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Abstract: Crop yields are influenced by various factors, including seed quality and envi-
ronmental conditions. Detecting seed vigor is a critical task for seed researchers, as it plays 
a vital role in seed quality assessment. Traditionally, this evaluation was performed man-
ually, which is time-consuming and labor-intensive. To address this limitation, this study 
integrates the ConvUpDownModule (a customized convolutional module), C2f-
DSConv(C2f module with Integrated Dynamic Snake Convolution), and T-SPPF (the SPPF 
module integrated with the transformer multi-head attention mechanism) into the VT-
YOLOv8-Seg network (the improved YOLOv8-Seg Network), an enhancement of the 
YOLOv8-Seg architecture. The ConvUpDownModule reduces the computational com-
plexity and model parameters. The C2f-DSConv leverages flexible convolutional kernels 
to enhance the accuracy of maize germ edge segmentation. The T-SPPF integrates global 
information to improve multi-scale segmentation performance. The proposed model is 
designed for detecting and segmenting maize seeds and germs, facilitating seed germina-
tion detection and germination speed computation. In detection tasks, the VT-YOLOv8-
Seg model achieved 97.3% accuracy, 97.9% recall, and 98.5% mAP50, while in segmenta-
tion tasks, it demonstrated 97.2% accuracy, 97.7% recall, and 98.2% mAP50. Comparative 
experiments with Mask R-CNN, YOLOv5-Seg, and YOLOv7-Seg further validated the su-
perior performance of our model in both detection and segmentation. Additionally, the 
impact of seed aging on maize seed growth and development was investigated through 
artificial aging studies. Key metrics such as germination rate and germ growth speed, both 
closely associated with germination vigor, were analyzed, demonstrating the effective-
ness of the proposed approach for seed vigor assessment. 

Keywords: seed vigor detection; germination rate; YOLOv8-Seg; artificial seed aging; computer vi-
sion in agriculture 
 

1. Introduction 
As far as global production volume goes, maize (Zea mays L.) is the most important 

staple crop [1]. There are over 205 million hectares of maize grown worldwide, and about 
1.2 billion MT of maize are produced overall [2]. Its significance underscores the critical 
need for evaluating seed quality, particularly seed vigor, which is essential for the seed 
industry [3]. Seed vigor plays a pivotal role in crop production, as crop yield and resource-
use efficiency depend heavily on the successful establishment of plants in the field. 
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Specifically, seed vigor determines the ability of seeds to germinate and establish uni-
formly and robustly under diverse environmental conditions [4]. This makes it a vital met-
ric for assessing the physiological potential of seeds at various production stages. Moreo-
ver, seed vigor evaluation aids in selecting high-quality seed lots to meet consumer de-
mand, further highlighting its relevance. It is a critical tool for assessing the physiological 
potential of seeds at various stages of production. Furthermore, it informs the selection of 
high-quality seed lots to meet consumer demand. As a key indicator of seed quality which 
directly influences agricultural yields, evaluating seed germination remains a fundamen-
tal task for seed researchers [5]. 

Conventional techniques for evaluating seed quality, especially seed viability testing, 
mostly depend on labor-intensive and time-consuming manual measurements. The tradi-
tional germination tests are prone to subjective errors and frequently restrict the scalabil-
ity and efficiency of the evaluations, which results in poor reproducibility and inconsistent 
statistical results between evaluators. An objective, repeatable, quick, and financially fea-
sible measurement technique is therefore desperately needed. The majority of seed testing 
methods set by the International Seed Testing Association (ISTA) are assessed manually 
using a variety of standardized processes that are adapted for certain crops [6]. Therefore, 
there is a pressing need for quicker and more effective ways to identify when seeds are 
germinating. 

Modern image analysis technologies have been applied to seed detection due to their 
ability to automate the process and provide quantitative measurements with minimal er-
ror [7]. Systems such as GERMINATOR and the Seed Vigor Imaging System (SVIS) have 
been developed to evaluate seed germination and viability [8,9]. GERMINATOR analyzes 
color contrast between the radicle and testa to assess germination in species like Brassica 
and Arabidopsis, while SVIS determines seed viability by measuring seed length from 
RGB pixel data. Despite their utility, these methods still require manual input or special-
ized equipment, limiting their generalizability and efficiency. 

The agricultural industry has made significant use of machine vision technology, 
which has seen undergone substantial advancements [10–13]. Researchers have devel-
oped techniques that use machine vision technology to check the quality of seeds [14–16]. 
To forecast seed germination, Reference [17] used a combination of image mapping and 
linear discriminant analysis models. Reference [18] utilized the K-nearest neighbors 
(KNN) model to enhance the scoring accuracy of mangosteen seeds. To evaluate the ger-
mination status of rice seeds in Thailand, Reference [19] created the Rice Seed Germina-
tion Evaluation System (RSGES), which is based on artificial neural network classifiers. 
To categorize the viability of lentil seeds, Reference [20] used interactive machine learning 
and seedling image analysis approaches. However, the manual feature extraction used by 
classic machine learning classifiers leads to slower training periods and worse accuracy. 

Significant progress has been made in deep learning in recent years, with widespread 
applications in agriculture. This includes its use in germination trays and Petri dishes for 
tasks such as seed detection, identification, and germination analysis [21–23]. References 
[24,25] integrated deep learning with machine learning approaches to develop large-scale 
germination scoring systems. These systems leverage UNet, Gaussian mixture models, 
and other techniques to identify germination-related features across diverse crop species. 
Additionally, convolutional neural network (CNN)-based detectors such as Mask R-CNN 
and Faster R-CNN have been used to extract regions of interest for seed germination de-
tection [26,27]. However, their reliance on proprietary datasets and high computational 
requirements limits their accessibility. 

YOLO (You Only Look Once) series algorithms have emerged as a robust alternative, 
offering a lightweight architecture and fast detection capabilities. Researchers have uti-
lized YOLO-based models for seed germination detection with remarkable success. For 
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example, Reference [28] developed the Wheat Seed Viability Assessment System (WSVAS) 
using YOLOv4, achieving a mean average precision (mAP) of 97.59% and a recall rate of 
97.35%. Similarly, Reference [29–31] introduced models like SGR-YOLO and CSGD-
YOLO, which further optimized computational efficiency and detection accuracy across 
various seed types. To detect the germination status of maize seeds at different time inter-
vals, Chen et al. [32] established a Petri dish-based dataset of maize seed germination sta-
tus at different germination times. Despite these advancements, existing studies primarily 
focus on germination detection, lacking comprehensive metrics such as seed vigor and 
germ growth rate evaluation. 

