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Abstract: Asparagus (Asparagus officinalis L.) has high health and nutritional values, but 

the lack of scientific and rational cultivation planning has resulted in a decline in aspara-

gus quality and yield. Important soil, climatic, anthropogenic, and topographic environ-

mental factors influencing the distribution of asparagus cultivation were chosen for this 

study. The Kuenm package in the R language (v4.2.1) was employed to optimize the max-

imum entropy model (MaxEnt). Pearson’s correlation analysis, optimized MaxEnt, and 

geographic information spatial technology were then utilized to identify the main envi-

ronmental factors that influence suitable habitats for asparagus in China. Potential distri-

bution patterns, migration, and changes in trends concerning the suitability of asparagus 

in China under various historical and future climate scenarios were modeled and pro-

jected. Human activities and climate factors were found to be the primary environmental 

factors that influence the suitability distribution of asparagus cultivation in China, fol-

lowed by soil and topographic factors. Historical suitable habitats covered 345.6 × 105 km2, 

accounting for 36% of China. These habitats are projected to expand considerably under 

future climatic conditions. This research offers a basis for the rational planning and sus-

tainable development of asparagus cultivation. 

Keywords: asparagus; climate change; human activities; model parameter optimization; habitat 

suitability 

 

1. Introduction 

Asparagus (Asparagus officinalis L.) is a highly economical and nutritional vegetable, 

which contains more protein and vitamins than general vegetables. It has anti-cancer and 

immune-enhancing health functions and enjoys the reputation of being the “King of Veg-

etables” [1–4]. China is a major producer of asparagus, with the largest area and output 

in the world, and it acts as a critical player in the global asparagus trade [5]. After nearly 

30 years of development, China’s asparagus industry has developed into an emerging 
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industry with competitive advantages. However, asparagus planting planning and intro-

duction cultivation are carried out blindly and at random due to the lack of guidance from 

scientific theory, resulting in a decline in asparagus yield and quality [6]. 

Species geographical distribution is affected by the combination of topography, cli-

mate, soil, and human activities [7]. The global climate has been warming since the 20th 

century. According to the Sixth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC), the global surface temperature rose by 0.99 °C between 2001 and 

2020 in contrast to 1850–1900. In 2021–2024, the temperature rise is expected to approach 

or surpass 1.5 °C [8]. Agriculture is one of the areas most impacted by changes in climate, 

largely due to the fact that heat is the energy source of crops and water is the basic com-

ponent of crops, which both affect their physiological activities [9]. Higher temperatures 

result in a greater water vapor content in the atmosphere, a change in precipitation pat-

terns, an increase in the frequency of extreme weather events, and changes in crop plant-

ing layouts [10].  

Climate change is significantly altering species’ geographical distributions, with 

many species shifting their ranges northward or migrating to higher elevations due to a 

more pronounced trend of temperature increases at higher elevations compared to lower 

elevations [11,12]. Comparing the past and present vegetation distribution in the 

Montseny Mountains in Spain, it was found that cold temperate ecosystems had been 

gradually replaced by Mediterranean ecosystems due to climatic warming, and beech for-

ests had migrated to higher altitudes, with an increase of about 70 m [13]. Climate change 

has caused a considerable northward shift in China’s prospective single-cropping and 

double-cropping rice planting boundaries [14]. Soil texture, chemical and physical char-

acteristics, nutrients, and moisture influence the growth of crop roots, as well as the stor-

age, transformation, and uptake of nutrients, thus affecting the process of crop growth, 

development, yield, and quality and restricting the scope of crop cultivation and distribu-

tion [15]. For example, clay soil has a strong water retention capacity and poor air perme-

ability, resulting in long-term water retention in the soil, which can provide a good water 

supply for plants, so it is suitable for moisture-tolerant plants, while sandy soils have good 

water permeability and are suitable for growing drought-loving plants. Topography af-

fects the distribution of hydrothermal resources, and major ecological factors like water 

vapor, heat, light, and soil change regularly with variations in elevation, slope, and slope 

direction, thus having a significant impact on crop distribution patterns [16]. Human ac-

tions, including choosing drought-tolerant crops based on the distance of water sources 

and transforming converted land into construction land, also significantly affect crop 

planting layout [17]. 

Species distribution models (SDMs) quantify the link between environmental param-

eters and species distribution, reflecting the limiting constraints of species dispersion and 

habitat adaptation [18]. They have been extensively utilized to model and forecast poten-

tial appropriate areas for crops, distribution patterns, and responses to the change in cli-

mate [19]. Currently, commonly used SDMs include the genetic algorithm for rule-set pre-

diction (GARP), the bioclimate envelope model (BIOCLIM), ecological niche factor analy-

sis (ENFA), and the maximum entropy model (MaxEnt) [20]. Among them, the MaxEnt 

model is the most popular and well-known model of species distribution, and it has high 

accuracy because of its low sample size requirements, short running time, high simulation 

accuracy, and outstanding predictive ability. The MaxEnt model functions on the basis of 

the maximum entropy principle, which uses environmental factors as constraints to iden-

tify the likelihood of maximum entropy and a functional connection established by the 

actual species distribution points to forecast the probable distribution of a species. The 

ecological niche models of Domain, BIOCLIM, MaxEnt, and GARP were employed to sim-

ulate the habitat distribution of various species at various sizes. The findings suggested 
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that the MaxEnt model was the most predictive for species with limited distribution data 

and short geographic ranges [21]. Elith et al. [22] identified that the MaxEnt model had 

the best performance in their simulation of the geographical distribution of 226 species 

over six areas of the world utilizing 16 SDMs. 

