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Abstract: This study on soil salinity inversion in coastal tidal flats based on Sentinel-2
remote sensing imagery is significant for improving saline–alkali soils and advancing tidal
flat agriculture. This study proposes an improved approach for soil salinity inversion in
coastal tidal flats using Sentinel-2 imagery and a new enhanced chaotic mapping adaptive
whale optimization neural network (CIWOABP) algorithm. Novel spectral indices were
developed to enhance correlations with salinity, significantly outperforming traditional
indexes. The CIWOABP model achieved superior validation accuracy (R2 = 0.815) and
reduced root mean square error (RMSE) and mean absolute error (MAE) compared to other
machine learning models. The results enable the precise mapping of salinity levels, aiding
salt-tolerant crop cultivation and sustainable agricultural management. This method offers
a reliable framework for rapid salinity monitoring and precision farming in coastal regions.

Keywords: tidal flat agriculture; remote sensing inversion; spectral indices; precision breeding

1. Introduction
Soil salinization is one of the main factors restricting sustainable agriculture and

ecological environment improvement. According to statistics, approximately 7% of the
world’s soil is threatened by varying degrees of salinization. Among them, coastal tidal
flats are particularly affected by severe salinization [1]. As a special ecological resource in
the land–sea interface zone, the coastal tidal flat is an important ecosystem connecting land
and sea; it has important economic, social, and environmental values [2]. Consequently,
by employing scientific methods and technologies to accurately and reliably monitor
changes in soil salinity on tidal flats, this study improves the cultivability of tidal lands and
contributes to the management and restoration of saline soils.

Traditional methods for determining soil salinity typically involve pointwise sam-
pling in the field, followed by laboratory analysis of the collected samples. This process is
time-consuming, expensive, and can not provide comprehensive data [3]. Optical remote
sensing offers several technical advantages, including multiple bands, rich information, and
wide coverage. These features enable dynamic, real-time monitoring of soil salinity across
large areas, addressing the limitations of traditional methods [4]. Abdalsamad et al. [5]
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evaluated the feasibility of using Landsat satellite remote sensing for monitoring surface
soil salinity. The study’s results demonstrated that this method holds great potential for
large-scale soil salinity monitoring and can be effectively used to map the distribution
of salt in surface soils. In recent decades, researchers have carried out extensive studies
on the spectral characteristics of saline soils [6,7] and remote sensing data sources [8–10].
Considerable progress has also been made in developing methods for soil salinity inver-
sion. Cui et al. [11] employed machine learning algorithms to model and estimate soil
salinity at varying depths in farmland under crop cover. The results indicated that the
Backpropagation Neural Network (BP) algorithm delivered strong predictive performance,
achieving an R-Square (R2) value of 0.775. This method offers a more cost-effective and
spatially extensive approach for monitoring soil salinity in agricultural areas, potentially
aiding in soil health management, optimizing irrigation practices, and enhancing crop
productivity in salt-affected regions. Additionally, this study highlights the importance of
integrating high-resolution remote sensing data with machine learning to achieve accurate
and reliable estimates of soil properties at multiple depths. Future work may focus on
further refining the models and exploring other remote sensing techniques to improve
salinity mapping. Du et al. [12] aimed to address the challenge of timely monitoring of
soil water–salt dynamics in croplands. By integrating hybrid spectral unmixing techniques
with six machine learning algorithms, this study achieved a significant improvement in the
accuracy of soil water–salt dynamic monitoring. Among the models, the eXtreme Gradient
Boosting Tree (XGBoost) demonstrated the best performance, achieving an R2 value of 0.55.
This research effectively tackled the difficulties associated with monitoring soil water–salt
dynamics in agricultural fields and provided novel methods and insights for estimating
soil moisture and salinity in agricultural regions. Sarkar et al. [13] tackled the challenge of
soil salinity mapping in the coastal regions of Bangladesh by integrating remote sensing
techniques with machine learning algorithms to develop a robust soil salinity inversion
model. Among the evaluated models, the Random Forest (RF) model exhibited the highest
prediction accuracy. This study not only enhanced mapping precision but also significantly
reduced costs and time requirements, offering valuable insights into land resource man-
agement and sustainable agricultural practices in coastal areas. Furthermore, this research
highlighted the critical role of specific spectral bands, such as shortwave infrared, in salinity
prediction, underscoring the efficacy and practicality of combining remote sensing with
machine learning methodologies. In conclusion, machine learning algorithms have become
widely used in soil salinity inversion research due to their exceptional performance.