To determine the germination rate and speed of maize seeds, this study developed a 
deep learning model capable of detecting and segmenting seed germination at various 
aging stages. Three distinct aging experiments were conducted in an aging chamber, and 
germination experiments were performed using Petri dishes at room temperature. Photo-
graphs were captured at one-hour intervals to document the germination process. Since 
seed germination rate is the most significant factor in the seed vigor evaluation index, 
germination detection serves as a crucial step. However, the existing research lacks meth-
ods that integrate germination rate detection with segmentation, particularly considering 
the variation in germ size caused by differences in seed vigor during the germination 
stage. This study addresses these gaps by proposing an innovative approach for seed 
vigor evaluation using a modified YOLOv8-Seg model. The contributions of this research 
are as follows: 

(1) Development of the VT-YOLOv8-Seg model: Based on the YOLOv8n model, we in-
troduced several enhancements, including the ConvUpDownModule, C2f-DSConv, 
and the T-SPPF. These improvements enable the precise segmentation of maize seed 
bodies and buds. 

(2) Integration of instance segmentation for germination analysis: The proposed model 
applies instance segmentation techniques to extract germ areas, enabling accurate 
calculations of germination speed and providing a comprehensive evaluation of seed 
quality. 

(3) Application to aging studies: The model was utilized to analyze germination indexes 
of maize seeds after artificial aging treatments, offering insights into the effects of 
seed aging on crop growth and development. 
We provide a fast, accurate, and scalable method for intelligent seed germination de-

tection, offering a practical solution for evaluating seed vigor in agricultural production. 
By addressing both germination rate and seed vigor assessment, this study not only con-
tributes to the field of automated seed evaluation, but also serves as a valuable reference 
for future studies on crop development and seed aging effects. 

2. Materials and Methods 
2.1. Data Acquisition 

To investigate seed vigor, seeds were classified based on their surface cleanliness and 
consistency. The selection criteria for seeds included uniformity in size, color, and appar-
ent physical condition to minimize confounding factors during analysis. Damaged, dis-
colored, or irregularly shaped seeds were excluded. The aging durations were set at T0 
(control group), T1 (24 h), T2 (48 h), and T3 (72 h). Thirty seeds were selected for each 
group. Three sets of seeds underwent aging experiments under conditions of 45 °C and 
humidity levels exceeding 95%, ensuring a high-temperature, high-humidity environ-
ment. After aging, the seeds were removed and stored in a cool, well-ventilated indoor 
environment. 
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Germination studies were subsequently conducted at room temperature to compare 
the aged seeds with the original, non-aged samples. Standardized germination tests, con-
ducted according to national standards, were used to assess factors such as germination 
rate, mean germination time and other relevant metrics. To enhance the visibility of the 
growing radicle against the background, the seeds were placed in Petri dishes on black 
cloth. The cloth was moistened with tap water, and the Petri dishes were covered to min-
imize the effects of water evaporation and seed desiccation. The grid cover may occasion-
ally produce reflections, depending on the camera settings. 

The various stages of germination were recorded using digital imaging techniques. 
One image was captured every hour, resulting in 24 images per day and 168 images over 
the course of seven days, totaling 2016 images. The study aimed to classify these images 
based on individual Petri dishes. All images were taken at room temperature in an office 
setting. Lighting conditions were standardized using a combination of an artificial light 
source and the built-in light from the camera. Specifically, an office desk lamp with a color 
temperature of approximately 4000K was paired with the camera’s integrated LED light 
to provide uniform illumination. This lighting arrangement remained consistent through-
out the entire shoot, which lasted approximately seven days. The Petri dishes were ar-
ranged in a 4x3 grid, with columns designated as T0, T1, T2, and T3. An industrial camera 
(YT-CAM8008LA-4K/4G) was positioned at a fixed height of 20 cm above the Petri dishes 
to provide a stable and consistent view for recording the germination process. 

2.2. Data Pre-Processing 

As shown in Figure 1a, the image was segmented into smaller, uniformly sized sec-
tions, each containing a single Petri dish. As shown in Figure 1b, bounding boxes were 
created around each seed using the open-source program LabelMe, enabling seed labeling 
and polygonal annotations. Each image had a resolution of 640 × 640 pixels and was in 
JPEG format. The JSON-formatted labeling file was converted into a TXT file containing 
multiple coordinate points. 

Germination is the process by which the radicle emerges from the seed coat. To train 
and validate the model in this study, 120 seeds were used, resulting in 2016 seed images. 
Ten seeds were placed in each Petri dish, and observations were systematically conducted 
every hour for seven days (168 h) after the initial placement. The successful completion of 
the experiment resulted in 168 images of a single seed captured using this technology. The 
changes in the seed over the seven-day period are shown in Figure 1c, which includes 
images selected from the initial observations taken every 24 h. 
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Figure 1. (a) illustrates images showing the seed germination process within Petri dishes. The im-
ages were then cropped to focus on a single Petri dish in each instance. (b) An example from the 
LabelMe dataset is shown. (c) Seed changes were documented over a period of seven days. The first 
image from each seven-day interval was selected for the presentation of the dataset. 

Online data augmentation, which entails real-time augmentation operations of the 
dataset, is integrated into the YOLOv8 network during the model training phase. During 
training, online data augmentation techniques such as HSV augmentation, random per-
spective, MixUp, and mosaic are applied. Since YOLOv8 performs online augmentation 
to enhance the diversity and generalization of the model’s dataset, additional offline da-
taset augmentation is unnecessary to optimize training efficiency. 

A total of 2,016 images of maize seed germination were collected for this study. Sub-
sequently, the entire dataset was divided into training, validation, and test sets with a 
ratio of 7:2:1. 

2.3. Network Model Construction 

2.3.1. Structure of the YOLOv8-Seg Network 

The exceptional accuracy and rapid detection capabilities of the YOLO (You Only 
Look Once) algorithmic framework distinguish it from other detection techniques. Due to 
its frequent updates and iterations, the YOLO family of models has gained widespread 
recognition as a real-time object detection system. It is widely utilized to detect and clas-
sify crops, pests, diseases, and other relevant aspects in automated and precision agricul-
ture. 

YOLOv8 is a modern object detection algorithm developed by the Ultralytics team, 
which significantly improves upon YOLOv5 by adopting an anchor-free, one-stage detec-
tion framework [32]. Its architecture is divided into four main components: the input mod-
ule, backbone, neck, and head. The input module integrates several advanced features, 
such as adaptive image scaling, adaptive anchor calculation, and mosaic data augmenta-
tion, enabling dynamic adjustments to input images based on model requirements. Larger 
models incorporate techniques like MixUp and CopyPaste to enhance data diversity and 
improve generalization performance. 