MaxEnt has been extended from the simulation of potential habitats for endangered 

or economically valuable species and invasive species to the study of agricultural crops, 

such as the study of growth zonation and the assessment of response to dominant envi-

ronmental factors of rice, maize, wheat, and potato [23–25], which offers an essential sci-

entific foundation for agricultural cultivation, conservation, as well as sustainable devel-

opment. The MaxEnt model was exploited to simulate and examine the impact of future 

climate change on maize suitability zones in Kenya. It was discovered that future climate 

change will result in a 1.9–3.9% rise in unsuitable maize regions and a 14.6–17.5% drop in 

moderately appropriate areas. The leading environmental factors influencing the spread 

of maize plantings were the mean wettest-season temperature, yearly mean temperature, 

and annual precipitation [26]. Predictive analysis of potential planting areas for regener-

ative rice and double-cropped rice in China via the MaxEnt model found that the area 

suitable for double-cropped rice cultivation was 130,500 ha, while the area suitable for 

growing regenerative rice was 56,400 ha. The main environmental factors that affect the 

suitable area for regenerating rice are average temperature in the warmest season, ≥10 °C 

cumulative temperature, annual precipitation, altitude, and annual sunshine duration 

[27]. The MaxEnt model has been exploited in studies of species distribution prediction, 

but the unoptimized model prediction results may result in serious fitting biases. Model 

complexity, different environmental variables, and parameters affect the model perfor-

mance to different degrees. Studies have shown that optimizing the model by parameter 

tuning can dramatically enhance the simulation accuracy of the MaxEnt model and obtain 

more accurate species distributions [13,28]. 

At present, research on crop-suitable areas based on the MaxEnt model mainly fo-

cuses on grain crops such as rice, corn, and wheat. The influencing factors are also mostly 

focused on the impact of climatic factors like light, temperature, water, and heat. There is 

no research that fully considers the influences of natural ecosystems and human activities 

on the distribution of asparagus cultivation [29,30]. Therefore, this study took asparagus 

as the research object and considered the combined effects of topography, soils, climate, 

and human activities; the main environmental factors influencing the appropriate distri-

bution of asparagus were determined using the MaxEnt model. Additionally, the features 

of the appropriate distribution of asparagus in China under current and various future 

climate scenarios were projected and analyzed. The research was conducted (1) to deter-

mine key environmental factors that influence the distribution of suitable habitats for as-

paragus in China; (2) to test and compare the effectiveness of the optimized MaxEnt model 

in predicting the species’ suitable habitats; (3) to predict and analyze the underlying spa-

tial variability and geographical distribution of asparagus under various historical and 

future climate scenarios; and (4) to examine the variation and migration trajectories of 

suitable distribution centers of asparagus in China at various periods. 

2. Materials and Methods 

2.1. Data Sources 

Distributional data of asparagus were collected from the Global Biodiversity Infor-

mation Facility (https://www.gbif.org (accessed on 9 May 2024)), the Chinese Virtual Her-

barium (https://www.cvh.ac.cn (accessed on 9 May 2024)), and the National Specimen 

Platform (http://www.nsii.org.cn (accessed on 9 May 2024)). When sample records lacked 

detailed geographic coordinates, they were identified in Google Maps, yielding a total of 

252 asparagus distribution spots [31]. The distribution point data were filtered through 
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the ENMTools package in R language (v4.2.1) to make sure that only one distribution 

point datum within a raster of 2.5′ (~25 km2) precision was maintained, avoiding the over-

fitting of the model operation and influencing the prediction outcomes [32]. After remov-

ing the errors and repeated points, 192 asparagus distribution points were finally deter-

mined (Figure 1). 

 

Figure 1. Asparagus distribution points in China. 

Through reviewing the relevant literature, 25 environmental factors affecting aspar-

agus planting distribution were initially screened and identified (Table 1) [33]. Terrain 

factors (elevation and slope) and environmental climate factors were provided by the 

World Climate Database (WorldClim, http://www.worldclim.org/ (accessed on 24 May 

2024)). Data on soil chemical and physical characteristics were derived from the World 

Soil Database (http://www.fao.org/ (accessed on 25 May 2024)). Scenarios for future cli-

mate change consist of four shared socioeconomic pathways (SSPs), namely, SSP585, 

SSP370, SSP245, and SSP126, which employ the BCC-CSM2-MR climate model. Soil phys-

icochemical property data include soil pH, organic matter, and calcium carbonate content. 

The anthropogenic factor is the gross domestic product (GDP) via the Chinese Academy 

of Science Resource and Environment Data Center (https://www.resdc.cn/ (accessed on 25 

May 2024)). Due to the limitations of the available data, the impact of factors such as GDP, 

soil, and terrain was only comprehensively considered during historical periods. In addi-

tion, this research mainly focused on the impact of future climate change on the suitability 

of asparagus planting. Therefore, it was assumed that factors such as GDP, soil, and to-

pography would not change in the simulation study of future periods. ArcGIS 10.4 was 

applied to import all environmental variables for cropping and resampling, with a uni-

form resolution of 2.5′ and the data output in ASCII format. 
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Table 1. Climate, soil, topography, and human activity factors affecting the distribution of aspara-

gus planting (preliminary selection). 

