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Abstract: This study investigates the development and application of an automatic irri-
gation system based on hourly cumulative evapotranspiration (ET) to optimize cabbage
growth while reducing agricultural water usage. Traditional irrigation methods often result
in inefficient water use due to reliance on human judgment or fixed schedules. To address
this issue, the proposed system utilizes environmental data collected from a field sensor
(FS), the Korea meteorological administration (KMA), and a virtual sensor based on a ma-
chine learning model (ML) to calculate the hourly ET and automate irrigation. The ET was
calculated using the FAO 56 Penman–Monteith (P-M) ETo. Experiments were conducted to
compare the effectiveness of different irrigation levels, ranging from 40, 60, 80, and 100%
crop evapotranspiration (ETc), on plant growth and the irrigation water productivity (WPI).
During the 46-day experimental period, cabbage growth and WPI were higher in the FS
and KMA 60% ETc levels compared to other irrigation levels, with water usage of 8.90 and
9.07 L/plant, respectively. In the ML treatment, cabbage growth and WPI were higher in
the 80% ETc level compared to other irrigation levels, with water usage of 8.93 L/plant.
These results demonstrated that irrigation amounts of approximately 9 L/plant provided
the optimal balance between plant growth and water conservation over 46 days. This
system presents a promising solution for improving crop yield while conserving water
resources in agricultural environments.

Keywords: precision agriculture; machine learning; environmental data; sustainable
agriculture; irrigation water use efficiency

1. Introduction
Water is an essential element used in various fields, including domestic use, agri-

cultural use, industrial use, environmental maintenance and restoration, recreation, and
tourism [1–4]. Although water covers 71% of the Earth’s surface, the water resources
available for human use are limited [5]. As of 2024, many countries are experiencing water
shortages due to the increasing global population [6–8]. To resolve these issues, many coun-
tries are implementing Integrated Water Resources Management (IWRM) policies. IWRM
is a method for effectively and sustainably managing water resources [9]. It coordinates the
development and management of water, land, and related resources to maximize economic
and social welfare without compromising the sustainability of vital ecosystems [10,11]. In
the Republic of Korea, the IWRM policy is being applied in agriculture, aiming to minimize
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unnecessary agricultural water usage [12,13]. It is essential to collect sensor-based data
on environmental factors and perform real-time crop monitoring to minimize unneces-
sary agricultural water use [14,15]. Additionally, a comprehensive irrigation strategy for
managing agricultural water is necessary.

As climate change becomes more extreme, the amount of water required by crops
is changing [16–18]. Traditional irrigation methods relied on experience. Farmers manu-
ally irrigated the fields or used agricultural machinery such as sprinklers and irrigation
systems. For instance, cabbage cultivation can utilize methods such as sprinkler and drip
irrigation [19]. Applying the proper amount of water at the appropriate time is essential for
maximizing yield and improving water efficiency [20]. However, these irrigation methods,
which rely on human experience, often lead to unnecessary agricultural water use and are
not effective in water management.

Therefore, a precision agriculture-based irrigation system is necessary to reduce agri-
cultural water use. Precision agriculture is a farming approach that utilizes advanced tech-
nology to increase agricultural productivity and maximize resource use efficiency [21,22].
It is essential to collect data through real-time monitoring of environmental factors and
crops to maximize resource use efficiency, ensuring resources are supplied when needed for
crop cultivation. In precision agriculture, environmental data that can be collected include
temperature, relative humidity, atmospheric pressure, precipitation and rainfall, wind
speed, solar radiation, soil moisture content, and temperature [23,24]. Efficient agricultural
water management methods in precision agriculture based on environmental data include
soil moisture sensor-based water management and evapotranspiration (ET)-based water
management [25,26].

Soil moisture sensor-based water management involves determining soil moisture
content in real-time and supplying the appropriate amount of water when needed [27].
This method allows for the direct assessment of TAW (Total Available Water) and RAW
(Readily Available Water) ranges, thereby reducing unnecessary agricultural water use
and supplying crops with the exact amount of water they need, resulting in efficient use
of water resources [28,29]. However, the installation and cost of sensors are high, and the
measurement results can vary depending on the accuracy and reliability of the sensors.
Maintenance is required to prevent sensor failures or malfunctions, and, since sensors
only reflect the soil conditions of specific areas where they are installed, it can be difficult
to achieve consistent management over large areas. Additionally, due to the need for
reinstallation of sensors each season, soil moisture sensors are often used for research
purposes rather than practical field agriculture.

ET-based agricultural water management estimates ET using meteorological data and
the physiological characteristics of crops to manage water resources [30,31]. a representative
method is using the P-M equation to estimate the grass reference evapotranspiration (ETo).
The environmental data required for estimating ETo include solar radiation, soil heat flux
density, temperature, wind speed, and both saturated and actual vapor pressure [32–34]. By
calculating ETo from these environmental data and multiplying by the crop coefficient (Kc)
for each growth stage, the crop evapotranspiration (ETc) can be estimated, and the required
amount of water can be supplied [35–37]. The ET-based water management method is not
limited to specific areas and allows for broader water management using meteorological
data. However, the collected meteorological data may be inaccurate, or the calculated ET
may differ from actual values due to changing environmental conditions. Additionally, the
greater the distance between the meteorological sensors and the actual field, the more the
calculated ET values may vary.

A broad water management approach is needed to conserve agricultural water in
field agriculture. Therefore, water management based on the ET is deemed more efficient
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than water management based on soil moisture. To overcome the limitations of water
management based on ET, machine learning was used to reduce the differences between
the meteorological administration data and actual field data. Additionally, to minimize the
impact of real-time environmental changes on the calculated ET values, an irrigation strat-
egy is proposed that calculates and accumulates the hourly ETo, resulting in a cumulative
ET irrigation approach. The irrigation method based on cumulative evapotranspiration
can reduce errors caused by real-time environmental changes more effectively than the
irrigation method based on the daily evapotranspiration, enabling timely and accurate
water estimation for irrigation. Based on the field sensor, meteorological administration
sensor, and virtual sensor utilizing machine learning, environmental data would be used to
calculate the hourly ETo and determine the required water volume in this study. Therefore,
the purpose of this study is to calculate the cumulative ETo, using weather data based on
field sensor values, Korea Meteorological Administration data values, and virtual sensor
values from ML, and to cultivate cabbage with irrigation strategies according to 40, 60, 80,
and 100% ETc under each condition to find the optimal irrigation algorithm.