Nevertheless, most research has focused on inland salt-affected soils [14–17], while
studies on salt-affected soils in coastal tidal flat regions are relatively limited. This is
likely due to the complex natural environment of coastal tidal flats, which presents unique
challenges for conducting research in these areas. This study integrates remotely sensed
data with measured soil salinity data to provide a theoretical foundation for high-precision
soil salinity monitoring in tidal flats and precision farming. Building on traditional spectral
indices, it selects bands with high correlation to create new spectral indices, thereby en-
hancing the accuracy of model inversion. The spectral indices with significant correlations
were selected and modeled using machine learning algorithms, including the BP, Support
Vector Machine (SVM), Random Forest (RF), and the improved BP model CIWOABP. The
performance of the models was evaluated using metrics such as R2, RMSE, and MAE, to
identify the optimal model for constructing the soil salinity inversion model. Ultimately,
the best-performing model was chosen to conduct soil salinity inversion for the study
area, resulting in the creation of a soil salinity map for the region. This study offers sig-
nificant theoretical and practical contributions to precision farming and breeding in tidal
flat agriculture.
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2. Materials and Methods
2.1. Study Area

Yancheng is located in the eastern coastal area of China, which owns about 70% of
the saline land in Jiangsu Province and a tidal flat area of more than 1.2 million acres [18].
The study area is located at the junction of Dafeng District and Dongtai City in Yancheng
City, Jiangsu Province, between 32◦57′9′′~33◦2′1′′ N and 120◦44′28′′~120◦53′39′′ E, with
an east–west length of about 14.359 km, a north–south length of about 11.821 km, and a
surface area of about 153.66 km2 [19]. The tidal flats in the study area are primarily formed
through sedimentation and accretion driven by marine dynamics. Soil salinization and
alkalization are mainly caused by seawater intrusion and tidal erosion, leading to high soil
salinity that significantly impedes vegetation growth and agricultural development [20].
Additionally, the study area is situated in the transitional zone between the subtropical
and warm temperate regions. Under the influence of a maritime climate, fluctuating
weather conditions lead to an increase in soil pore water salinity, further exacerbating the
salinization of the tidal flats [8]. The location map of the study area is presented in Figure 1.
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Figure 1. (a) The geographical location of Yancheng. (b) The elevation model of Yancheng. (c) Sam-
pling point area.

2.2. Soil Data Collection and Pretreatment

To ensure the consistency between the ground data collection times and the satellite
overpass times, the following plan was implemented: Firstly, a feasible sampling route
was designed using map software (https://ditu.amap.com/, accessed on 27 January 2025).
Secondly, it was ensured that no sudden changes, such as irrigation or rainfall, occurred
during the ground data collection period. Taking into account the soil surface salinity
characteristics and land use patterns of the study area, multiple ground soil salinity data
collection experiments were conducted in the study area on 14–15 May 2024. During the

https://ditu.amap.com/
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sampling period, soil samples were collected using the five-point sampling method, with
21 sampling points selected. Considering that the resolution of the remote sensing data
used was 10 m, five sample points were taken within each 10 m2 area, with a sampling
depth ranging from 10 to 20 cm. After drilling the soil samples, they were quickly placed
in labeled sampling bags, and the preserved samples were transported to the laboratory
for further processing. Simultaneously, the latitude, longitude, and elevation of each
sampling point were recorded using a handheld Global Positioning System (GPS) device.
The weather during the sampling period was sunny, and no precipitation occurred.

The soil samples collected from the field were brought back to the laboratory for pro-
cessing. The processing steps primarily included air-drying, grinding, solution preparation,
and electrical conductivity measurement [21]. The process for preparing soil samples and
measuring their electrical conductivity (EC1:5) is as follows: (1) Place the collected soil
samples in a well-ventilated area to air-dry naturally. (2) Once the samples are thoroughly
dried, sieve them to remove any impurities, then place the clean soil into ceramic containers.
Grind the soil until it becomes a fine powder. (3) Transfer the powdered soil sample into a
labeled paper cup, which will be used for solution preparation. (4) When preparing the
solution, maintain a soil-to-water mass ratio of 1:5. Mix the soil with water according to
this ratio. (5) Use a stirrer to thoroughly mix the solution, ensuring that the soil is fully
suspended in the water. (6) Allow the solution to settle for some time, enabling the soil
particles to settle at the bottom. (7) After it has settled, filter the solution through filter
paper to obtain the supernatant liquid.

The electrical conductivity (EC) measuring instrument was the DDS-307A (±1.0%(FS))
conductivity meter. Finally, the empirical Formula (1) was used to calculate the soil salinity
of each sample [22]. The classification criteria for different salinity classes were non-saline
soil (<2 g·kg−1), lightly saline soil (2~4 g·kg−1), moderately saline soil (4~6 g·kg−1), heavily
saline soil (6~10 g·kg−1), and saline soils (>10 g·kg−1) [23].

SSC = (0.282 × EC1:5 + 0.0183) × 100% (1)

where SSC denotes the soil salt content (g·kg−1); the constant value was determined
experimentally and represents the conversion ratio corresponding to the salt content per
unit of electrical conductivity.