The backbone utilizes an enhanced ELAN design principle, replacing the C3 struc-
ture in YOLOv5 with the more advanced C2f structure. This modification introduces ad-
ditional residual connections and branching, optimizing feature extraction while main-
taining a lightweight design. Adjusting the number of channels based on the model’s scale 
further improves performance. 

The neck incorporates path aggregation network (PAN) [33] and feature pyramid 
network (FPN) [34] designs to effectively integrate features across different scales. This 
structure enhances the ability to localize objects and capture semantic information, ensur-
ing robust multiscale feature fusion. 

The head employs a decoupled structure, separating the classification and localiza-
tion tasks to enhance detection precision. By adopting an anchor-free approach, it elimi-
nates the need for traditional anchor boxes, significantly improving detection speed. 

The YOLOv8 instance segmentation model (YOLOv8-Seg) is an improvement over 
the original YOLOv8 object detection framework. To enable pixel-level instance segmen-
tation, this extension incorporates the YOLACT network [35]. For each object detected in 
the image, the model generates outputs that include a mask, class label, and confidence 
score. The modifications to the YOLOv8-Seg architecture were driven by the need to en-
hance its suitability for agricultural applications. The updated model incorporates ad-
vanced techniques to effectively address variations in object size and shape conditions. 
Enhanced segmentation capabilities ensure accurate identification of irregularly shaped 
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objects, which are essential for precision agriculture tasks. By refining feature extraction 
and fusion mechanisms, the improved YOLOv8-Seg achieves an optimal balance between 
speed and precision, making it highly effective for real-time agricultural monitoring. Fig-
ure 2 illustrates the network structure and details of YOLOv8-Seg. 

 

Figure 2. The model structure of the YOLOv8-Seg model. 

2.3.2. Structure of the VT-YOLOv8-Seg Network 

Seed evaluation is traditionally performed manually by researchers, a process that is 
labor-intensive, time-consuming, and susceptible to errors. This study proposes a 
segmentation method based on YOLOv8-Seg, named VT-YOLOv8-Seg, which not only 
detects germinating seeds but also separates the seed from the germ, enabling the 
computation of germ growth speed. This method minimizes error-prone manual steps 
and enhances the accuracy of seed bud segmentation, all while maintaining a compact 
and real-time model. Figure 3 presents the detailed network architecture. 
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Figure 3. VT-YOLOv8-Seg network architecture diagram with all improvement points and some 
network details. 

The VT-YOLOv8-Seg network structure consists of three primary components: the 
head, neck, and backbone. Before the image is input into the backbone, primary data prep-
aration activities, such as data augmentation, are performed. The ConvUpDownModule 
refers to the modified convolution module, C2f_DSConv denotes the C2f block incorpo-
rating DSConv, and T-SPPF is the improved SPPF module that introduces the transformer 
multi-head attention mechanism. These modules improve the base YOLOv8-Seg frame-
work by enhancing feature extraction, segmentation precision, and computational effi-
ciency. The ConvUpDownModule optimizes feature learning for datasets with homoge-
neous backgrounds, reducing redundancy and maintaining performance. DSConv ena-
bles accurate segmentation of irregular seed germs by refining edge detection, critical for 
distinguishing slender or tubular shapes. Finally, T-SPPF leverages self-attention mecha-
nisms to capture multiscale features, enhancing both local and global contextual under-
standing. VT-YOLOv8-Seg enables accurate seed and germ segmentation in laboratory 
settings. The network parameters are nearly identical to those of the original model, with 
the addition of a network module. Its features ensure ease of use and real-time perfor-
mance, and it can operate on standalone devices. 
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2.3.3. ConvUpDownModule 

Figure 4a illustrates the convolutional block utilized in the YOLOv8 architecture. 
This study proposes the ConvUpDownModule, as shown in Figure 4b. The improved 
YOLOv8 architecture replaces the first three sets of 3 × 3 convolutions in the backbone 
with the ConvUpDownModule. Leveraging the DenseNet and ResNet network architec-
tures, two 3 × 3 convolution kernels with s = 2 and p = 1 are first employed to reduce the 
size of the original feature maps to one-quarter of the input feature maps, followed by 
residual connections to facilitate feature learning. 

 

Figure 4. (a) YOLOv8 convolutional block. (b) Structure of ConvUpDownModule. ‘3*3’ refers to a 
convolution kernel with a size of 3 by 3. 

The maize seed germination dataset, collected in a laboratory setting, has a relatively 
homogeneous background. Reducing the feature map helps filter out redundant infor-
mation while preserving essential features. A smaller feature map results in fewer param-
eters for subsequent layers to process, thereby accelerating both the training and inference 
processes. 

2.3.4. C2f_DSConv 

Accurately separating the seed from the germ is essential for determining the seed 
germination speed. The researchers’ initial estimate of seed viability may contain mistakes 
due to inaccurate segmentation, which may have an impact on further breeding tests. 

The square bounding box is indifferent to the local information of irregular targets, 
whereas the original YOLOv8-Seg network depends on the inner bounding box of the 
backbone’s detection accuracy. Therefore, deformable convolution (DCNS) [36] was 
thought to be integrated into backbone to improve the network’s segmentation effect on 
curly and slender maize germs. This would allow some of the 3 × 3 convolution kernels to 
change their shapes to adapt to the irregular structure of the germs while keeping the 
convolution structure stable to reduce bias. 

To create convolution kernels with a strong perception of irregular curves, dynamic 
snake convolution (DSConv) [37] is introduced in this paper. It exhibits superior perfor-
mance in tubular structure segmentation, adapts to elongated and twisted local structural 
features, and enhances the perception of geometrical structures. By employing strategies 
such as quantization and offsetting, DSConv significantly reduces computational and 
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memory requirements, thereby accelerating the inference process. Figure 5 illustrates a 
variation in the convolution kernel. 