2. Materials and Methods
2.1. Plant Materials and Experimental Site

This experiment was conducted in a site (36◦22′02′′ N 127◦21′12′′ E, elevation = 47 m)
located at Chungnam National University (99 Daehak-ro, Yuseong-gu, Daejeon 34134,
Republic of Korea). According to the Korea Meteorological Administration (https://data.
kma.go.kr/, accessed on 22 January 2025), the average temperature in the experimental
region from April to June was 18.9 ◦C, with a minimum temperature of 13.4 ◦C and a
maximum temperature of 24.9 ◦C. The total precipitation during this period was 268.21 mm.
These meteorological parameters reflect the standard conditions of an average year. The
plant material used was cabbage (Brassica oleracea ‘Daebakna’, Asia Seed Korea Co., Ltd.,
Seoul, Republic of Korea). On 11 March 2024, seeds were sown in rock wool substrate
(2.5 × 2.5 × 4 cm, Grodan, Roermond, The Netherlands) in a 128-cell seedling tray at a
plant factory. After 2 days of dark treatment, the seedlings were grown under conditions
of light intensity 150 ± 10 µmol m−2 s−1, photoperiod 16/8 h (light/dark), temperature
25 ± 2 ◦C, and relative humidity 70–75%. After the true leaves had developed, the plants
were supplied with Yamazaki nutrient solution composed of N 8 me L−1, P 1.5 me L−1,
K 4.5 me L−1, Ca 2 me L−1, Mg 1 me L−1, and S 3 me L−1, with a pH of 6.5 ± 0.3 and
an EC of 0.8 dS m−1.

On 18 April, four weeks after sowing, the cabbages were transplanted to a field. The
field was mulched with black plastic, and the cabbages were planted at a spacing of 30 cm.
Before transplanting, considering the characteristics of the field soil, a basal application
of 6.1 kg ha−1 of 21N-17P-17K compound fertilizer, 3.4 kg ha−1 of phosphate, and 0.8 kg
ha−1 of potassium was applied (Table 1). After transplanting, the cabbages were cultivated
for a total of 72 days until they were harvested on 28 June. Until 12 May, the cabbages were
irrigated with equal amounts of water using drip pipes (UniRamTM AS, 13.7 mm diameter,
0.3 m emitter spacing, 1 L h−1 at 0.5–4 kPa, Netafim Korea Co., Ltd., Seongnam, Gyeonggi-
do, Republic of Korea). From 13 May to 27 June, an automatic irrigation system was applied,
and water was supplied based on the cumulative evapotranspiration measured for the
duration of 46 days.

https://data.kma.go.kr/
https://data.kma.go.kr/
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Table 1. The field soil properties at 0–20 cm depth at the experimental site in 2024.

Year Bulk Density
(g cm−3) pH (H2O) AP

(mg kg−1)
K

(cmol kg−1)
Ca

(cmol kg−1)
Mg

(cmol kg−1)
EC

(dS m−1)

2024 2.57 6.7 126 0.2 3.6 0.9 0.2

Note: AP, available phosphate content.

2.2. Calculation of the Hourly Reference Evapotranspiration

The hourly reference evapotranspiration was calculated based on the P-M ETo as
shown in Equation (1):

ETo =
0.408∆(Rn − G) + γ 37

Thr+273 u2
(
e0(Thr)− ea

)
∆ + γ(1 + 0.34u2)

, (1)

where ETo is the grass reference evapotranspiration [mm hour−1], Rn is net radiation at the
grass surface [MJ m−2 h−1], G is soil heat flux density [MJ m−2 h−1], Thr is mean hourly
air temperature [◦C], ∆ is saturation slope vapor pressure curve at Thr [kPa ◦C−1], γ is
psychrometric constant [kPa ◦C−1], e0 (Thr) is saturation vapor pressure at air temperature
Thr [kPa], ea is average hourly actual vapor pressure [kPa], and u2 is average hourly wind
speed [m s−1].

Wind speed, solar radiation, relative humidity, and temperature were collected using
the field sensor (FS), the Korea Meteorological Administration (KMA), and the virtual sen-
sor based on machine learning (ML) to estimate evapotranspiration. In the FS treatments,
meteorological factors were measured every three minutes using weather sensors installed
at the Chungnam National University field. The hourly grass reference evapotranspiration
(ETo) was then calculated by averaging the meteorological data collected over each hour.
In the KMA treatments, the hourly reference evapotranspiration was calculated using me-
teorological data measured every hour by the KMA, located 1091 m from the experimental
field. In the ML treatments, an XGBoost (Extreme Gradient Boosting) model was trained
using sensor data and the KMA data from January 2023 to April 2024 (Figure 1). The
trained machine learning model estimated the meteorological data for the experimental
site when input with data from the KMA. The performance of the virtual sensor based on
the XGBoost model is shown (Table 2). The meteorological data for the experimental site
were output hourly, and the ETo was calculated based on this data.
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Table 2. Performance evaluation of XGBoost model for each meteorological factor.

Model
Evaluation

Solar Radiation
(W/m2)

Temperature
(◦C)

Relative
Humidity (%)

Wind Speed
(m/s)

R2 0.848 0.982 0.930 0.730
RMSE 101.036 1.340 5.892 0.384
MAE 56.453 0.845 3.924 0.264

Note: R2, coefficient of determination; RMSE, root mean squared error; MAE, mean absolute error.