2.3. Sentinel-2B Satellite Date Preprocessing

The Sentinel system consists of multiple satellites, with Sentinel-2 primarily used for
agriculture, land use, and environmental monitoring, particularly for soil, vegetation, and
water body monitoring. Its image data across different bands are captured by its multi-
spectral imager (MSI), which regularly observes the Earth’s surface, capturing data across
13 bands ranging from visible light to shortwave infrared. The experimental data used in
this study are Sentinel-2B L1C data, and the downloaded satellite images are synchronized
with the soil sampling times in the field. As shown in Table 1, Sentinel-2 images possess
multispectral characteristics and high spatial resolution. Initially, Sen2cor, a built-in plug-in
of the Sentinel Application Platform (SNAP v7.0) software, was applied for radiometric
calibration and atmospheric correction to eliminate the effects of the atmosphere and ter-
rain, resulting in high-quality surface reflectance data. Subsequently, the image data were
resampled to 10 m resolution and exported in the TIFF format. The corresponding band
combinations were then performed using ENVI5.3. Finally, the band reflectance values at
the relevant sampling points were extracted using ArcGIS10.8.
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Table 1. Sentinel-2B image parameter.

Band
S2B

Resolution (m)
Central Wavelength (nm) Bandwidth (nm)

B1 442.3 45 60
B2 (B) 192.1 98 10
B3 (G) 559.0 46 10
B4 (R) 665.0 39 10

B5 703.8 20 20
B6 739.1 18 20
B7 779.7 28 20

B8 (NIR) 833.0 133 10
B8A 864.0 32 20
B9 943.2 27 60

B10 1376.9 76 60
B11 (SWIR1) 1610.4 141 20
B12 (SWIR2) 2185.7 238 20

2.4. Research on the Salinity Inversion Model

This study uses BP, SVM, RF [24–26], and CIWOABP for simulation tests, and the
model with the best accuracy is selected for modeling.

The BP model is a multilayer feedforward network capable of learning and storing
the mathematical relationships between a large number of input and output layers. The
advantages of the BP model include rapid processing of samples and low computational
cost. It can mimic human thought processes to infer and analyze the mechanisms of the
model, thereby improving the accuracy and stability of soil salinity inversion models.
However, BP also has some drawbacks. The training process of a BP is sensitive to the
initial weights. Different initializations of the weights can lead to significant variations
in the model’s training results. In addition, when training data are insufficient, the BP is
prone to overfitting the training data, which impairs the model’s ability to generalize to
new data. Based on this, this study uses the Whale Optimization Algorithm (WOA) to
optimize the BP model [27].

The WOA has advantages such as a simple mechanism, few parameters, and strong
optimization capabilities. It simulates humpback whales’ unique search strategy and
encircling mechanism, which mainly includes three important stages: encircling prey,
bubble-net predation, and searching for prey. In WOA, the position of each humpback
whale represents a potential solution. By continuously updating the position of the whales
in the solution space, the algorithm eventually converges to the global optimal solution [28].

The first stage is the encircling prey phase. The whale’s search range covers the entire
global solution space, and it is necessary first to determine the position of the prey to
surround it. Since the optimal solution’s position in the search space is unknown priori,
the WOA algorithm assumes that the current best candidate solution is either the target
prey or close to the optimal solution. After defining the best search agent, other search
agents will attempt to update their positions towards the best search agent. This behavior
is implemented by Equations (2)–(5).

D = |C·X*(t) − X(t)| (2)

X(t + 1) = X*(t) − A·D (3)

A = 2a × r1 − a (4)

C = 2 × r2 (5)
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where t represents the current iteration number, A and C are coefficient vectors, X*(t) is the
position vector of the current best solution, X(t) is the position vector of the current search
agent, a decreases linearly from 2 to 0, and r1 and r2 are random vectors in the range [0, 1].

The second stage is the bubble-net predation phase. Humpback whales have two main
predation mechanisms: encircling prey and bubble-net predation. In bubble-net predation,
the position update between the whale and the prey is expressed by the logarithmic spiral
Equations (6) and (7). Since there are two predation behaviors during the approach to
the prey, the WOA algorithm chooses either bubble-net predation or shrinking encircling
based on a probability p. When p ≥ 0.5, the position update is performed using Equation
(6). When p ≤ 0.5, the position update is performed using Equation (3). As the iteration
number t increases, the parameter A and the convergence factor A gradually decrease.
When |A| < 1, the whales begin to progressively encircle the current best solution, marking
the local search phase in the WOA algorithm.

X(t + 1) = D′ × ebl × cos(2Πl) + X*(t) (6)

D′ = |X*(t) − X(t)| (7)

where D′ represents the distance between the current search agent and the current best
solution, b is the spiral shape parameter, and l is a random number uniformly distributed
in the range [−1, 1].

The third stage is the prey search phase. To ensure that all whales thoroughly explore
the solution space, WOA updates positions based on the distances between whales, achiev-
ing random search. Therefore, when |A| ≥ 1, the search agents move towards a random
whale, as described by Equation (9).