Type 
Abbrevi-

ation 
Factors Data Sources Year Explanation Unit 

Cli-

matic 

varia-

bles 

Bio1 Annual mean temperature 

WordClim: Global Climate Data Version 2.0, Web: 

http://www.worldclim.org/ (accessed on 24 May 2024) 

1970–

2000 

The 19 climate factors in 

the WordClim climate da-

taset are derived from 

monthly precipitation val-

ues and temperature to 

produce more biologically 

significant variables, 

which are typically em-

ployed to model species 

distributions, along with 

the associated ecological 

modeling techniques. 

These 19 climate factors 

are representative of an-

nual trends (like annual 

precipitation and mean an-

nual temperature), limiting 

or extreme environmental 

factors (such as tempera-

ture in the hottest and 

coldest months, along with 

precipitation in rainy and 

wet months), and seasonal-

ity (like annual ranges of 

precipitation and tempera-

ture). A season is three 

months (1/4 of the year). 

°C 

Bio2 Mean diurnal range °C 

Bio3 
Isothermality (Bio2/Bio7) 

(×100) 
% 

Bio4 
Temperature seasonality 

(standard deviation × 100) 
°C 

Bio5 
Max temperature of warmest 

month 
°C 

Bio6 
Min temperature of coldest 

month 
°C 

Bio7 
Temperature annual range 

(Bio5–Bio6) 
°C 

Bio8 
Mean temperature of wettest 

quarter 
°C 

Bio9 
Mean temperature of driest 

quarter 
°C 

Bio10 
Mean temperature of warmest 

quarter 
°C 

Bio11 
Mean temperature of coldest 

quarter 
°C 

Bio12 Annual precipitation mm 

Bio13 Precipitation of wettest month mm 

Bio14 Precipitation of driest month mm 

Bio15 
Precipitation seasonality (coef-

ficient of variation) 
mm 

Bio16 Precipitation of wettest quarter mm 

Bio17 Precipitation of driest quarter mm 

Bio18 
Precipitation of warmest quar-

ter 
mm 

Bio19 Precipitation of coldest quarter mm 

Ter-

rain 

varia-

bles 

Eleve Altitude 

WordClim: Global Climate Data Version 2.0, Web: 

http://www.worldclim.org/ (accessed on 24 May 2024) 

1970–

2000 
 

m 

Slope Slope ° 

Hu-

man 

activi-

ties 

GDP Gross domestic product 
Cloud Platform of the Chinese Academy of Sciences, 

Web: https://www.resdc.cn/ (accessed on 25 May 2024) 
2010 

GDP reflects the economic 

performance of a country 

or region, and economic 

performance is related to a 

variety of socioeconomic 

factors, which work to-

gether in the distribution 

of crop planting. 

Ten 

thou-

sand 

Yuan 

Soil 

varia-

bles 

pH pH value (H2O) 

HWSD: Harmonized World Soil Database v2.0,Web: 

https://www.fao.org/soils-portal/en/  

(accessed on 25 May 2024) 

2010 

These soil variables are di-

rectly related to the growth 

environment and nutrient 

absorption and utilization 

of vegetables. 

−log(H+) 

OC Organic content % 

CaCO3 Calcium carbonated content % 

2.2. Correlation Testing and Screening of Environmental Variables 

Because there may be collinearity between the environmental variables that affect the 

model operation results, to prevent the MaxEnt model from overfitting, the chosen envi-

ronmental variables first needed to be screened [22]. The MaxEnt model was loaded with 

the chosen 25 environmental variables for initial computations to obtain the rate of each 

variable’s contribution, and Pearson correlation tests were conducted using ArcGIS 

(v10.4.1) and SPSS (v27.0.1) software [34]. The output of the MaxEnt simulation retains 
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the environmental variables with a contribution rate of over 0.1%. Multicollinearity is pre-

sent when the Pearson correlation coefficient, |r|, between both environmental variables 

is over 0.8. The environmental variable that contributes more is retained, while the one 

that contributes less is eliminated. If both environmental variables have the same contri-

bution rate, the variable exhibiting smaller multicollinearity with the other environmental 

variables is selected. 

2.3. MaxEnt Model 

2.3.1. Model Optimization 

The MaxEnt model is prone to overfitting and sampling bias. The model transfer abil-

ity is only effective under low-threshold conditions, and default parameters can influence 

the prediction accuracy of the model. The complexity of the MaxEnt model is strongly 

correlated with its feature class (FC) and regularization factor (RM) parameters [35]. In 

this research, the R package Kuenm was utilized to optimize the parameters of the MaxEnt 

model [36]. During the optimization process, 0.1 was set as the starting value for RM, and each 

time, it was incremented by 0.1 up to 4.0, with a total of 40 control frequency doublings [37,38]. 