2.3. Experimental Design Using Automatic Irrigation System

An automatic irrigation system was developed and used to supply water based on the
ETo. Each treatment calculated the ETo based on meteorological data determined by the FS,
the KMA, and the ML. The ETo was accumulated each hour, and, when the cumulative
ETo reached 1 mm hour−1, water was supplied using solenoid valves (HPW2110A (10A),
Autosigma Hyosin Co., Ltd., Bucheon-si, Republic of Korea) and pumps (PW-200SMA,
19 L·min−1, Wilo Pumps Co., Ltd., Busan, Republic of Korea). The irrigation amounts
were 40, 60, 80, and 100% of the crop evapotranspiration (ETc), supplied via drip pipes
(Table 3). According to data from Nongsaro (http://www.nongsaro.go.kr), managed by the
Rural Development Administration of Korea, the crop coefficients during the mid-growth
(17 days) and late-growth (29 days) stages are set to 1.11 and 1.13, respectively. The ETc

was calculated as shown in Equation (2):

ETc = 0.8 × Kc × ETo, (2)

where ETc is the crop evapotranspiration [mm hour−1], Kc is the crop coefficient, ETo is the
grass reference evapotranspiration [mm hour−1], and 0.8 is the mulching coefficient.

Table 3. Water use per irrigation according to irrigation levels.

Irrigation Levels Mulching
Coefficient

Plant Density
(cm)

Water Use per Irrigation (mL/plant)

Kcmid (1.11) Kcend (1.13)

40% ETc

0.8 0.30.3

32 32.4
60% ETc 48 48.6
80% ETc 64 64.8
100% ETc 80 81

Note: Kc, crop coefficient; Kcmid was applied for 17 days, and Kcend was applied for 29 days.

From 13 May to 27 June, water management was conducted using an automatic
irrigation system. When the cumulative ETo reached 1 mm, the FS, the KMA, and the ML
treatments were each supplied with water at 20, 30, and 40 min past the hour, respectively.

2.4. Measurements of Plant Growth Parameters

On 28 June, five cabbages from each treatment were harvested, and plant growth was
measured. Each treatment consisted of a single plot with 40 plants, from which five plants
were randomly analyzed from each plot (n = 5). The parameters measured included the
number of leaves, leaf area, head diameter, shoot fresh weight, head fresh weight, root
fresh weight, shoot dry weight, head dry weight, and root dry weight. The dry weight was
determined by placing the samples in sample analysis bags and drying them in an oven
(HB-501M, Hanbaek Scientific Technology Co., Ltd., Bucheon-si, Republic of Korea) set
at 70 ◦C for 4 days. Additionally, a small portion of the samples collected for component
analysis was dried in a freeze-dryer (TFD5503, Ilshin BioBase Co., Ltd., Dongducheon-si,
Republic of Korea) for 4 days. The weights were measured using an electronic balance
(SPX2202KR, Ohaus Co., Ltd., Parsippany, NJ, USA) and summed to obtain the final dry

http://www.nongsaro.go.kr
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weight. The leaf area was measured using a leaf area meter (LI-3100, LI-COR Co., Ltd.,
Lincoln, NE, USA).

2.5. Water Usage and Irrigation Water Productivity

To evaluate water usage after applying the automatic irrigation system, a water meter
([MW] 15 mm, Dae Han Meter Tech Co., Ltd., Gimpo-si, Republic of Korea) was installed
(Figure 2). Water usage was measured from 13 May to 27 June. The water usage per plant
for each treatment was determined, and the water use per irrigation was calculated using
Equations (3) and (4). Additionally, irrigation water productivity (WPI) was measured
using Equation (4), with reference to [38].

Water use per irrigation (mL) =
Total irrigation water use (L)
Total number o f irrigations

, (3)

Irrigation water productivity (WPI) =
Marketable head weight (kg)

Irrigation water use (m3)
, (4)
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Figure 2. Location and layout of cabbage irrigation experiment. (A) Location of experimental site for
field cabbage irrigation experiment. (B) 72 days after transplanting. (C) Schematic diagram of the
experimental field setup for cultivating cabbages.

2.6. Statistical Analysis

The statistical analysis was conducted with one-way ANOVA using the SPSS program
(version 26, SPSS Inc., Chicago, IL, USA). To determine significant differences between
means of irrigation levels, Tukey’s honestly significant difference test was applied at a
significance level of p ≤ 0.05. Graphs were generated in Sigmaplot (version 15.0, Systat
Software Inc., Chicago, IL, USA). a hierarchical clustering heatmap was created based
on normalized average data from various parameters. Principal component analysis
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(PCA) followed the modified method by [39] and was performed using XLSTAT software
(version 26.4.1, Addinsoft, Paris, France).

3. Results
3.1. Cumulative Evapotranspiration and the Number of Irrigations

From 13 May to 27 June, the mean temperature, the mean relative humidity, the
mean solar radiation, and the mean wind speed were measured over a 46-day period
using the FS, the KMA, and the ML (Figure 3). The mean temperature measured by the
FS, the KMA, and ML ranged from 13.9 to 27.3 ◦C, 13.5 to 27.5 ◦C, and 13.9 to 26.5 ◦C,
respectively. Using the KMA, the total precipitation over the 46-day period was measured
at 64 mm (Figure 3A). The mean relative humidity measured by the FS, the KMA, and ML
ranged from 57.34 to 94.53%, 42.27 to 86.65%, and 59.61 to 95.88%, respectively (Figure 3B).
The mean solar radiation measured by the FS, the KMA, and ML ranged from 38.32 to
424.78 W/m2, 43.00 to 554.81 W/m2, and 65.30 to 323.78 W/m2, respectively (Figure 3C).
The mean wind speed measured by the FS, the KMA, and ML ranged from 0.55 to 1.95 m s−1,
0.92 to 2.60 m s−1, and 0.60 to 1.34 m s−1, respectively (Figure 3D).
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Figure 3. Precipitation and daily temperature from 13 May to 27 June. (A) Mean temperature and
precipitation, (B) mean relative humidity, (C) mean solar radiation, and (D) mean wind speed were
measured by the FS (field sensor), the KMA (Korea Meteorological Administration), and the ML
(machine learning). Precipitation was measured by the KMA.