D′′ =
∣∣C·Xrand(t)−X(t)| (8)

X(t + 1) = Xrand(t)− A·D (9)

where D′′ represents the distance between the current search agent and a random agent,
and Xrand(t) denotes the position of the current random agent.

Due to the random initialization of the population in the WOA algorithm, the algo-
rithm’s search capability may be insufficient, potentially leading to convergence at local
optima. Therefore, this study introduces the Cubic algorithm to optimize the initial popula-
tion of WOA. The algorithm can escape from local optima by utilizing chaotic mapping
for weight search and update. Additionally, an adaptive mechanism is incorporated to
optimize the weight coefficient of the shrinking encircling mechanism in WOA, thereby
accelerating the model’s convergence speed. The cubic formulas are as follows:

xi+1 = axi

(
1 − xi

2
)

(10)

where xi is the actual value of the spectral index.
The models constructed in this experiment were all regression models, and, therefore,

R2, RMSE, and MAE were used to comprehensively evaluate the inversion accuracy of
the BP, SVM, RF, and CIWOABP models. R2 reflects the goodness of fit of the regression
model, RMSE measures the deviation between the measured and predicted soil salinity
values, and MAE represents the absolute error, which provides a better understanding of
the actual error in the predicted values. The closer R2 is to 1 and the smaller the values of
RMSE and MAE, the more accurate the model inversion is. The formulas are as follows:

R2 = 1 − ∑n
i=1

(
yi − ŷι

2)
∑n

i=1
(
yi − yι

2) (11)
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RMSE =

√
1
n

n

∑
i=1

(
yi − ŷι

2) (12)

MAE =
1
n

n

∑
i=1

|yi − ŷι| (13)

where yi is the predicted value of soil salt data, ŷι is the measured value of soil salt data, yι

is the mean value of the original soil salt data, and n is the number of samples.
The technical flowchart of this study is shown in Figure 2. Soil samples were first

collected from the study area, and the longitude and latitude information of each sampling
point was recorded in this study. The soil samples were then sent to the laboratory to obtain
the salinity data for each sampling point. Subsequently, the salinity data were divided
into the modeling and validation datasets. The Sentinel-2B imagery was then preprocessed,
and the reflectance values of the image bands at the sampling points were extracted using the
latitude and longitude information. Next, a correlation analysis was performed between the
band reflectance values and the measured soil salinity data. Based on traditional spectral indices,
bands with high correlation were selected to create new spectral indices to improve the accuracy
of the model’s inversion. The optimal spectral index was then chosen as the model’s input,
and the salinity data from the modeling dataset were used as the output to train the machine
learning model. The model was validated using the validation dataset to assess its accuracy
and identify the best-performing model. Finally, the selected optimal model was used for soil
salinity inversion in the study area, generating a salinity map for the region.
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3. Results and Analysis
3.1. The Correlation Between Multispectral Reflectance and Measured Soil Salt Content

After preprocessing, the reflectance of commonly used Sentinel-2 image bands (Blue(B),
Green(G), Red(R), NIR, SWIR1, SWIR2) was analyzed for Pearson correlation with soil
salinity. The results are shown in Table 2. Among the individual bands, the correlation
between reflectance and soil salinity in the NIR band was found to be insignificant, while the
reflectance of the B, G, R, SWIR1, and SWIR2 bands showed a significant positive correlation
with soil salinity. Among these, the SWIR1 band exhibited the strongest correlation, with a
correlation coefficient of 0.511.

Table 2. The correlation coefficient between each band’s reflectance and salt content.

Band B G R NIR SWIR1 SWIR2

Correlation
coefficient 0.369 * 0.408 * 0.437 * 0.174 0.511 ** 0.396 *

*: significant at p < 0.05 level; **: significant at p < 0.01 level.

Spectral indices are derived using remote sensing technology by combining various
visible and infrared bands from satellite multispectral imagery to enhance specific spectral
characteristics. These indices are used to highlight specific features of ground objects.
Among them, the Salinity Index (SI) is a crucial metric for quantitatively assessing surface
salinity conditions. This study selected 11 commonly used traditional salt indices [29–36]
for quantitative analysis of soil salt content. As shown in Table 3, among the spectral indices
derived from multiple bands, SI, SI1, SI2, SI3, and S3 exhibited significant correlations with
the measured soil salt content, with correlation coefficients of 0.42, 0.43, 0.37, 0.43, and 0.43,
respectively. The correlation between the other spectral indices and the measured soil salt
content was found to be weak.

Table 3. Spectral index formula and its correlation with salinity.