This section describes the application of DSConv in extracting edge irregular local 
features, assuming 2D convolutional coordinates K and central coordinates K୧ = (x୧, y୧). 
The original 3 × 3 convolution kernel K is denoted as 

K = ൛൫x-1,y-1൯,൫x-1,y൯,…,൫x+1,y+1൯ൟ (1) 

The convolution kernel is made more flexible by adding a deformation offset Δ, 
which focuses on the irregular edges of tubular structures. The 3 × 3 convolution kernel is 
expanded to a 9 × 9 size and straightened along both axial directions using an iterative 
approach, as illustrated in Figure 6. The formula for each grid location in K, using the X-
axis as an example, is Ki±c = (xi±c,yi±c), where c = ሼ0,1,2,3,4ሽ denotes the horizontal dis-
tance from the central grid. Each grid position Ki±c in K is determined through a cumula-
tive process. Ki±1 increases by a bias ∆ = ሼδ|δ∈ሾ-1,1ሿሽ relative to Ki, with the distance de-
termined by the previous grid’s position. Thus, the offset Δ must be accumulated to ensure 
that the final convolution kernel K adheres to a linear structure. 

The X-axis direction is 

Ki±c = 

⎩⎪⎪⎨
⎪⎪⎧൫xi±c,yi±c൯= ቌxi+c,yi= ∆y

i+c

i

ቍ
൫xi±c,yi±c൯= ൭xi-c,yi= ∆y

i

i-c

൱  (2) 

The Y-axis direction is 

Kj±c = 

⎩⎪⎪⎨
⎪⎪⎧ቀxj±c,yj±cቁ = ቌxi+ ∆x,yj+c

j+c

j

ቍ
ቀxj±c,yj±cቁ = ቌxi+ ∆x

j

j-c

,yj-cቍ (3) 

The offset Δ is typically a small value, necessitating the conversion of position coor-
dinates to integers through bilinear interpolation, as implemented below: 

K=  B(K’,K)K’

K’
 (4) 

where B represents the bilinear interpolation kernel, K denotes the fractional position in 
Equations (2) and (3), and K′ represents the full spatial position. 

As shown in Figure 6, DSConv spans a 9 × 9 range during deformation, caused by 
shifts along two dimensions (X-axis and Y-axis). Leveraging its dynamic structure, 
DSConv adapts more effectively to elongated tubular structures, enhancing the percep-
tion of key properties. 
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Figure 5. An example of DSConv convolution kernel variation [37]. 

 

Figure 6. (a) Calculation method of DSConv coordinates. (b) Receptive field of DSConv [37]. 

2.3.5. T-SPPF 

Compared to the seed, the newly germinated maize germ is small. The T-SPPF mod-
ule is introduced to enhance segmentation accuracy across various scales, thereby captur-
ing more and better feature information. Figure 7 illustrates the structure of the T-SPPF 
module. 

The SPPF module first inputs the feature map through a 1 × 1 convolutional block, 
which extracts the initial features while reducing computational complexity. To mitigate 
the impact of features with varying scale sizes, three parallel adaptive pooling layers are 
employed to adaptively adjust the pooling kernel size according to the size of the input 
features. After the splicing process, the fused features are passed into the multi-head at-
tention mechanism module. By leveraging the correlation between pyramid feature maps, 
the multi-head attention mechanism enhances the ability to detect target segmentation 
across different scales, captures global information more effectively, and integrates the 
information learned by the head module at multiple scales [38]. Each attention head gen-
erates an attention weight matrix to weigh the input feature map. The outputs of all atten-
tion heads are subsequently combined into a single attention-weighted feature map. The 
transformer multi-head attention mechanism enhances the ability to capture global infor-
mation, exploits correlations between pyramid feature maps, and strengthens the ability 
to detect segmentation targets at various scales. 
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Figure 7. T-SPPF module structure. 

The input feature maps are then downsampled by three max-pooling layers, which 
reduce the feature map size and preserve critical information by selecting the maximum 
value in each pooling window. The T-SPPF module contains three max-pooling layers, 
each producing output feature maps with varying sizes and resolutions. The output fea-
ture maps from the three max-pooling layers undergo a splicing operation to combine 
them into a larger feature map. This spliced feature map contains feature information 
from multiple scales and locations, providing rich inputs for subsequent convolutional 
layers. Through multi-scale feature extraction and fusion, the model adapts more effec-
tively to target objects of varying sizes, improving the accuracy of seed and germ segmen-
tation. 

2.4. Experimental Parameters and Configuration 

The model for this investigation was trained using the Windows 10 operating system. 
The neural network training model for the multi-class segmentation task was constructed 
using the PyTorch deep learning framework on a computer equipped with an Intel(R) 
Xeon(R) Gold 5218R CPU @ 2.10GHz and an NVIDIA GeForce RTX 2080 Ti GPU. Table 1 
presents the most commonly used software version. The training setup includes a 640 × 
640 input image, a batch size of 16, an initial learning rate of 0.001, 50 epochs, and the 
Adam optimizer. 

Table 1. Training and testing environment. 

Configuration Allocation 
CUDA version 11.3 
Python version 3.8 

PyTorch version 1.12 
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2.5. Model Evaluation Criteria 

Take the binary classification problem as an example in machine learning: if the ac-
tual result is positive and the predicted result is positive, the predicted result is positive 
(TP); if the actual result is negative, the predicted result is positive (FP); if the actual result 
is positive, the predicted result is negative (FN); and if the actual result is negative, the 
predicted result is negative (TN). 

Precision (P) and recall (R) are derived from a confusion matrix that includes true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Precision 
(P) is the proportion of predicted positive results to the total predicted positives, reflecting 
the network’s classification accuracy, while recall represents the ratio of true positives 
correctly predicted by the network to the total number of actual true positives. The corre-
sponding formulas are as follows: 

Precision =
True Positive

True Positive + False Positive (5) 

Recall =
True Positive

True Positive + False Negative (6) 

Intersection over union (IoU) represents the ratio of the intersection to the union in 
object detection and is used to measure the extent of overlap between the model-gener-
ated boundaries and the original labeled boundaries. If the IoU exceeds 0.5, the object is 
deemed detectable. If the ground truth region is denoted as A and the labeled region as 
B, then 

IoU=
A∩B
A∪B (7) 

The average precision (AP) for a single category was calculated by ranking the model 
predictions based on their confidence scores and determining the area under the preci-
sion–recall (PR) curve as follows: 

AP= න P(R)d(R)
1

0
 (8) 

Mean average precision (mAP) is the mean of the APs calculated across all categories, 
offering a comprehensive evaluation of the model’s performance across all classes. 

mAP=
1
n  APk

k=n

k=1

 (9) 

Parameter (params) refers to the number of parameters that the model learns, which 
serves as a measure of its complexity. A larger number of parameters typically necessitates 
more GPU memory during training and influences the amount of storage and graphical 
memory the model occupies. 