The cumulative evapotranspiration was measured at 5.51, 4.03, and 3.62 mm/day
from 24 May to 26 May and at 6.06, 4.68, and 7.44 mm/day from 16 June to 18 June,
respectively (Figure 4). The peaks in soil moisture content indicate the operation of the
automatic irrigation system and confirm that irrigation was conducted appropriately based
on cumulative evapotranspiration (Figure 4). During the experiment period, the hourly
evapotranspiration was calculated using meteorological data collected from the FS, the
KMA, and the ML. Over the 46-day period from 13 May to 27 June, the total cumulative
evapotranspiration was measured at 209.50, 225.41, and 183.42 mm for the FS, the KMA,
and the ML, respectively (Figure 5). The solenoid valve of the automatic irrigation system
operated 172, 183, and 141 times in the FS, the KMA, and the ML treatments, with operation
rates measured at 82.3%, 81.3%, and 77.0%, respectively (Figure 5).



Agriculture 2025, 15, 308 8 of 18
Agriculture 2025, 15, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 4. Soil moisture content and daily cumulative evapotranspiration from May 24 to 26 and 

from June 16 to 18. Soil moisture content was measured using a soil moisture sensor in 100% ETc 

measured by the KMA (Korea Meteorological Administration), and cumulative evapotranspiration 

was measured based on the KMA. 

 

Figure 5. Total cumulative evapotranspiration and number of irrigations of the FS (field sensor), the 

KMA (Korea Meteorological Administration), and the ML (machine learning) over 46 days (May 

13–June 27). 

3.2. Growth Parameters of Cabbage 

The cabbage was cultivated using an automatic irrigation system for 46 days, from 

May 13 to June 27, and the growth parameters such as NL (leaf number), LA (leaf area), 

SPAD, Fv/Fm, SFW (shoot fresh weight), SDW (shoot dry weight), RFW (root fresh 

weight), and RDW (root dry weight) were investigated (Table 4). The image presents 

cabbages harvested on June 28 (Figure 6). In the FS treatment, there were no significant 

differences in LA, SPAD, Fv/Fm, and RFW between irrigation levels based on ETc. The LA 

measured 7303, 11,808, 8501, and 8647 cm2 for the 40, 60, 80, and 100% ETc levels, 

respectively, showing reductions of 38.2, 28, and 26.8% for the 40, 80, and 100% ETc levels 

compared to the 60% ETc level. The SFW was 2393 and 3935 g for the 40 and 60% ETc 

levels, respectively, which shows a 64.4% increase in the 60% ETc treatment compared to 

the 40% ETc level. The SDW measured 250.7, 356.4, 246.8, and 243.7 g for the 40, 60, 80, 

and 100% ETc levels, respectively, showing reductions of 29.6, 30.7, and 31.6 in the 40, 80, 

Figure 4. Soil moisture content and daily cumulative evapotranspiration from 24 to 26 May and
from 16 to 18 June. Soil moisture content was measured using a soil moisture sensor in 100% ETc

measured by the KMA (Korea Meteorological Administration), and cumulative evapotranspiration
was measured based on the KMA.
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Figure 5. Total cumulative evapotranspiration and number of irrigations of the FS (field sensor),
the KMA (Korea Meteorological Administration), and the ML (machine learning) over 46 days
(13 May–27 June).

3.2. Growth Parameters of Cabbage

The cabbage was cultivated using an automatic irrigation system for 46 days, from
13 May to 27 June, and the growth parameters such as NL (leaf number), LA (leaf area),
SPAD, Fv/Fm, SFW (shoot fresh weight), SDW (shoot dry weight), RFW (root fresh weight),
and RDW (root dry weight) were investigated (Table 4). The image presents cabbages
harvested on 28 June (Figure 6). In the FS treatment, there were no significant differences
in LA, SPAD, Fv/Fm, and RFW between irrigation levels based on ETc. The LA measured
7303, 11,808, 8501, and 8647 cm2 for the 40, 60, 80, and 100% ETc levels, respectively,
showing reductions of 38.2, 28, and 26.8% for the 40, 80, and 100% ETc levels compared to
the 60% ETc level. The SFW was 2393 and 3935 g for the 40 and 60% ETc levels, respectively,
which shows a 64.4% increase in the 60% ETc treatment compared to the 40% ETc level.
The SDW measured 250.7, 356.4, 246.8, and 243.7 g for the 40, 60, 80, and 100% ETc

levels, respectively, showing reductions of 29.6, 30.7, and 31.6 in the 40, 80, and 100% ETc
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levels compared to the 60% ETc level. The RDW measured 34.6 and 20.6 g for the 60 and
100% ETc levels, respectively, showing a 67.5% increase in the 60% ETc level compared
to the 100% ETc level.

Table 4. The growth parameters of cabbage under different evapotranspiration (ET) conditions,
measured by the FS (field sensor), the KMA (Korea Meteorological Administration), and the ML
(machine learning), were analyzed under various irrigation levels (40, 60, 80, and 100% of ETc) from
13 May to 27 June.