The optimization was carried out through combinations of five feature types: H—hinge; Q—

quadratic; L—linear; T—threshold; and P—product [39]. Omission rates, along with Akaike 

information criterion (AICc), were employed to assess the complexity and fit of various pa-

rameter combinations of the MaxEnt model [40]. The optimal parameter value was the com-

bination of FC and RM when the omission rates were less than 5%, the natural logarithm of 

AICc was the smallest, and the delta AICc values were 0 [41]. 

Since the area under the curve (AUC) is independent of the threshold for assessing 

the model’s performance, the capacity of various parameter combinations to differentiate 

between background and test points was assayed utilizing the AUC under the receiver 

operating characteristic (ROC) [42]. 

2.3.2. Model Modeling and Accuracy Verification 

The distribution data of asparagus and the selected environmental factors (GDP, 

Bio3, Bio5, Bio8, Bio11, Bio13, Bio14, Bio15, Bio19, CaCO3, Eleve, pH, OC, slope) were in-

put into MaxEnt software (v3.4.3) for model construction. The model was set to run for 10 

iterations, with 75% of the data randomly chosen as the training set and the remaining 

25% as the validation set. The AUC was employed to determine the prediction accuracy 

of the MaxEnt model, which raises as the AUC value approaches 1. AUC ≥ 0.9, 0.8 ≤ AUC 

< 0.9, 0.7 ≤ AUC < 0.8, 0.6 ≤ AUC < 0.7, and 0.5 ≤ AUC < 0.6 indicate an optimal, an im-

proved, an average, a poorer, and a failed model prediction, respectively [43]. 

2.3.3. Delineation and Analysis of Suitable Areas for the Cultivation of Asparagus 

The “Reclassification” tool in ArcGIS was employed to categorize MaxEnt model pre-

dictions into planting suitability classes. The prediction findings of the MaxEnt model 

were displayed as the continuous existence probability (p), which ranges from 0 to 1 in the 

anticipated region. The closer the p-value is to 1, the more likely it is that the presence of 

the species suggests a higher degree of habitability. Taking into account the classification 

criteria for assessing the “likelihood” of species survival suitability developed by the 

IPCC, combined with the climatic conditions and planting conditions of the study area, 

the suitability of asparagus cultivation was divided according to the following criteria: p 

< 0.08, 0.08 ≤ p < 0.27, 0.27 ≤ p < 0.86, and p ≥ 0.86 for unsuitable, suitable, low-suitability, 

moderately suitable, high-suitability planting areas, respectively. The SDMTools tool in 

ArcGIS software (v10.4.1) was utilized to calculate the trend of asparagus optimum areas 

under the impacts of historical and future changes in climate and to analyze the centroid 
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coordinate change and migration distance of the most suitable area [44]. The flowchart for 

this study is displayed in Figure 2. 

 

Figure 2. Methodological framework in this work. 
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3. Results 

3.1. Optimization and Prediction Accuracy Assessment of MaxEnt Models 

This study used the Kuenm package to create a total of 1160 distribution models, of 

which 8 met the 5% omission rate standard (Figure 3). For the optimal model, ROC = 0, 

omission rates = 0.04; AICc = 4968.31; and optimized model parameters RM = 0.4; and FC 

= FQH (Figure 3). The environmental data, along with the screened asparagus distribution 

data, were imported into the MaxEnt model, and the optimized parameters were repeated 

for 10 runs for cross-validation. According to the findings, the average AUC value of the 

MaxEnt model was 0.931, and its standard deviation was 0.013, indicating excellent sim-

ulation accuracy (Figure 4). 

 

Figure 3. AlCc values and omission rates for all candidate models, non-significant candidate mod-

els, and selected “best” candidate models for asparagus. 

 

Figure 4. ROC curve for the assessment of asparagus distribution under optimal parameter condi-

tions according to the MaxEnt model. 
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3.2. Screening of Main Environmental Variables 

To identify the contribution rate of each factor to the asparagus cultivation distribu-

tion in China, the first 25 environmental factors were chosen and imported into the opti-

mized MaxEnt model, and a Pearson correlation analysis was then conducted. The envi-

ronmental variables with a contribution rate > 0.1% and a correlation rate < ±0.8 were 

screened out. In total, 14 key environmental variables that influence asparagus cultivation 

distribution were chosen: mean temperature in the coldest quarter (Bio11), wettest quarter 

(Bio8), precipitation in the wettest month (Bio13), driest month (Bio14), ratio of diurnal to 

annual temperature difference (Bio3), mean precipitation in the coldest quarter (Bio19), 

maximum temperature in the hottest month (Bio5), elevation (Eleve), soil calcium car-

bonated content (CaCO3), soil pH (pH), and soil organic content (OC) (Figure 5). Com-

pared with other environmental variables, GDP (with a contribution rate of 76.1%), Bio15 

(4.5%), slope (4.3%), Bio11 (4.0%), Bio13 (2.7%), and Bio14 (2.6%) contributed the most to 

asparagus cultivation distribution, with a cumulative contribution rate of 94.2% (Table 2). 

 

Figure 5. Correlation of initially selected environmental variables (see Table 1 for the names of the 

environmental factors). 

Table 2. Effects of initial environmental variables on asparagus cultivation distribution in China 

(see Table 1 for the names of the environmental factors). 