Formulation Correlation Coefficient

SI-T R/NIR × 100 0.30
SI (B × R)1/2 0.42 *
SI1 (G × R)1/2 0.43 *
SI2 (G2 + R2 + NIR2)1/2 0.37 *
SI3 (G2 + R2)1/2 0.43 *
S1 B/R −0.11
S2 (B − R)/(B + R) −0.11
S3 G × R/B 0.43 *
ESI ((B × R)1/2 + SWIR1)/SWIR1 0.11
ES2 (B − R + SWIR2)/(B + R + SWIR2) 0.25

ENDSI (R − NIR)/(R + NIR + SWIR2) 0.28
*: significant at p < 0.05 level.

The correlation of traditional spectral indices is generally low, typically below 0.50. De-
veloping spectral indices with a high correlation is crucial to enhance the model’s accuracy,
specifically tailored to the salinity characteristics of the tidal flats. The basic principle of
creating spectral indices is identifying the bands with the strongest and weakest reflections
for the target land cover within multispectral bands. Through geometric operations, the
difference between these two bands is further amplified in a geometric progression [37].
This process enhances the brightness of the target land cover in the resulting index image
while suppressing the background land cover. Therefore, this study replaced the low-
correlation bands in SI, SI1, SI2, SI3, and S3 with the high-correlation SWIR1 band, and
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constructed new spectral indices (NEWSI4, NEWSI5, NEWSI6, NEWSI7, and NEWSI8).
This modification enhanced the representativeness of the spectral indices in reflecting the
salinity characteristics of the study area. As shown in Table 4, the new spectral indices,
after incorporating SWIR1, exhibited significantly stronger correlations with soil salinity.
The correlation coefficients were all approximately 0.5, generally higher than those of
the traditional spectral indices presented in Table 3, with the highest correlation of 0.52
observed for NEWSI6.

Table 4. New spectral index formula and its correlation with salinity.

Spectral Index Formulation Correlation Coefficient

NewSI4 (G × SWIR1)1/2 0.51 *
NewSI5 (R × SWIR1)1/2 0.50 *
NewSI6 (G2 + R2 + SWIR12)1/2 0.52 *
NewSI7 (R2 + R2 + SWIR12)1/2 0.52 *
NewSI8 (R2 + SWIR12)1/2 0.52 *

*: significant at p < 0.05 level.

To reduce redundant information and improve the model’s interpretability, this study
performed collinearity analysis on the aforementioned spectral indices. As shown in
Figure 3, there is a high degree of collinearity between different spectral indices. These
redundant data could increase the complexity of model training and even lead to overfitting
issues [35]. Therefore, it is necessary to select spectral indices with higher correlation to
avoid noise interference and enhance the model’s predictive ability. Ultimately, to enhance
the model’s generalization capability, this study selected the spectral indices SWIR1 and
NEWSI6, which showed significant correlation, as input variables for the regression model.
These were used to establish the quantitative relationship between remote sensing images
and soil salinity.
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3.2. Soil Salinity Prediction Model

In this study, 21 soil samples were collected, with their salt content arranged in
ascending order. The samples were then selected using an interval sampling method,
where 14 samples were designated for model training and the remaining 7 samples were
set aside for model accuracy testing. The spectral indices SWIR1 and NEWSI6 were used
as independent variables, and the measured salt data were used as dependent variables.
Four machine learning models, BP, SVM, RF, and CIWOABP, were used to create soil salt
inversion models.

As shown in Table 5, when the SWIR1 band is used for modeling, the CIWOABP
model demonstrates the best fit. The R2 values for the training and validation sets are 0.712
and 0.763, respectively, surpassing those of the RF, SVM, and BP models. Furthermore,
the model performs better on the validation set than on the training set, suggesting a
strong generalization ability. The results from the training set indicate that the BP model
outperforms the SVM model in all parameters. This is likely due to its strong nonlinear
mapping capability, as its multi-layer structure allows for the abstraction of the data,
enabling it to learn hierarchical features and model complex data more effectively. Although
SVM can also handle nonlinear data, its nonlinear ability is limited by the choice of kernel
function and parameter settings, which can affect the training results. However, the overall
performance of the BP model is slightly lower than that of the RF model. This may be
because the RF model, consisting of multiple decision trees, reduces the risk of overfitting
through ensemble learning, allowing it to fit data better in most cases, especially with
small datasets. Compared to the other three models, the CIWOABP model achieved the
highest R2 value of 0.712. When compared to the SVM model, the CIWOABP model
reduced the RMSE and MAE values by 0.507 g·kg−1 and 0.164 g·kg−1, respectively. This
improvement can be attributed to the integration of chaotic mapping and the adaptive
whale optimization algorithm in the CIWOABP model, which enhances its global search
capabilities and optimizes the network weights. As a result, the model is better equipped to
identify more appropriate mapping relationships within complex nonlinear data, leading
to improved prediction accuracy. In the validation set, the CIWOABP model achieved an
RMSE value of 0.601 g·kg−1, the lowest among all four models, and the MAE value was
reduced by 0.229 g·kg−1 compared to the RF model and by 0.087 g·kg−1 compared to the BP
model. As shown in Figure 4, the RF, SVM, and BP models performed better in predicting
low-salinity samples. In contrast, the prediction accuracy for low-salinity samples was
generally higher than for high-salinity samples. The CIWOABP model demonstrated good
prediction performance for both low and high-salinity samples. Although some predictions
showed minor deviations, the overall predicted values were proportional to the actual
measured values, indicating a good fit and enhanced model stability.