Treatment
No. of
Leaves

Leaf Area
(cm2) SPAD Fv/Fm SFW (g) RFW (g) SDW (g) RDW (g)Evapotran-

spiration
Irrigation

Levels

FS

40% ETc 20.0 ± 0.63 7303 ±
690.98 b

76.16 ±
3.80 0.75 ± 0.02 2393 ±

170.15 b
115.14 ±

14.98
250.67 ±
21.24 b

27.26 ±
2.12 ab

60% ETc 19.4 ± 0.40 11808 ±
963.27 a

76.10 ±
0.53 0.80 ± 0.01 3935 ±

500.63 a
133.06 ±

13.28
356.40 ±
34.55 a

34.57 ±
2.58 a

80% ETc 19.2 ± 0.97 8501 ±
516.66 b

73.88 ±
1.50 0.77 ± 0.02 3079 ±

291.71 ab
98.01 ±

10.70
246.83 ±
25.66 b

26.32 ±
4.35 ab

100% ETc 18.8 ± 0.49 8647 ±
389.59 b

76.48 ±
2.83 0.80 ± 0.02 2937 ±

156.76 ab
87.77 ±

5.59
243.67 ±
13.92 b

20.64 ±
1.18 b

Significance NS ** NS NS * NS * *

KMA

40% ETc
20.4 ±
0.24 ab

9273 ±
1525.18 ab

75.14 ±
2.68 0.75 ± 0.02 2844 ±

538.44 ab
133.68
±29.76

279.21 ±
47.49 ab

34.23 ±
7.45 a

60% ETc
19.0 ±
1.30 b

13,368 ±
563.70 a

78.98 ±
2.49 0.75 ± 0.01 4041 ±

24.31 a
150.19 ±

6.04
345.28 ±
16.20 a

34.31 ±
1.43 a

80% ETc
23.8 ±
1.11 a

9603 ±
1757.29 ab

75.90 ±
2.45 0.78 ± 0.01 2588 ±

331.46 b
86.98 ±

8.77
204.32 ±
31.89 b

16.58 ±
2.18 b

100% ETc
20.0 ±
0.89 ab

7843 ±
248.45 b

72.10 ±
2.12 0.80 ± 0.01 2535 ±

159.21 b
92.62 ±

4.58
213.97 ±
11.82 b

20.86 ±
0.86 ab

Significance * * NS NS * * * *

ML

40% ETc
25.6 ±
1.63 a

5916 ±
252.88 b

68.26 ±
2.12 b 0.83 ± 0.00 1541 ±

136.11 b
85.06 ±
12.19 b

149.99 ±
8.62 b

17.22 ±
1.73 b

60% ETc
17.8 ±
0.58 b

9107 ±
380.63 a

73.98 ±
1.43 ab 0.80 ± 0.01 2998 ±

166.14 a
120.40 ±

7.20 a
298.77 ±
16.81 a

31.99 ±
2.59 a

80% ETc
19.4 ±
1.03 b

8533 ±
498.90 a

72.84 ±
1.65 ab 0.82 ± 0.01 3207 ±

231.67 a
109.53 ±
7.99 ab

279.76 ±
18.44 a

24.98 ±
1.63 a

100% ETc 18.8 ± 0.8 b 7701 ±
353.19 a

75.48 ±
1.67 a 0.80 ± 0.02 2717 ±

131.61 a
118.92 ±

3.46 a
277.09 ±
12.70 a

28.53 ±
1.47 a

Significance *** *** NS NS *** * *** ***

Note: SFW, shoot fresh weight; RFW, root fresh weight; SDW, shoot dry weight; RDW, root dry weight; NS, not
significant (p > 0.05); significance at * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Values are the mean ± SE (standard
error) of five samples (n = 5). Different letters indicate a significant difference between various irrigation levels via
Tukey’s HSD test at p ≤ 0.05.

In the KMA treatment, there were no significant differences in SPAD, Fv/Fm, and
RFW between irrigation levels based on ETc (Table 4). The NL was measured as 19.0 and
23.8 for the 60 and 80% ETc levels, respectively, showing a 25.3% increase in the 80% ETc

level compared to the 60% ETc level. The LA was 13,368 and 7843 cm2 for the 60 and
100% ETc levels, respectively, showing a 70.4% increase in the 60% ETc level compared to
the 100% ETc level. The SFW was 4041, 2588, and 2535 g for the 60, 80, and 100% ETc levels,
respectively, showing decreases of 36.0 and 37.3% in the 80 and 100% ETc levels compared
to the 60% ETc level. The SDW was 345.3, 204.3, and 214.0 g for the 60, 80, and 100% ETc

levels, respectively, representing decreases of 40.8 and 38.0% in the 80 and 100% ETc levels
compared to the 60% ETc level. The RDW was 34.2, 34.3, and 16.6 g for the 40, 60, and
80% ETc levels, respectively, indicating increases of 106.4 and 106.9% in the 40 and 60% ETc

levels compared to the 80% ETc level.
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Figure 6. Comparison of cabbage growth under different evapotranspiration (ET) conditions mea-
sured by (A) the FS (field sensor), (B) the KMA (Korea Meteorological Administration), and (C) the
ML (machine learning) over various irrigation levels (40, 60, 80, and 100% ETc). The cabbages
were grown in an experimental field for a total of 72 days from 18 April to 27 June. The scale bar
represents 10 cm.

In the ML treatment, there were no significant differences in SPAD and Fv/Fm between
irrigation levels based on ETc (Table 4). The NL was 25.6, 17.8, 19.4, and 18.8 for the 40, 60,
80, and 100% ETc levels, respectively, showing reductions of 30.5, 24.2, and 26.6% for the 60,
80, and 100% ETc levels compared to the 40% ETc level. The LA measured 5916, 9107, 8533,
and 7701 cm2 for the 40, 60, 80, and 100% ETc levels, respectively, representing increases of
53.9, 44.2, and 30.2% for the 60, 80, and 100% ETc levels compared to the 40% ETc level. The
SFW was 1541, 2998, 3207, and 2717 g for the 40, 60, 80, and 100% ETc levels, respectively,
indicating increases of 94.5, 108.1, and 76.3% for the 60, 80, and 100% ETc levels compared to
the 40% ETc level. The RFW measured 85.1, 120.4, and 118.9 g for the 40, 60, and 100% ETc

levels, respectively, showing increases of 41.5 and 39.8% in the 60 and 100% ETc levels
compared to the 40% ETc level. The SDW was 150.0, 298.8, 279.8, and 277.1 g for the 40, 60,
80, and 100% ETc levels, respectively, indicating increases of 99.2, 86.5, and 84.7% for the
60, 80, and 100% ETc levels compared to the 40% ETc level. The RDW measured 17.2, 32.0,
25.0, and 28.5 g for the 40, 60, 80, and 100% ETc levels, respectively, representing increases
of 85.8, 45.0, and 65.7% for the 60, 80, and 100% ETc levels compared to the 40% ETc level.