2.6. Indicators for Evaluating Seed Vigor 

Seed vigor is a crucial predictor of a seed’s germination potential, seedling emer-
gence, and storage performance under various environmental conditions. The physiolog-
ical maturation of seeds is influenced by both their genetic makeup and the conditions 
under which they are stored. The aging process, driven by the natural decline in seed 
vigor, affects seedling emergence and their ability to withstand adverse conditions. It also 
renders crops more susceptible to pests and diseases, ultimately influencing seed growth 
and yield potential. 

Seed aging is a critical phase in the seed’s life cycle. Physiological maturity represents 
the stage at which seeds are at their peak vitality, after which they begin to lose vigor. The 
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most commonly used method for simulating seed aging involves artificially aging treated 
seeds. The experiment utilized maize seeds of the same variety to investigate how seed 
aging influences maize growth and development. Maize seeds were artificially aged in an 
indoor incubator and greenhouse environment under conditions of high temperature and 
humidity. Three aging gradients were established: T1 (24 h), T2 (48 h), and T3 (72 h). 

The aim of the experiment was to explore the relationship between seed aging and 
maize seed germination characteristics, as well as the changes in seed vigor under differ-
ent aging conditions. 

This study focused on four out of the twenty-seven germination metrics provided by 
the R package germinationmetrics [39]: mean germination time (MGT), germination index 
(GI), germination rate (seven days), and germination rate (three days). The algorithm used 
to calculate these metrics is presented in Table 2. 

Table 2. Presentation of germination indicators. 

 Formulas Description 

Final 
germination percentage (g) 

𝑔 = 𝑁𝑁௧ ∗ 100% 

Ng is the number of germi-
nated seeds at moment t after 

the start of the experiment, 
Nt is the total number of 

seeds at moment t after the 
start of the experiment. 

Germination index (GI) GI =  𝑁𝑡  

The sum of the number of 
germinated seeds at moment 
“t” after the start of the ex-

periment. 

Mean germination time 
(MGT) MGT = ∑ 𝑁𝑇ୀଵ∑ 𝑁ୀଵ  

where Ti is the time from the 
beginning of the experiment 
to the “i”th time interval, Ni 

is the number of seeds germi-
nated in the “I”th time inter-

val, and “k”: is the total 
number of time intervals. 

(i = 24 h, k = 7) 

3. Results 
3.1. Merit-Seeking Experiment 

YOLOv8n-Seg, YOLOv8s-Seg, YOLOv8m-Seg, YOLOv8l-Seg, and YOLOv8x-Seg 
represent the five YOLOv8 network models available on GitHub, each at different scales. 
To evaluate the segment mAP50 and the number of model parameters, we conducted ex-
periments using YOLOv8-Seg models at different scales. The segment mAP50 values for 
the YOLOv8-Seg models at different scales are shown in Figure 8a. The results for the 
three models, YOLOv8m/l/x-seg, show no significant differences in terms of mAP50, the 
key metric for YOLO models, with values of 95.3%, 95.7%, and 96.1%, respectively. The 
YOLOv8n-Seg model has a size of 3.4M, and its segment mAP50 is 3.2% lower than that 
of the best-performing YOLOv8x-seg. YOLOv8n/s-Seg achieved segment mAP50 values 
of 92.9% and 93.7%, respectively. All results exceeded 90%. Considering the study’s use 
case, the need for deployment to edge devices, and the lightweight requirement, we se-
lected YOLOv8n-Seg as the final experimental model. 

During training, we used four different input image sizes: 416 × 416 pixels, 640 × 640 
pixels, 768 × 768 pixels, and 1024 × 1024 pixels. This allowed us to assess the impact of 
image resolution on the segmentation performance of the YOLOv8n-Seg network. A 



Agriculture 2025, 15, 325 14 of 25 
 

 

detailed summary of the effect of each image resolution on segment mAP50 and inference 
time is provided in Figure 8b. According to the results, the segment mAP50 increased by 
1.3%, and the inference time rose by 2 ms when the image resolution was increased from 
416 × 416 pixels to 640 × 640 pixels. This suggests that the slight increase in inference time 
is compensated by the improved instance segmentation performance of the model. How-
ever, the inference time increased by 5.1 ms and 7.7 ms, respectively, when the resolution 
was further increased to 768 × 768 pixels and 1024 × 1024 pixels. In comparison, the seg-
ment mAP50 showed only slight improvements of 0.15% and 0.18%, respectively. The 
findings indicate that the YOLOv8n-Seg network performs better when trained at a reso-
lution of 640 × 640 pixels. 

 

Figure 8. (a) Segment mAP50 for YOLOv8-Seg models of different sizes. (b) Comprehensive over-
view of segment mAP50 and inference time for each image resolution. 

3.2. Ablation Experiment 

To verify the efficacy of the optimization techniques, ensure compatibility among 
different approaches, optimize resource utilization, and avoid confusion and inconsisten-
cies during model training and decision-making, ablation comparison experiments were 
conducted in this study. Using the maize germination dataset, three distinct optimization 
techniques were incorporated into the original YOLOv8-Seg network. The YOLOv8-Seg 
(ConvUpDownModule), YOLOv8-Seg (C2f_DSConv), YOLOv8-Seg (T-SPPF), and VT 
networks were compared, with each trained for 50 batches, as indicated in Table 3. 

Table 3. YOLOv8-Seg performance combining various optimization techniques. Italicized text 
represents the improved modules of the model. 

 P(Box) R mAP50 P(Mask) R mAP50 Params 
YOLOv8n-Seg 0.922 0.891 0.931 0.914 0.904 0.926 11.80 
YOLOv8n-Seg 

(ConvUpDownModule) 0.926 0.924 0.937 0.930 0.928 0.946 2.98 

YOLOv8n-Seg 
(C2f_DSConv) 0.938 0.955 0.957 0.941 0.911 0.965 3.35 

YOLOv8n-Seg 
(TSPPF) 

0.961 0.958 0.963 0.968 0.972 0.977 3.12 

VT-YOLOv8n-Seg 0.973 0.979 0.985 0.972 0.977 0.982 3.15 
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The ConvUpDownModule was incorporated into the detection task, improving the 
model’s accuracy, recall, and mAP50 to 92.6%, 92.4%, and 93.7%, respectively. These im-
provements are 0.4%, 3.3%, and 0.6% higher than those of the original model. While the 
model parameters were reduced by 0.22 million, the accuracy, recall, and mAP50 in the 
segmentation task increased to 93%, 92.8%, and 94.6%, respectively, which are 0.8%, 3.7%, 
and 2% higher than the original model. This demonstrates that the ConvUpDownModule 
can learn more useful information representations while using fewer parameters. It is also 
evident that the feature map’s ability to extract features from maize seeds and germs in 
this study is not significantly affected by halving its size. Halving the feature map proves 
more effective than using the original feature map size. 