Table 5. Soil salinity inversion results from different models.

Model

B11 B11 + NEWSI6

Train Test Train Test

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

RF 0.503 0.683 0.458 0.367 1.018 0.761 0.611 0.579 0.434 0.332 1.10 0.850
SVM 0.251 1.342 0.751 0.346 0.688 0.464 0.352 0.906 0.549 0.313 0.620 0.719
BP 0.308 0.834 0.550 0.351 0.977 0.619 0.666 0.665 0.522 0.658 0.437 0.349

CIWOABP 0.712 0.835 0.587 0.763 0.601 0.532 0.874 0.332 0.223 0.815 0.531 0.454



Agriculture 2025, 15, 323 11 of 19
Agriculture 2025, 15, x FOR PEER REVIEW 12 of 20 
 

 

  
(a) RF (b) SVM 

  
(c) BP (d) CIWOABP 

Figure 4. Soil salinity prediction figure based on spectral index B11, with blue dots representing 
predicted values. 

  
(a) RF (b) SVM 

1 1.5 2 2.5 3 3.5 4 4.5 5
Measured SSC‰

1

1.5

2

2.5

3

3.5

4

4.5

5
Pr

ed
ic

te
d 

SS
C

‰
RF

R2=0.367
RMSE=1.018
MAE=0.761

1 1.5 2 2.5 3 3.5 4 4.5 5
Measured SSC‰

1

1.5

2

2.5

3

3.5

4

4.5

5

Pr
ed

ic
te

d 
SS

C‰

BP

R2=0.351
RMSE=0.977
MAE=0.0.619

1 1.5 2 2.5 3 3.5 4 4.5 5
Measured SSC‰

1

1.5

2

2.5

3

3.5

4

4.5

5

Pr
ed

ic
te

d 
SS

C‰

CIWOABP

R2=0.763
RMSE=0.601
MAE=0.532

1 1.5 2 2.5 3 3.5 4 4.5 5
Measured SSC‰

1

1.5

2

2.5

3

3.5

4

4.5

5

Pr
ed

ic
te

d 
SS

C‰

RF

R2=0.332
RMSE=1.10
MAE=0.850

Pr
ed

ic
te

d 
SS

C‰

Figure 4. Soil salinity prediction figure based on spectral index B11, with blue dots representing
predicted values.

Additionally, as shown in Table 5, the introduction of the new spectral index NEWSI6
resulted in an improvement in the R2 values for the RF, SVM, BP, and CIWOABP models,
while the RMSE values in the training set were all reduced, indicating better model fit.
Among the models, the CIWOABP model exhibited the best overall performance. The
R2 values for the training and validation sets were the highest among the four models,
reaching 0.874 and 0.815, respectively. These values represent an increase of 0.162 and 0.052
compared to the model using only the SWIR1 spectral index. Additionally, both RMSE
and MAE values were reduced, demonstrating that the new spectral index introduced in
this study significantly enhances the inversion accuracy of the models. Furthermore, the
CIWOABP model exhibits the lowest RMSE and MAE values in the training set compared
to the RF, SVM, and BP models. On the validation set, the RMSE and MAE values of the
CIWOABP model are also lower than those of the RF and SVM models. As shown in
Figure 5, RF and SVM demonstrate slight improvements in predicting low-salinity samples
but show limited progress in predicting high-salinity samples. In contrast, the BP model
improves performance in predicting high salinity samples, indicating its better handling
of these cases. The CIWOABP model shows a good fit to the 1:1 line for both low and
high-salinity samples, with predictions for low-salinity samples scattered around the 1:1
line and high-salinity samples aligning closely with it. This demonstrates the model’s
strong generalization ability and superior predictive performance. As observed in Figures 4
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and 5, the CIWOABP model is robust and stable, consistently providing reliable results
across different salinity levels.
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ing predicted values.

In conclusion, the CIWOABP model proposed in this study demonstrates a strong
generalization capability. It not only achieves high accuracy on the training dataset but also
maintains excellent predictive performance on the test dataset. The model’s robustness
allows it to resist the influence of noise and outliers, making it suitable for practical applica-
tions. Moreover, the model does not exhibit significant overfitting, and its generalization
error remains low, indicating that it has a strong generalization ability and can be reliably
applied for soil salinity inversion in the study area.