3.3. Cabbage Head Parameters

The diameter, HFW (head fresh weight), HDW (head dry weight), and yield of the
cabbages were examined across five replicates (Table 5). In the FS treatment, the diameter
was 15.08 and 17.66 cm for the 40 and 60% ETc levels, respectively, representing an 11.8%
increase in the 60% ETc level compared to the 40% ETc level. The HFW was 1195 and
1956 g for the 40 and 60% ETc levels, respectively, indicating increases of 63.7% for the
60% ETc levels compared to the 40% ETc level. There were no significant differences in the
HDW between irrigation levels based on ETc.

In the KMA treatment, the diameter was 16.08 and 19.81 cm for the 40 and 60% ETc

levels, respectively, representing a 23.2% increase in the 60% ETc level compared to the
40% ETc level (Table 5). There were no significant differences in the HFW and yield between
irrigation levels based on ETc. The HDW was 133.5, 66.5, and 80.1 g for the 60, 80, and
100% ETc levels, respectively, showing decreases of 50.1 and 40.0% in the 80 and 100% ETc

levels compared to the 60% ETc levels.
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Table 5. The cabbage head parameters and yield under different evapotranspiration (ET) conditions
measured by the FS (field sensor), the KMA (Korea Meteorological Administration), and the ML
(machine learning), were analyzed under various irrigation levels (40, 60, 80, and 100% of ETc) from
13 May to 27 June.

Treatment
Head Diameter (cm) HFW (g) HDW (g) Yield (t ha−1)

Evapotranspiration Irrigation Levels

FS

40% ETc 15.08 ± 0.41 b 1195 ± 97.93 b 84.83 ± 9.34 44.22 ± 3.62 b

60% ETc 17.66 ± 0.60 a 1956 ± 238.91 a 117.58 ± 12.64 72.37 ± 8.84 a

80% ETc 17.56 ± 0.68 ab 1665 ± 191.70 ab 97.11 ± 11.68 61.60 ± 7.09 ab

100% ETc 17.54 ± 0.78 ab 1618 ± 123.35 ab 93.52 ± 7.34 59.87 ± 4.56 ab

Significance NS * NS *

KMA

40% ETc 16.08 ± 0.86 b 1369 ± 259.87 96.56 ± 14.34 ab 50.65 ± 9.62

60% ETc 19.81 ± 0.84 a 1999 ± 115.78 133.45 ± 7.02 a 73.96 ± 4.28

80% ETc 16.98 ± 1.23 ab 1270 ± 195.43 66.53 ± 11.61 b 46.99 ± 7.23

100% ETc 16.41 ± 0.56 ab 1325 ± 132.13 80.12 ± 6.83 b 49.03 ± 4.89

Significance * NS ** NS

ML

40% ETc 13.19 ± 0.9 b 605 ± 238.35 b 41.09 ± 4.84 b 22.39 ± 3.94 b

60% ETc 18.34 ± 0.38 a 1564 ± 142.58 a 123.55 ± 9.30 a 57.87 ± 2.36 a

80% ETc 19.59 ± 0.59 a 1809 ± 345.42 a 125.93 ± 11.43 a 66.93 ± 5.72 a

100% ETc 18.93 ± 0.44 a 1517 ± 211.85 a 111.42 ± 9.87 a 56.13 ± 3.51 a

Significance *** *** *** ***

Note: HFW, head fresh weight; HDW, head dry weight; Yield was converted to fresh weight per hectare. NS, not
significant (p > 0.05); significance at * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Values are the mean ± SE (standard
error) of five samples (n = 5). Different letters indicate a significant difference between various irrigation levels via
Tukey’s HSD test at p ≤ 0.05.

In the ML treatment, the diameter was 13.19, 18.34, 19.59, and 18.93 cm for the 40, 60,
80, and 100% ETc levels, respectively, showing an increase of 39.0, 48.5, and 43.5% for the
60, 80, and 100% ETc levels compared to the 40% ETc level (Table 5). The HFW was 605,
1564, 1809, and 1517 g for the 40, 60, 80, and 100% ETc levels, respectively. This represents
increases of 158.5, 199.0, and 150.7% in the 60, 80, and 100% ETc levels compared to the
40% ETc level. The HDW measured 41.1, 123.6, 125.9, and 111.4 g for the 40, 60, 80, and
100% ETc levels, respectively, showing increases of 200.7, 206.5, and 171.2% for the 60, 80,
and 100% ETc levels compared to the 40% ETc level.