Variable 
Percent  

Contribution (%) 

Permutation  

Importance (%) 
Variable 

Percent  

Contribution (%) 

Permutation  

Importance (%) 

Bio1 0.2 0.1 Bio14 2.6 3.4 

Bio2 0.9 0.8 Bio15 4.5 4.8 

Bio3 1.8 0.9 Bio16 0.1 0.2 

Bio4 1.1 3.3 Bio17 0.4 0.8 

Bio5 1.6 6.5 Bio18 0.1 0.1 

Bio6 1.1 0 Bio19 1.3 7.2 

Bio7 2.2 0.5 GDP 71.6 41.2 

Bio8 2.5 4.5 Slope 4.3 1.0 

Bio9 0 0 Eleve 1.1 2.1 
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Bio10 0.9 2.8 CaCO3 1.0 2.6 

Bio11 4.0 5.7 pH 0.6 1.3 

Bio12 0.5 9.1 OC 0.4 1.2 

Bio13 2.7 17.7    

3.3. Effect of Key Environmental Factors on the Asparagus Cultivation Distribution 

According to the importance test of the Jackknife method, the significance of envi-

ronment variables when there is only one environment variable is as follows: GDP > Bio11 

> Elevation > Bio13 > Bio5 > Bio8 > Bio14 > Bio19 > Bio3 > Bio15 > CaCO3 > slope > pH > OC 

(Figure 6). The outcomes suggested that Bio11 and GDP were the major environmental 

factors affecting asparagus’s geographical distribution. 

 

Figure 6. Jackknife test employed to establish the impact of key variables on the distribution of as-

paragus: (A) regularized training gain for asparagus; (B) test gain for asparagus. The impacts of the 

variables in the sample set were utilized for validation of the model. 

Figure 7 displays the response curves of six key environmental factors (GDP, slope, 

Bio11, Bio13, Bio14, and Bio15) that significantly influence the suitability of asparagus cul-

tivation in China. As the values for Bio13 and Bio14 increased, the probability of aspara-

gus suitability experienced a sharp rise followed by a gradual decline. Specifically, the 

suitability probability for Bio13 peaked at approximately 0.65, with around 200 mm of 

precipitation, while the highest suitability for Bio14 occurred at about 20 mm of precipi-

tation. This indicated that asparagus growth was most suitable within a certain range of 

precipitation. Both excessive and insufficient precipitation could reduce its growth poten-

tial. The projected non-linear relationship emphasized the water requirements of aspara-

gus and highlighted the complex influence of precipitation on its distribution. The proba-

bility of asparagus suitability initially increased and then decreased with rising GDP, but 

the rate of increase and decrease was relatively slow. The highest probability of asparagus 

suitability was 0.85 when the GDP was 167,00.9 million yuan km−2. The greater the slope, 

the lower the probability of asparagus suitability, which was below 0.5 when the slope 

was greater than 40°. 
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Figure 7. Response curves of asparagus-suitable area to the top six contributing environmental variables. 

3.4. Spatial and Temporal Distribution Features of Suitable Areas for Asparagus in China Under 

Historical and Future Changes in Climate 

The 14 key environmental factors were imported into the MaxEnt model to analyze 

the distribution of suitable habitats for Chinese asparagus under various historical and 

future climate scenarios (SSP585, SSP370, SSP245, and SSP126). In historical periods, the 

total suitable area was 345.6 × 105 km2, which accounts for 36% of China’s land area, pri-

marily concentrated in Eastern China. In this area, the most suitable area was 40.3 × 105 

km2, mainly distributed in Hebei, Fujian, Shandong, Liaoning, Jiangsu, Henan, Shanxi, 

Shaanxi, Tianjin, Chongqing, and Sichuan. The medium-suitability area was 109.92 × 105 

km2, mostly located in the central regions of Shandong, Henan, and Shaanxi in China. The 

low-suitability zone covers an area of 192.51 × 105 km2, primarily located in the southwest, 

southeast, and northeast regions of China (Figure 8j). 

According to the MaxEnt model, the suitable areas for asparagus cultivation in China 

were predicted under various climate scenarios for the future periods of 2041–2060 

(2050s), 2061–2080 (2070s), and 2081–2100 (2090s) (Figure 8a–l). It was projected that the 

asparagus-suitable area in the 2050s, 2070s, and 2090s under the SSP126 scenario was 

373.52 × 105, 379.62 × 105, and 386.47 × 105 km2, respectively. The distribution area of its 

suitable habitat was similar to that of the historical period, but the area had increased. 

