of tomatoes but fails to provide users with precise, 
quantifiable references for the degree of nutrient stress. In fact, the authors attempted to 
enable the model to output a 1 × 3 matrix that precisely quantifies the current nutrient stress 
level of tomatoes for each control experimental group. Under complete training data, the 
model demonstrated promising predictive performance. However, in subsequent LOGOV 
tests, regardless of the model or adjustments to its parameters, the final predictions were 
consistently poor. For example, when training with groups a–o and testing with group p, 
the results for p tended to align with one of groups a–o rather than fitting the expected val-
ues for p. The authors attribute the model’s failure to correctly fit the data primarily to the 
limited number of control groups. Consequently, the authors ultimately abandoned the idea 
of quantitatively describing the degree of tomato nutrient stress. 

This study focuses solely on the nutrient supply as the variable to investigate the 
specific spectral expression of tomato canopy. However, environmental factors can also 
influence spectral characteristics. Therefore, the experimental details emphasise that all 
spectral data collection was conducted after sunset to avoid the impact of environmental 
light differences between sunny and rainy daytime conditions on spectral expression. Of 
course, for more in-depth research in the future, it will be necessary to incorporate envi-
ronmental factors into the consideration. 

Based on the discussion, the proposed CNN + LSTM model in this study can be op-
timised further in the following two main directions: First, designing more comprehensive 
controlled experiments to provide a richer and more detailed training dataset. Second, 
exploring ways to prioritise the enhancement of the model’s generalisation ability, even if 
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it entails sacrificing some degree of overall accuracy, to better adapt the model to practical 
application scenarios. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/agriculture15030283/s1, Figure S1: Real photos of tomatoes in the 
middle and late stages of growth; Figure S2: Spectral data collection method; Figure S3: Unoptimized 
model prediction accuracy curve; Figure S4: Model prediction accuracy curve after dynamic learning rate 
optimization; Figure S5: Model prediction accuracy curve after L2 regularization optimization. 
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N Nitrogen 
K Potassium 
Ca Calcium 
B Boron 
CNN Convolutional Neural Network 
LSTM Long Short-Term Memory 
PLS Partial Least Squares 
SVM Support Vector Machine 
RF Random Forest 
FD First-Order Derivative 
SD Second-Order Derivative 
SNV Standard Normal Variate 
MSC Multiplicative Scatter Correction 
SG Savitzky‒Golay 
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