3.4. Water Usage During the Experimental Period

The water usage by the automatic irrigation system was measured over a 46-day
period from 13 May to 27 June. In the FS treatment, total water usage per plant for the
40, 60, 80, and 100% ETc levels was 6.30, 8.90, 11.22, and 11.55 L, respectively (Figure 7A).
The water usage per irrigation for the 40, 60, 80, and 100% ETc levels was 36.65, 51.73,
65.24, and 67.13 mL, respectively (Figure 7B). In the KMA treatment, total water usage per
plant for the 40, 60, 80, and 100% ETc levels was 6.71, 9.07, 12.95, and 15.28 L, respectively
(Figure 7A). The water usage per irrigation for the 40, 60, 80, and 100% ETc levels was
36.66, 49.54, 70.74 and 83.48 mL, respectively (Figure 7B). In the ML treatment, total water
usage per plant for the 40, 60, 80, and 100% ETc levels was 4.86, 7.09, 8.93, and 11.31 L,
respectively (Figure 7A). The water usage per irrigation for the 40, 60, 80, and 100% ETc

levels was 34.47, 50.29, 63.34 and 80.21 mL, respectively (Figure 7B).
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3.5. Irrigation Water Productivity of Cabbage and Yields

The irrigation water productivity (WPI) of cabbage was analyzed over a 46-day period
from 13 May to 27 June (Figure 8). In the FS treatment, the WPI for the 40, 60, 80, and
100% ETc levels were measured at 189.58, 219.83, 148.38, and 140.14 kg m−3, respectively.
Compared to the 100% ETc level, the 60% ETc level increased by 56.9%. The coefficient of
determination for the FS treatment was 0.67 (Figure 8A). In the KMA treatment, the WPI for
the 40, 60, 80, and 100% ETc levels were measured at 204.05, 220.49, 98.10, and 86.73 kg m−3,
respectively. Compared to the 60% ETc level, the WPI decreased by 55.5 and 60.7% in the 80
and 100% ETc levels, respectively. The coefficient of determination for the KMA treatment
was 0.79 (Figure 8B). In the ML treatment, the WPI for the 40, 60, 80, and 100% ETc levels
were measured at 124.48, 220.56, 202.54, and 134.14 kg m−3, respectively. Compared to
the 60% ETc level, the WPI decreased by 43.6 and 39.2% in the 40 and 100% ETc levels,
respectively. The coefficient of determination for the ML treatment was 0.97 (Figure 8C).

Water supplied by irrigation and cabbage yields were compared in all treatments
(Figure 8D and Table 5). In the FS treatment, when irrigation was supplied at 223.10, 329.30,
415.14, and 427.35 m3, the yields were 44.22, 72.37, 61.60, and 59.87 t ha−1 (converted to
fresh weight per hectare units), respectively. In the KMA treatment, irrigation amounts of
248.72, 335.59, 479.15, and 565.36 m3 resulted in yields of 50.66, 73.96, 46.99, and 49.03 t ha−1,
respectively. In the ML treatment, irrigation at 179.82, 262.33, 330.41, and 418.74 m3 led
to yields of 22.39, 57.87, 66.94, and 56.13 t ha−1, respectively. The results of the regression
analysis showed a coefficient of determination of 0.71. The maximum expected yield, using
an automatic irrigation system, was 65.83 t ha−1 with 385.8 m3 of water, corresponding to
10.43 L/plant and a head weight of 1.78 kg.
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Figure 8. Irrigation water productivity (WPI) and cabbage yield of the automatic water supply system
for cultivating cabbage from 13 May to 27 June. Evapotranspiration (ET) conditions measured by
(A) the FS (field sensor), (B) the KMA (Korea Meteorological Administration), and (C) the ML
(machine learning) over various irrigation levels (40, 60, 80, and 100% ETc). (D) Cabbage yield versus
water supplied by irrigation (converted to hectare units). Data are represented as the mean ± SE
(standard error) of five samples (n = 5). Different letters indicate a significant difference between
treatments based on ETc irrigation levels (Tukey’s HSD test at p ≤ 0.05).

3.6. Hierarchical Clustering Heatmap and Principal Component Analysis

A heatmap was generated using color gradients to visualize the performance of dif-
ferent parameters across each treatment. Normalized average data of different variables
were used for the heatmap (n = 5). The parameters were clustered into two groups using
hierarchical clustering (Figure 9A). The ‘Cluster A’ included SFW, SDW, HFW, diameter,
LA, RFW, RDW, HDW, SPAD, and WPI. The ‘Cluster B’ consisted of NL and Fv/Fm. All
raw data were analyzed using PCA. The results of the PCA showed that PC1 accounted
for 61.05% of the total variance and PC2 accounted for 9.26%, with the two components
explaining 70.31% of the total variance (Figure 9B). PC1 was determined by growth pa-
rameters such as SFW, SDW, HFW, diameter, LA, RFW, RDW, HDW, WPI, and NL, while
PC2 was determined by SPAD and Fv/Fm. The parameters in ‘Cluster A’ had a positive
correlation with each other.
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Figure 9. (A) Hierarchical clustering heatmap representing different variables under the treatments
(FS, field sensor; KMA, Korea Meteorological Administration; ML, machine learning) based on ETc

irrigation levels. Normalized average data of different variables were used to the heatmap (n = 5).
The variables were grouped into two clusters (Cluster a and Cluster B). (B) PCA (principal component
analysis) represents the relationship among various irrigation levels and variables. The variables
included HFW (head fresh weight), SFW (shoot fresh weight), HDW (head dry weight), LA (leaf
area), SDW (shoot dry weight), WPI (irrigation water productivity), RDW (root dry weight), RFW
(root fresh weight), diameter, NL (number of leaves), SPAD, and Fv/Fm.

4. Discussion
The automatic irrigation system operated based on cumulative evapotranspiration,

and the cumulative evapotranspiration was measured as highest for the KMA, followed by
the FS, and then the ML treatments. Accordingly, water usage for each irrigation level
followed the same results: the KMA, the FS, and the ML treatments (Figure 7A). In the FS
treatment, the water usage of the 100% ETc level was similar to that of the 80% ETc level
due to a malfunction in the solenoid valve operation time (Figure 7). Consequently, the
FS treatment had the lowest coefficient of determination for WPI among all treatments
(Figure 8). In contrast, the ML treatment exhibited accurate water use per plant and
the highest coefficient of determination for WPI across all treatments (Figures 7B and 8).
Therefore, it is concluded that the ML treatment provided the most accurate irrigation
management when the automatic irrigation system was in operation.