Compared to the historical period, the suitable area increased by 27.92 × 105 km2, 34.02 × 

105 km2, and 40.87 × 105 km2, respectively. The additional suitable areas were mostly dis-

tributed in Hubei, Hunan, Zhejiang, and Jiangxi provinces. The suitable area for aspara-

gus cultivation was 384.15 × 105 km2, 400.11 × 105 km2, and 386.70 × 105 km2 in the 2050s, 

2070s, and 2090s under the SSP245 scenario, respectively, i.e., an increase of 38.55 × 105 

km2, 54.51 × 105 km2, and 41.60 × 105 km2 compared to the historical period. The increased 

suitable growth areas were primarily distributed in Jiangxi, Hubei, and Hunan. Under the 
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SSP370 scenario, the suitable habitat area for asparagus was 373.83 × 105 km2, 402.48 × 105 

km2, and 438.68 × 105 km2 in the future periods. It increased by 28.23 × 105 km2, 56.88 × 105 

km2, and 93.08 × 105 km2 compared to the historical period, with the increased suitable 

areas being primarily distributed in Jiangxi, Hubei, Hunan, Zhejiang, Fujian, and Shang-

hai. The suitable habitat area for asparagus was 388.20 × 105 km2, 417.95 × 105 km2, and 

437.52 × 105 km2 in the future period under the SSP585 scenario, respectively. This corre-

sponds to an increase of 42.60 × 105 km2, 72.35 × 105 km2, and 91.92 × 105 km2 compared to 

the historical period. The increased suitable areas were primarily distributed in Hunan, 

Jilin, Liaoning, Shanghai, Jiangxi, Hubei, Zhejiang, and Fujian provinces (Table 3). 

 

Figure 8. Suitable asparagus distribution areas in China under various historical (m) and future 

periods and climate scenarios (a–c, d–f, g–i, and j–l refer to the periods 2041–2060, 2061–2080, and 

2081–2100 in the SSP126, SSP245, SSP370, and SSP5855 scenarios). 
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Table 3. The potential asparagus distribution areas in China under historical and CMIP6 future 

climate scenarios. 

Climate 

Scenario 
Period 

Areas of Suitable Area (105 km2) 

Unsuitable Area Low-Suitability Area Moderate-Suitability Area High-Suitability Area 

 1970–2000 614.40 192.51 111.92 41.17 

SSP126 

2041–2060 586.48 181.01 123.78 68.73 

2061–2080 580.38 186.85 126.75 66.02 

2081–2100 573.53 198.80 130.73 56.94 

SSP245 

2041–2060 575.85 189.62 133.18 61.35 

2061–2080 559.89 184.34 132.44 83.33 

2081–2100 573.30 168.78 131.44 86.48 

SSP370 

2041–2060 586.17 173.94 124.72 75.17 

2061–2080 557.52 154.25 134.29 113.94 

2081–2100 521.32 140.67 135.55 132.46 

SSP585 

2041–2060 571.80 179.33 132.50 76.37 

2061–2080 542.05 157.31 133.49 127.15 

2081–2100 522.48 125.69 127.31 184.52 

The suitable regions for asparagus cultivation in China were primarily located in Ji-

lin, Liaoning, eastern Inner Mongolia, southern Heilongjiang, southern Gansu, eastern Si-

chuan, and Hainan, as well as in the central and southeastern regions under SSP126, 

SSP245, SSP370, and SSP585 scenarios. There were also a few small, scattered patches dis-

tributed in Yunnan, Xinjiang, Tibet, and Qinghai (Figure 8). The trends in the total suitable 

area and highly suitable area from the historical period to the 2050s, the 2050s to the 2070s, 

and the 2070s to the 2090s show a consistent pattern, exhibiting a trend of increasing then 

decreasing then increasing again. Changes in unsuitable areas decreased from the present 

to the 2050s, increased from the 2050s to the 2070s, and then declined again from the 2070s 

to the 2090s (Table 4). The expansion range was mainly located in northeastern and south-

western China, as well as in certain regions in Xinjiang. In contrast, the contraction area 

was mainly located in southwestern Liaoning and northeastern Yunnan from the present 

day to the 2050s under various climate scenarios. From the 2050s to the 2070s, the contrac-

tion area decreased significantly compared to the historical to 2050s period, and the con-

traction area was mainly located in Liaoning and Jilin regions. During the period from the 

2070s to the 2090s, there was a small increase in the contraction area, mainly concentrated 

in Yunnan and the eastern coastal regions (Figure 9). 

Table 4. Relative variations in the area suitable for asparagus cultivation in China under various 

climate scenarios of CMIP6 for different periods in the future. 

Climate Scenario  
Area Variation (105 km2) 

Current to 2041–2060 2041–2060 to 2061–2080 2061–2080 to 2081–2100 

SSP126 

Expansion area 84.43 17.29 24.47 

Non-habitable area 558.14 550.94 551.93 

Stability area 297.95 366.56 370.15 

Contraction area 19.48 25.21 13.45 

SSP245 

Expansion area 87.18 28.78 31.58 

Non-habitable area 545.52 541.76 515.65 

Stability area 324.19 384.88 397.25 

Contraction area 6.11 4.58 15.52 

SSP370 

Expansion area 88.66 67.21 41.21 

Non-habitable area 544.59 506.66 492.67 

Stability area 317.53 381.57 422.56 
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Contraction area 9.22 4.56 3.56 

SSP585 

Expansion area 101.67 44.12 28.85 

Non-habitable area 530.85 512.39 491.35 

Stability area 321.36 396.32 432.04 

Contraction area 6.12 7.17 7.76 

 

Figure 9. Variations in the suitable area pattern of asparagus in China under different future periods 

and climate scenarios (a–c, d–f, g–i, and j–l are the current to 2041–2060, 2041–2060 to 2061–2080, 

and 2061-2080 to 2081-2100 in the SSP126, SSP245, SSP370, and SSP5855 scenarios). 
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3.5. Variations in the Centroid of Suitable Cultivation Areas for Asparagus in China Under Fu-

ture Change in Climate 

This study analyzed the centroid migration path of asparagus-suitable areas in both 

historical and various future climate scenarios. It was found that the center point of suit-

able areas for asparagus cultivation in China has a tendency to migrate northward in the 

future. As climate change intensifies in the future, the centroid migration of the asparagus-

suitable area showed a trend of first becoming closer and then farther away, and the mi-

gration distance gradually increased (Figure 10). 