3.3. Soil Salinity Inversion

According to the soil salinity classification standard, the study area covered by the
sampling points was divided into five salinity types: non-saline, mildly saline, moderately
saline, heavily saline, and saline soils. The soil salinity inversion results for the study area
are shown in Figure 6. The salinization levels from low to high are as follows: 31.63%,
42.47%, 12.77%, 7.62%, and 5.51%.
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As shown in Figure 6, the salinity map of the study area generally exhibits a west-
to-east gradient, with lower salinity in the west and higher salinity in the east. There is a
clear east–west differentiation along the coastal highway. The eastern coastal areas have
higher salinity levels and are dominated by saline soils, which is consistent with the field
survey results. Except for the fish ponds, the western region mainly consists of non-saline
and mildly saline soils suitable for crop cultivation, accounting for 74.1% of the total. The
significant east–west salinity difference in the study area is primarily due to the eastern
region’s proximity to the seawater, relatively low elevation, and shallow groundwater table,
which is influenced by seawater intrusion, leading to increased groundwater salinity. Addi-
tionally, the region’s high temperatures and intense evaporation rates further exacerbate the
soil salinization process. In the western part of the study area, the coastal highway acts as a
natural barrier, leading to relatively lower salinity levels. However, in the southwestern
region, which lies within a groundwater funnel zone, extensive groundwater extraction
and large-scale irrigation for agriculture have facilitated the infiltration of mineralized
groundwater into the soil. This has resulted in the development of moderately to severely
saline soils in certain areas.

3.4. Fine Classification of Farmland in the Study Area Combined with Local Crops

The saline–alkali tidal flats represent a significant strategic reserve for improving the
quality, increasing efficiency, and expanding the capacity of China’s arable land, serving as
a potential “granary” for the nation’s grain production. This study classified remote sensing
image data of the research area using a Support Vector Machine (SVM) in ENVI5.3. The
classification achieved an accuracy of 98.45%, with a kappa coefficient of 0.98, indicating
excellent classification performance. The vector file exported from the classification is
shown in Figure 7. The extracted data were then segmented in ArcGIS10.8 to identify
the farmland areas, which were combined with local crop information. This approach
provides a theoretical reference for salinity management in the precision breeding of local
salt-tolerant crops.



Agriculture 2025, 15, 323 14 of 19

Agriculture 2025, 15, x FOR PEER REVIEW 15 of 20 
 

 

great potential. As indicated by the red area in Figure 8, planting Seepweed can enhance 
the efficiency of saline soil utilization and management. 

 

Figure 7. The vector file of farmland in the study area, where white represents farmland. 

 

Figure 8. The precision breeding map of the study area, where light blue represents maize, yellow 
represents rice, and red represents seepweed. 

Figure 7. The vector file of farmland in the study area, where white represents farmland.

Based on the seasonal requirements of the crops, three common local salt-tolerant
crops were selected: salt-tolerant maize, salt-tolerant rice, and Seepweed. The distribution
of these crops is shown in Figure 8. Salt-tolerant maize, which resists lodging and has a
high yield and market value, is generally less tolerant to salt stress. Therefore, salt-tolerant
maize is recommended for planting on land with salinity levels below 2‰ in the study
area, as indicated by the blue area in Figure 8. Additionally, one-third of the arable land in
Dongtai City lies within the Lishai River water network area, a natural and healthy base
for rice production, with 98,860 acres of rice planted year-round, ranking among the top in
Jiangsu province. Some salt-tolerant rice varieties can tolerate salinity levels between 2‰
and 6‰, as shown in the yellow area in Figure 8. These rice varieties can be selected for
planting to increase the economic benefits of saline agricultural land. The local specialty
crop Seepweed can be planted for heavily saline and saline soils. Seepweed is highly
salt-tolerant and selectively absorbs soluble salt ions, improving the fertility of saline soils.
Furthermore, it is rich in nutrients and serves as a high-quality vegetable and oilseed crop.
The inner stems and leaves of Seepweed can be consumed both fresh and dried, making
it easy to store and transport. The development of Seepweed as a vegetable crop shows
great potential. As indicated by the red area in Figure 8, planting Seepweed can enhance
the efficiency of saline soil utilization and management.
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4. Discussion
Previous studies on soil salinity inversion have predominantly focused on inland

farmland or saline–alkali land, where traditional salt indices or vegetation indices were used
for modeling [38]. However, tidal flats, formed through sedimentation and siltation driven
by marine dynamics, present a much more complex environmental context. The soil texture
of tidal flat farmland differs significantly from that of inland areas [2]. This study finds that
the correlation between traditional spectral indices and soil salinity is generally low (as
shown in Table 3), which can be attributed to the complex soil texture of coastal and tidal
flat farmlands. As a result, traditional spectral indices may not be suitable for salt inversion
in this context. To overcome this limitation, a new spectral index has been proposed
to improve the accuracy of the models. As shown in Tables 4 and 5, the new spectral
index outperforms models constructed solely with the B11 band, leading to enhanced
prediction accuracy across all models. This finding underscores the significant impact that
the selection of input variables can have on the model’s performance in predicting soil
salt content. Consequently, it is crucial to selectively choose spectral indices tailored to
the research environment’s specific characteristics to enhance model accuracy. Moreover,
the salinization of tidal flat soils is influenced by a variety of factors, including elevation,
precipitation, temperature, soil texture, groundwater level, and vegetation cover [39].
Future studies on mudflat soil salinization should consider these factors comprehensively
to better understand the process and develop effective management strategies.