The addition of DSConv increased segmentation accuracy by 2.7% and mAP50 by 
3.9%, as well as detection accuracy by 1.6% and mAP50 by 2.6%, respectively, in compar-
ison to the previous model. This suggests that dynamic snake convolution is effective at 
segmenting an object’s edges, which is advantageous for maize germ segmentation. How-
ever, the improvement in recall is slight compared to the other metrics, and DSConv has 
limitations in recognizing different categories, which affects the model’s balance; there-
fore, it should be combined with complementary methods. 

Following the addition of the T-SPPF module, the model’s accuracy, recall, and 
mAP50 in the detection task increased to 96.1%, 95.8%, and 96.3%, respectively, exceeding 
the original model by 3.9%, 6.7%, and 3.2%. In the segmentation task, the model’s accu-
racy, recall, and mAP50 improved to 96.8%, 97.2%, and 97.7%, surpassing the original 
model by 5.4%, 6.8%, and 5.1%, respectively, while the number of parameters decreased 
by 0.08m. 

The VT-YOLOv8-Seg model, integrating ConvUpDownModule, DSConv, T-SPPF, 
and YOLOv8-Seg, exhibited the best detection performance with an accuracy of 97.3%, a 
recall of 97.9%, and a mAP50 of 98.5%. In the segmentation task, the model achieved a 
mAP50 of 98.2%, a recall of 97.7%, and an accuracy of 97.2%. All metrics were significantly 
improved, while the number of parameters remained the same as in the original model. 

3.3. Model Training Results 

We trained VT-YOLOv8-Seg using the maize seed aging germination dataset, and 
Figure 9 illustrates the performance metrics during training and validation. During train-
ing, box_loss smoothly converges from an initial value above 0.4 to near 0, demonstrating 
high accuracy without overfitting. Seg_loss also shows a clear decreasing and converging 
trend, while the reduction in classification loss (cls_loss) indicates an improvement in the 
model’s reliability for target classification. The reduction in the direction/flow loss 
(dfl_loss) reflects the model’s capacity to learn and predict the directional or flow-related 
characteristics of objects. 

During model validation, all loss metrics show convergence trends similar to those 
observed during training, with final stable values slightly higher than the training results. 
This suggests that the model generalizes well to data outside the training set. With an 
average precision exceeding 0.9 at 50% IoU (mAP50) and a performance above 0.7 and 
more demanding 50–95% IoU (mAP50-95), mask precision (precision(M)) and recall (re-
call(M)) remain above 0.9. These results confirm the model’s robust performance under 
stringent segmentation evaluation criteria. 

The maize seed aging germination dataset was utilized to train VT-YOLOv8-Seg. Fig-
ure 9 illustrates the performance metrics for both training and validation. During the 
training process, box_loss gradually converges from an initial value above 0.4 to asymp-
totically close to 0, demonstrating high accuracy without overfitting. Additionally, 
seg_loss exhibits a clear downward and convergent trend, while the reduction in classifi-
cation loss (cls_loss) indicates improved reliability in target classification. The model’s 
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capacity to learn and predict object direction or flow is further reflected in the reduction 
in the specific loss metric, direction/flow loss (dfl_loss). 

During validation, all loss metrics exhibit convergence trends similar to those in 
training, with final stable values slightly higher than the training results. This suggests 
that the model generalizes well for unseen data outside the training set. With an average 
precision exceeding 0.9 at 50% IoU (mAP50) and a performance above 0.7 at the more 
challenging 50–95% IoU (mAP50-95), mask precision (precision(M)) and recall (recall(M)) 
remain above 0.9. These results confirm the model’s robustness and its strong perfor-
mance under stringent segmentation evaluation criteria. 

 

Figure 9. Performance evaluation of YOLOv8-Seg model during training and validation. The blue 
solid line represents the value of a metric during the actual training/validation process, i.e., the 
real data points calculated for each epoch. The yellow dashed line is used to smooth the curve, 
making it easier to observe the overall trend. 

In conclusion, the VT-YOLOv8-Seg model demonstrates effective segmentation 
across various IoU thresholds, efficiently learning the features of maize seeds and shoots 
without overfitting and producing favorable training outcomes. Its low and stable loss 
values contribute to its strong performance on the maize seed aging germination dataset. 

The original model (YOLOv8-Seg) exhibited limitations in detecting minor targets 
and failed to segment maize germs accurately, as shown by the mask comparison in Fig-
ure 10. The analysis reveals suboptimal detection and segmentation, particularly during 
the early growth stages of maize germs, limited capability in recognizing irregular edges, 
and insufficient convolutional flexibility. These shortcomings are primarily attributed to 
inadequate feature fusion, which hinders small target detection performance. 

The enhanced model incorporates the ConvUpDownModule, which reduces model 
parameters and removes redundant information from feature maps; DSConv, featuring a 
flexible convolutional kernel that enhances the detection of irregular maize germ edges 
and improves edge segmentation accuracy; and the SPPF module, which manages mul-
tiscale feature information to enhance the network’s ability to detect small targets. Tests 
demonstrate that our optimized model, VT-YOLOv8-Seg, effectively segments curved 
and irregular edges in seed and germ detection while handling small targets more profi-
ciently compared to the original model. 

When detecting the first stage of segmented maize germs, group (a) in Figure 10 com-
pares the two models, showing that the improved VT-YOLOv8-Seg successfully detects 
small targets that the original model fails to identify. Group (a) illustrates how the im-
proved VT-YOLOv8-Seg model successfully detects small germination targets that the 
original model fails to identify. Small targets are particularly challenging due to their low 
pixel density and indistinct boundaries in the early germination stage. The addition of the 
T-SPPF module enables better multiscale feature fusion, enhancing the model’s sensitivity 
to these subtle features. In group (b), the original model’s experimental results reveal 
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repeated detections, which are effectively resolved in the VT-YOLOv8-Seg model. This 
improvement is attributed to two key factors: the reduction in redundant background in-
formation and the enhanced capability to detect curved germ structures. By reducing the 
influence of irrelevant background features, the VT-YOLOv8-Seg model avoids misinter-
preting overlapping or ambiguous areas as separate instances. Additionally, the strength-
ened ability to detect curved targets ensures more accurate identification and segmenta-
tion of bent germ structures, which are often misclassified by the original model. Missed 
detection remains an issue in group (c), with larger areas of missing buds compared to 
group (a). Missed detection remains a significant issue in group (c), where the original 
model shows larger areas of missing buds compared to the improved model in group (a). 
These omissions often occur for elongated and irregularly shaped targets, which the orig-
inal architecture struggles to perceive due to limited edge adaptation capabilities. The in-
tegration of DSConv in the VT-YOLOv8-Seg model directly addresses this limitation. 
DSConv dynamically adjusts convolutional kernels to better align with the contours of 
elongated objects, significantly improving the segmentation accuracy for these challeng-
ing cases. 