 

Figure 10. Future changes in center point migration of asparagus-suitable areas under various cli-

mate scenarios. 

The center point of the suitable area for asparagus cultivation was located in the cen-

tral-western Henan province (112.85° E, 33.84° N) (Figure 10). The centroid of asparagus 

suitable generally shifted northward under the SSP126 scenario. First, it shifted 67.82 km 

along the northeast to Xuchang city in Henan province (113.51° E, 34.11° N), followed by 

60.04 km along the northwest to Pingdingshan city in Henan province (112.86° E, 34.16° 

N); then, it shifted 19.61 km along the northeast to Pingdingshan city in Henan province 

(112.99° E, 34.30° N). The centroid of asparagus generally shifted to the northwest under 

the SSP245 scenario. First, it moved 18.62 km along the northeast to Pingdingshan city in 

Henan province (112.94° E, 33.99° N), then moved 58.02 km along the northwest to Luo-

yang city in Henan province (112.34° E, 34.15° N), and then moved 2.89 km along the 

southwest to Luoyang city in Henan province (112.36° E, 34.13° N). Under the SSP370 

scenario, the center point of the asparagus suitability zone also shifted, overall, to the 

northwest. First, it moved 37.12 km to Pingdingshan city in Henan province (113.00° E, 

34.15° N) along the northeast direction, then move 71.51 km to Luoyang city in Henan 

province (112.38° E, 34.54° N) along the northwest direction, and then moved 45.46 km to 
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Luoyang city in Henan province (112.07° E, 34.86° N) along the northwest direction. The 

centroid generally shifted to the northwest in the SSP585 scenario. First, it moved 47.25 

km in the northeast direction to Pingdingshan city in Henan province (112.93° E, 34.26° 

N), then moved 81.25 km in the northwest direction to Luoyang city in Henan province 

(112.24° E, 34.72° N), and finally moved 47.84 km in the northwest direction to Jiyuan city 

in Henan province (112.08° E, 35.13° N) (Table 5). 

Table 5. The centroid distribution and migration distance of the asparagus-suitable area in China 

under various climate scenarios of CMIP6 in the future. 

Climate 

Scenario 
Period 

Longitude 

(°) 

Latitude 

(°) 
Migration Period 

Migration Dis-

tance (km) 

SSP126 

Current 112.85 33.84   

2041–2060 113.51 34.11 Current to 2041–2060 67.82 

2061–2080 112.86 34.16 2041–2060 to 2061–2080 60.04 

2081–2100 112.99 34.30 2061–2080 to 2081–2100 19.61 

SSP245 

Current 112.85 33.84   

2041–2060 112.94 33.99 Current to 2041–2060 18.62 

2061–2080 112.34 34.15 2041–2060 to 2061–2080 58.02 

2081–2100 112.36 34.13 2061–2080 to 2081–2100 2.89 

SSP370 

Current 112.85 33.84   

2041–2060 113.00 34.15 Current to 2041–2060 37.12 

2061–2080 112.38 34.54 2041–2060 to 2061–2080 71.51 

2081–2100 112.07 34.86 2061–2080 to 2081–2100 45.46 

SSP585 

Current 112.85 33.84   

2041–2060 112.93 34.26 Current to 2041–2060 47.25 

2061–2080 112.24 34.72 2041–2060 to 2061–2080 81.28 

2081–2100 112.08 35.13 2061–2080 to 2081–2100 47.84 

4. Discussion 

The MaxEnt model is a desirable model for predicting both actual and potential species 

distributions and is being employed more and more in invasion biology [45,46], conservation 

biology, and to determine the influences of global climate change on species distribution 

[47,48]. Although the widespread use of MaxEnt research often relies on default settings, i.e., 

without data processing and model parameterization, the model’s accuracy is highly depend-

ent on species sample information, environmental variable processing, and parameter settings 

[49]. In order to prevent overfitting from affecting model accuracy, this study processed as-

paragus distribution data using ENMTools software and environmental data using the Pear-

son correlation test. The Kuenm package for the R language was used to optimize the MaxEnt 

model. The optimized model accuracy was AUC = 0.931, which indicated that it could accu-

rately predict the potential asparagus suitability zones in China. 