In our study, the FS and the KMA 60% ETc levels exhibited higher WPI, along with
increased RDW, SFW, SDW, HFW, and HDW (Figure 8 and Table 4). In 2016, the cabbage
yield for 0.4, 0.6, 0.8, 1.0, and 1.2 ETc levels were 27.90, 34.68, 42.64, 43.88, and 38.81 t ha−1,
respectively. As the irrigation amount increased, cabbage yield also increased; however, the
yield decreased at the 1.2 ETc level, and WPI sharply declined from the 0.8 ETc level [40].
Similarly, in a three-year study conducted between 2009 and 2012, the average cabbage
yield for 0.8, 0.9, 1.0, and 1.1 ETc levels was 23.2, 29.7, 31.7, and 26.4 t ha−1, respectively.
While the yield increased with irrigation up to the 1.0 ETc level, they declined in the 1.1 ETc

level [19]. Notably, the highest water use efficiency was observed in the 0.9 ETc level, and
water use efficiency declined as irrigation levels increased thereafter. a similar finding was
reported by [41], where the average cabbage head weight in 1997 was 1.1, 1.8, 2.3, 2.6, and
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2.7 kg in the 20, 40, 60, 80, and 100% pan evaporation levels, respectively, with the 60%
pan evaporation level showing the highest water use efficiency. These results suggest that
irrigation levels have a significant effect on cabbage growth and yield, and it is important
to determine the optimal water use efficiency.

Plant roots absorb various mineral ions from the soil through both the apoplast and
symplast pathways [42,43]. Both pathways are involved in the transport of water and
mineral ions, and sufficient water supply to the rhizosphere is essential for the absorption
of mineral ions by the roots [44,45]. The absorbed ions are transported to the shoot via
the xylem, where they are utilized for cell differentiation, elongation, and turgor [46–48].
Therefore, root growth is closely related to shoot growth, and many plant studies have
confirmed the strong correlation between root and shoot growth [49–51]. Hierarchical
clustering and PCA analysis showed that WPI, root parameters, and shoot parameters
clustered together, indicating a positive correlation between root and shoot parameters
(Figure 9). Consequently, the 60% ETc level could positively influence WPI and RDW,
which in turn could also have a positive effect on shoot growth parameters belonging to
the same cluster.

On the other hand, in the KMA treatment, SFW and HDW decreased in the 80 and
100% ETc levels compared to the 60% ETc level (Tables 4 and 5). Overly wet conditions
in the rhizosphere can reduce root respiration and inhibit root growth [52,53]. Reduced
root growth can lead to decreased shoot growth and yield, as there is a positive corre-
lation between root and shoot growth (Figure 9). The 80 and 100% ETc levels not only
resulted in unnecessary water usage but also had a negative impact on shoot growth (Fig-
ure 8 and Table 4). Therefore, the automatic irrigation system based on hourly cumulative
evapotranspiration, supplying 12.95 and 15.28 L over 46 days, could potentially reduce
cabbage yield.

In the ML treatments, cabbage under the 40% ETc level showed a decrease in LA, head
diameter, HFW, HDW, SFW, SDW, RDW, and yield compared to the 60, 80, and 100% ETc

levels, although LA was higher (Tables 4 and 5). Similarly, in the FS treatment, SFW, head
diameter, HFW, and yield were reduced at the 40% ETc level. In 2012, 50% ETc treatment
after 133 days of transplanting resulted in an 8.4, 25.3, and 17.8% reduction in head width,
fresh weight, and yield, respectively, compared to the 100% ETc treatment [54]. In 2020, the
0.6 ETo level showed a 3.6, 13.9, and 9.1% reduction in head diameter, fresh weight, and
yield, respectively, compared to the 1.0 ETo level [55]. These findings suggest that lower
irrigation levels based on ETc can negatively impact cabbage growth and yields.

Water moves from the soil to the roots, from roots to stems and leaves, and eventually
evaporates into the air through transpiration [56,57]. Water moves from areas of higher
to lower water potential [58]. Lower irrigation amounts can reduce soil water potential
more than larger amounts of irrigation [59,60]. As a result, when soil and root water
potential differences decrease, it becomes more difficult for water to move from the soil
to the plant roots. Since soil mineral ions are absorbed with water by plant roots, lower
irrigation amounts can make it difficult for plants to absorb the materials necessary for
growth. Therefore, low irrigation amounts can lead to reduced plant growth. Using the
automatic irrigation system based on hourly cumulative evapotranspiration, supplying
less than 6.30 L of water over 46 days, can lower soil water potential compared to other
treatments, making it difficult for roots to absorb water and thereby reducing cabbage head
fresh weight and yields (Table 5).

5. Conclusions
The automatic irrigation system based on hourly cumulative evapotranspiration

positively impacted cabbage growth by supplying water in a timely and appropriate
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amount. Hierarchical clustering and principal component analysis (PCA) showed that root
growth parameters and shoot parameters were grouped together, indicating a positive
correlation between them. An irrigation amount of 4.86 L/plant (ML 40% ETc) over 46 days
reduced root growth, which in turn led to a decline in shoot growth. On the other hand,
12.95 L/plant (KMA 100% ETc) caused over-watering in the root zone, thereby reducing
shoot growth and leading to unnecessary agricultural water usage. Irrigation levels based
on evapotranspiration measured by the FS, the KMA, and the ML at 60, 60, and 80% ETc

levels excluding natural rainfall, respectively, showed optimal results for cabbage growth
and WPI. Water usage in the FS 60% ETc level was 8.90 L/plant, while, in the KMA 60% ETc

level, it was 9.07 L/plant, and, in the ML 80% ETc level, it was 8.93 L/plant. Based on
these findings, the optimal irrigation amount for cabbage cultivation is approximately
9.0 L/plant over 46 days, considering both yield and WPI. The automatic irrigation
system based on hourly cumulative evapotranspiration can efficiently increase cabbage
yields while reducing unnecessary agricultural water usage. These findings can be applied
to other crops, highlighting the broader potential of this irrigation system for optimizing
water use.
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