 

Figure 10. Groups (a)–(c) illustrate the model’s capability to detect and segment small targets in 
maize germs. Both group (a) and group (c) exhibit missed detection issues, with small germs in 
group (a) and elongated germs in group (c). Group (b), on the other hand, displays a problem of 
duplicate detections. 

3.4. Comparative Experiment 

We tested the VT-YOLOv8-Seg model with popular segmentation networks such as 
Mask-RCNN [40], YOLOv5-Seg [41], and YOLOv7-Seg [42] to confirm the effectiveness 
and benefits of the model. The VT-YOLOv8-Seg, the YOLOv8-Seg, the YOLOv7-Seg and 
the YOLOv5-Seg were evaluated on the test set after being trained with the same training 
parameters. For the Mask-RCNN, the learning rate, batch size, learning momentum, 
weight decay, and number of iterations were set to 0.004, 2, 0.9, 1 × 10−4, and 30 epochs, 
respectively. As indicated in Table 4, each segmentation network’s precision (P), recall (R), 
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mean accuracy (mAP), and number of parameters were assessed during the entire exper-
iment. 

The enhanced YOLOv8-Seg algorithm’s performance compared to other models is 
presented in Table 4. The accuracy, recall, and mAP50 are 97.3%, 97.9%, and 98.5% in the 
detection task and 97.2%, 97.7%, and 98.2% in the segmentation test, respectively. Com-
pared to the YOLOv8-Seg method, the improvements are 5.1%, 8.8%, and 6.4% in the de-
tection task and 5.8%, 7.3%, and 6.6% in the segmentation task. For the detection task, 
improvements are 7.8%, 10.3%, and 8.5% compared to the YOLOv5-Seg method, and for 
the segmentation task, improvements are 19.1%, 16.3%, and 12.8%, respectively. The de-
tection task is improved by 9.6%, 12.9%, and 7% compared to the YOLOv7-Seg method, 
while the segmentation task is improved by 12.2%, 11%, and 7.6%. When compared to the 
Mask-RCNN method, the algorithm’s evaluation metrics improved by 5.6%, 10.9%, and 
6% for the detection task and by 4.6%, 8.3%, and 6.7% for the segmentation task. 

In addition to its superior performance, VT-YOLOv8n-Seg maintained exceptional 
parameter efficiency, with only 3.15 million parameters. This is comparable to YOLOv8-
Seg (3.20 million) but significantly lower than YOLOv7-Seg (81.5 million) and Mask R-
CNN (239 million). The lightweight architecture of VT-YOLOv8n-Seg underscores its suit-
ability for real-time applications on resource-constrained devices. 

VT-YOLOv8n-Seg incorporates several innovative components to enhance perfor-
mance. The ConvUpDownModule minimizes redundant feature maps, thereby improv-
ing computational efficiency and feature representation. The DSConv module is specifi-
cally designed to adapt to irregular germ edges, enabling accurate segmentation of curved 
and elongated structures. Leveraging a Transformer-based multi-head attention mecha-
nism, the T-SPPF module introduces multi-scale feature fusion, enhancing the model’s 
capacity to detect small and complex targets. Tailored for agricultural applications, VT-
YOLOv8n-Seg strikes an optimal balance between high accuracy and low computational 
demands, making it ideal for deployment in resource-constrained environments. Its su-
perior segmentation capabilities significantly enhance the tracking of seed germination, a 
critical factor in assessing seed vigor and improving agricultural productivity. 

Table 4. Results for the five algorithms. 

 P(Box) R mAP50 P(Mask) R mAP50 Params 
Mask-RCNN 0.917 0.87 0.925 0.926 0.894 0.915 239 
YOLOv5-Seg 0.895 0.876 0.90 0.781 0.814 0.854 7.9 
YOLOv7-Seg 0.877 0.85  0.915 0.85 0.867 0.906 81.5 
YOLOv8-Seg 0.922 0.891 0.921 0.914 0.904 0.916 3.20 

VT-YOLOv8n-Seg 0.973 0.979 0.985 0.972 0.977 0.982 3.15 

Figure 11a shows the relationship between the number of parameters and perfor-
mance (mAP50) for Box and Mask detection across different models. The VT-YOLOv8-
Seg model achieves the highest mAP50 scores for both Box and Mask detection while 
maintaining a significantly lower parameter count compared to Mask-RCNN. Specifically, 
VT-YOLOv8-Seg achieves an mAP50(B) and mAP50(M) close to 0.99, with approximately 
3 million parameters, highlighting its efficiency and accuracy. In contrast, Mask-RCNN, 
with over 250 million parameters, delivers inferior performance in both metrics, reflecting 
a diminishing return in accuracy despite a substantially larger model size. The YOLOv5-
Seg and YOLOv7-Seg models exhibit moderate performance, with mAP50(Box) and 
mAP50(Mask) values ranging between 0.9 and 0.92, while YOLOv8-Seg performs slightly 
better but still falls short of VT-YOLOv8-Seg. Figure 11b illustrates the training dynamics 
of mAP50(M) across epochs for the same models. VT-YOLOv8-Seg demonstrates superior 
convergence behavior, achieving a near-perfect mAP50(M) of 0.9 by the 50th epoch. This 
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rapid convergence reflects the effectiveness of the architectural enhancements, such as T-
SPPF for multi-scale feature fusion and DSConv for improved detection of elongated and 
complex structures. In contrast, Mask-RCNN stabilizes at approximately 0.85 mAP50(M). 
YOLOv5-Seg and YOLOv7-Seg exhibit notable fluctuations during training and converge 
at approximately 0.8 and 0.9 mAP50(M), respectively. Although YOLOv8-Seg demon-
strates improved stability compared to YOLOv5-Seg and YOLOv7-Seg, it remains inferior 
to VT-YOLOv8-Seg in both convergence speed and final performance. 

 

Figure 11. Performance comparison of different models. (a) Relationship between the number of 
parameters (millions) and mAP50 for Box and Mask detection. (b) Training dynamics of mAP50(M) 
over 50 epochs. 