Climate, terrain, soil, and human activities are the main environmental factors that 

determine species distribution [50–52]. This study indicated that precipitation (Bio13, 

Bio14, and Bio19), temperature (Bio3, Bio5, Bio8, and Bio11), slope, and GDP are the main 

environmental factors that affect the underlying geographic distribution of asparagus, cu-

mulatively contributing 92.2%. GDP reflects the overall level of social and economic de-

velopment, as well as shifts in market demand. With the growth of GDP, the increase in 

agricultural investment, the pull of consumer demand, and the progress and promotion 

of technology will encourage farmers to adjust the crop planting structure based on eco-

nomic benefits and market prospects, thereby achieving higher output value and profit 

[53]. At the same time, factors including urbanization, environmental pollution, and eco-

logical degradation will also put pressure on agricultural production and further affect 
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the crop planting distribution [54,55]. Asparagus has a strong adaptability to temperature, 

being both cold- and heat-resistant; when the soil temperature rises to 5 °C asparagus, will 

germinate; and it will grow normally at around 10 °C. The optimal temperature range for 

tender shoot formation is 15 °C to 17 °C. Low and high temperatures can inhibit photo-

synthesis and affect asparagus development [56]. The asparagus goes into summer dor-

mancy when the temperature rises above 30 °C. The above- and underground parts enter 

dormancy for better overwintering when the winter temperatures in winter in the north-

ern region are too low [57]. Although the well-developed root system of asparagus can 

withstand drought, it is susceptible to water-logging, and excessive precipitation can 

cause root rot [58,59]. Sloping cultivated land acts as a pivotal player in food production, 

ecosystem diversity, and economic development. Sloping affected soil depth, soil respira-

tion, and nutrient utilization rates, with the asparagus survival threshold being greater 

than 0.5 when land slopes were less than 40°. Wang et al. [60] quantitatively analyzed the 

spatial distribution of 12 major crops on steep slopes (>12%) in Europe and found that 

steep-slope agriculture was vulnerable to drought. This study also found that gentler 

slopes were more suitable for the survival of asparagus. Human activities significantly 

affect global climate change, and the level of economic development levels plays a crucial 

role in agricultural productivity. Among anthropocentric factors, GDP has the greatest 

influence on the habitat’s suitability for asparagus, contributing 71.6%. Identifying the 

main environmental factors that affect asparagus distribution, we can create rational zon-

ing strategies to facilitate the introduction and cultivation of asparagus, as well as crop 

conservation. 

This study found that future temperature change caused the centroid of the suitable 

areas for asparagus cultivation to shift northward, with a maximum migration distance of 

67.82 km. The centroid shift suggests that the suitable areas for asparagus may change 

due to climate change, prompting farmers to adjust planting locations to adapt to the new 

climatic conditions. To ensure the sustainable development of asparagus, it will be essen-

tial to optimize water resource management and irrigation systems, as well as to adjust 

production seasons and land use practices. The suitable areas for asparagus had shifted 

to areas with less precipitation. This was highly consistent with the drought tolerance 

characteristics but not with the water logging tolerance characteristics of asparagus [61]. 

Additionally, moderate- and high-suitability areas for asparagus in China showed an in-

creasing trend, while unsuitable and low-suitability areas exhibited a declining tendency 

under various future climatic scenarios. As the temperature increases, the suitable area 

for asparagus tends to increase, but there are limits to this expansion. Our findings sug-

gested that the area unsuitable for asparagus in China is projected to increase from 2081 

to 2100 under the SSP245 scenario, likely due to the rising temperature exceeding the suit-

able growth temperature range for asparagus. 

The main distribution points in this study were derived from the specimen distribu-

tion information, which only indicated the existence of the species at specific locations. 

These data do not accurately reflect all of the distribution areas or potentially suitable 

habitats. However, due to the limitation in the available databases, the actual distribution 

area of asparagus may not be fully captured, and this study was mainly focused on China. 

The optimized MaxEnt model employed in this research can be employed in subsequent 

studies for predicting the global distribution of asparagus cultivation. Furthermore, this 

study relied solely on the MaxEnt model, and the results may be uncertain due to the 

influence of this model’s structure. Future research could incorporate multiple species 

distribution models to analyze suitable areas for asparagus, thereby enhancing the relia-

bility of their findings. 
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5. Conclusions 

This research took into account the effects of soil, climate, topography, and human 

activity on asparagus cultivation distribution. Using the MaxEnt model and ArcGIS tools, 

the primary environmental parameters that influence the appropriate distribution for as-

paragus were determined. Additionally, this study forecasted and analyzed the spatio-

temporal changes and variation in potential suitable areas for asparagus in China. The 

parameter-optimized MaxEnt model was found to be highly effective in predicting suita-

ble areas for asparagus, with an AUC of 0.931. GDP, slope, Bio11, Bio13, Bio14, and Bio15 

were the primary environmental factors that influenced the areas suitable for asparagus 

in China. Highly suitable areas for asparagus were located in Hebei, Fujian, Shandong, 

Liaoning, Jiangsu, Henan, Shanxi, Shaanxi, Tianjin, Chongqing, and Sichuan provinces in 

China. With the effect of future climate change, the suitable areas for asparagus are ex-

pected to expand. This expansion of suitable areas is focused on southwest China, north-

east China, and certain parts of Xinjiang. Additionally, a few expansion zones were found 

in the Inner Mongolia, Qinghai, and Gansu provinces, while contraction zones were 

mainly found in northeastern Yunnan and southwest Liaoning province. Notably, the cen-

ter points of the suitable areas for asparagus is projected to shift northward due to future 

climate change, but they were all located in Henan province. These findings can provide 

valuable guidance for planning asparagus cultivation, promoting the development of a 

high-quality and high-yield asparagus industry, and effectively addressing the challenges 

posed by climate change. 
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