Machine learning algorithms offer robust data-mining capabilities and exceptional non-
linear fitting abilities, making them highly effective for modeling the complex, non-linear
relationships between soil salinity and its influencing factors. Selecting an appropriate
modeling approach is, therefore, critical for improving the accuracy and reliability of
predictions [40]. In this study, it was observed that the CIWOABP model more effectively
captures the complex, non-linear relationship between spectral indices and soil salinity. This
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improvement is primarily attributed to the adaptive mechanism integrated into the model,
which enhances its ability to adapt to varying data. Moreover, as shown in Figures 4 and 5,
the CIWOABP model demonstrated greater stability compared to the other three models
throughout both experimental prediction processes. This enhanced stability is a result of
the integration of chaotic mapping algorithms and whale optimization algorithms, which
improve the model’s optimization capabilities. As a result, the CIWOABP model exhibits
superior generalization ability and robustness during the fitting process. Furthermore, the
experiments revealed that all four models tended to underestimate high-salinity data while
overestimating low-salinity data. This phenomenon may be attributed to the significant
spatial variability of soil salinity, where the pixel values in the remote sensing images reflect
averaged spectral characteristics over a given coverage area. As a result, the inversion
of individual pixel salinity experiences a smoothing effect, leading to inaccuracies in the
prediction of both high- and low-salinity areas [41]. In addition, studies have shown that
soil texture, the environment of sampling points, and the depth of sampling points can
significantly influence the soil salinity at these points, thereby affecting the model’s fitting
accuracy [42–44].

In terms of soil salinity, the salt inversion results obtained in this study can provide
valuable theoretical guidance for crop cultivation in the research area. In selecting salt-
tolerant crop varieties, we consulted with local agricultural researchers and conducted
field surveys, as shown in Figure 8, ultimately choosing three commonly grown salt-
tolerant crops in the region. When planning crop cultivation, it is essential to consider
the characteristics of these crops further to optimize planting decisions. In addition to
economic benefits, it is also crucial to ensure that the selected crops can, to some extent,
improve the soil structure of saline–alkali lands and enhance soil fertility.

5. Conclusions
Most scholars have conducted limited research on tidal flats due to their complex

natural environment, overlooking their significant research value. This study uses Sentinel-
2B multispectral remote sensing imagery as the data source, develops a new spectral index
for saline soils, and combines it with the improved CIWOABP model to perform salinity
inversion in the study area. Based on this, this study conducts precise breeding analysis
for the entire farmland in the region from the salinity perspective, incorporating local
crop information.

Compared to conventional spectral indices, the new spectral index proposed in this
study significantly enhances the correlation between the spectral indices and measured soil
salinity, thereby improving the accuracy of soil salinity inversion. The improved CIWOABP
model outperforms the other three simpler machine learning models, demonstrating a
stronger linear relationship between the model’s predicted values and the measured values;
after the inclusion of the new spectral index, the R2 value of the validation set reached 0.815,
indicating that this model is both stable and accurate, with successful results in soil salinity
inversion for the study area. The inversion results reveal a clear east–west differentiation
in soil salinity within the study area. Generally, the western region exhibits low salinity,
dominated by non-saline and slightly saline soils, while the eastern coastal areas have
higher salinity levels, primarily consisting of saline soils. This pattern is consistent with
field survey observations. Most of the agricultural land in the study area has salinity levels
below 6‰, making it suitable for planting salt-tolerant crops such as corn and rice. In areas
with higher salinity due to groundwater extraction and irrigation, salt-tolerant crops like
Seepweed can be cultivated to improve soil fertility and enhance economic benefits.

Although this study has yielded good results, there are still some limitations. For
example, the spatial resolution of Sentinel-2B may not fully capture the subtle variations in
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salinity. Additionally, environmental factors such as climate, precipitation, and terrain have
a significant impact on soil salinity, which may affect the generalizability and applicability
of the results. Future research should pay more attention to the influence of these factors.
In conclusion, in the context of limited land and labor resources, the effective utilization
of tidal flat saline–alkali land represents a valuable land resource that can support agri-
cultural development and contribute to ecological conservation, aligning with the goals
of sustainable development. If not properly managed, however, these areas may become
severely degraded, leading to ecological deterioration. Therefore, research into precision
breeding and the comprehensive utilization of saline–alkali land is strategically crucial for
ensuring national food security and safeguarding China’s agricultural future.
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