3.5. Results of Germination Experiments on Aging Maize Seeds 

3.5.1. Detection Germinating Seeds 

A comprehensive comparison was made between the variability of manual and plat-
form counts to verify the accuracy of this seed germination model. The experiments were 
divided into four groups, recording the number of seeds sprouted every 24 h, to compare 
the modeled and manual germination counts. As shown in Figure 12, which compares 
manual counting and model-based detection results, the error in counting germinated 
seeds is relatively small, with a high degree of fit observed. The manual counting results 
were obtained by averaging the counts of five individuals to minimize subjectivity and 
enhance the reliability of the baseline measurements. Despite the small errors, the discrep-
ancies are attributed to the current limitations in the model’s detection accuracy, which 
requires further refinement to enhance performance. These findings highlight the robust-
ness of the VT-YOLOv8-Seg model while also suggesting areas for improvement. 

Table 5, which compares the four seed groups, summarizes the findings of the four 
indicators. The results demonstrated that the mean germination time (MGT) exhibited an 
increasing trend, consistent with the hypothesis that seed vitality decreases as aging time 
increases. In contrast, the germination rate (G) and germination index (GI) indicators sig-
nificantly decreased as the artificial aging treatment time was extended. Table 6 displays 
the indicator values for each of the four seed groups. 

Table 5. Comparison of g (t = 3), g (t = 7), GI, MGT values of four groups of seeds. 

 g (t = 3) g (t = 7) GI MGT 
T0 36.6% 93.3% 16.08 5.586 
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T1 30.0% 86.7% 14.44 5.704 
T2 0 83.3% 10.59 5.714 
T3 0 76.7% 9.07 5.826 

3.5.2. Germ Growth Speed 

The germ area is determined by applying the best-trained parameters from VT-
YOLOv8-Seg to the prediction task, counting the number of mask points, and plotting 
them on the graph while drawing the mask image. The total number of non-zero pixel 
points in the mask is counted, and the tensor is then converted into Python values to com-
pute the mask’s area post-prediction. The mask image distinguishes the seed and germ 
using two colors: green for the seed and red for the germ. Using the number of pixel points 
representing the germ’s area, the Petri dish’s pixel points, and the actual size of the Petri 
dish, the actual area of the germ can be calculated as follows: 

Actual area of germ
Actual area of petri dish =

Total number of germ pixel points
Total number of petri dish pixel points (10) 

A control group and three groups of maize seeds experiencing different lengths of 
aging were set up for germination experiments, with four groups, each consisting of 30 
seeds (distributed across three Petri dishes), with seeds selected for consistency in position 
and morphology. A growth curve was fitted to the seeds using the mean germ area from 
the counted seeds. Most commercial automated seed vigor tests only assess germination 
within a three- to seven-day window. This study involved plotting bud growth curves of 
germ area versus time ratio by segmenting the seed buds and analyzing the results. It was 
observed that as the aging time gradient increased, the curve flattened and the germina-
tion speed slowed, as compared to the control and the three seed groups subjected to dif-
ferent aging gradients. An overall comparison of the growth curves for the four seed 
groups, shown in Figure 13, revealed that T3 (72 h aging time) had the slowest growth, T2 
(48 h aging time) exhibited the latest time to first germination, and T0 (control) demon-
strated the quickest growth and earliest germination. The curves obtained from the fitted 
exponential equation reflected the same trend as the original growth curve. After fitting 
the equation, the derived values were used to plot the derivative curve. 
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Figure 12. (a)–(d) compares the results between manual counting and model-based detection of 
maize seeds across four treatment groups with varying aging times. 

 

Figure 13. (a,b) The horizontal axis represents the germination experiment time, while the vertical 
axis indicates the maize germ areas, as calculated from the model outputs. (c) The horizontal axis 
represents the germination times, and the vertical axis displays the values of the first-order deriva-
tives derived from curve fitting. (a) depicts the growth curve of the maize germ area over time. (b) 
compares the fitted curves of four sets. (c) presents the derivative equation obtained through first-
order differentiation of the fitted equation, which approximates the growth rate of the maize germ. 
T0 (control), T1 (aging time 24 h), T2 (aging time 48 h), and T3 (aging time 72 h) are the experimental 
groups. 

The growth curves of the four seed groups were analyzed by fitting equations using 
Origin software. After fitting the exponential equations, the data were processed using 
first-order differentiation to derive the derivative equations. The final derivative equa-
tions were derived to represent the germination rate. The germination velocity curve de-
rived from the equation presents somewhat different results. The results show that T0 
consistently demonstrated the highest germination velocity, outperforming other groups 
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throughout the experiment. T1, while slower initially, exceeded T0 in velocity after 130 h, 
suggesting that short-term high-temperature, high-humidity treatments may enhance 
seed vigor during the later stages of germination. T3 remained ungerminated before 80 h 
but exhibited a higher derivative rate than T2 during this period, which may be attributed 
to the limitations of the fitting process, indicating that the derivative model requires re-
finement for better precision. The analysis confirms that aging treatments reduce seed 
vigor, as evidenced by the flattened growth curves and lower germination rates in T2 and 
T3. However, the temporary recovery effect observed in T1 due to high humidity warrants 
further investigation. Minor discrepancies between the predicted and observed growth 
curves, particularly in T2 and T3, highlight the need for a more accurate germination rate 
equation tailored to this seed viability detection task. We plan to refine the model and 
propose a more accurate germination rate equation tailored to this seed viability detection 
task. The results of the fitted equations are presented in Table 6. 

Table 6. The fitted equations with the corresponding values of R2. 

 Fitted Equations (y = axb) R2 (COD) 
T0 y0 = 0.01352x2.3 0.9816 
T1 y1 = 0.000661x2.8764 0.9877 
T2 y2 = 0.000510x3.3133 0.9664 
T3 y3 = 0.0006769x3.1866 0.9837 

4. Discussion 
Seed vigor is traditionally assessed by examining germination rate, but calculating 

germination velocity provides a more nuanced approach to seed vigor analysis. In this 
study, 120 seeds were analyzed, with 30 seeds sampled per material. While this sample 
size balanced resource constraints and experimental feasibility, it limits generalizability. 
Specifically, the small sample size may not fully capture the variability within broader 
seed populations or diverse environmental conditions. Thus, the results should be inter-
preted with caution. Future studies should include larger and more diverse samples to 
enhance statistical robustness and broader applicability. 

Advances in segmentation algorithms and model portability have made instance seg-
mentation a valuable tool for evaluating both seed germination rate and velocity. For in-
stance, YOLOv8-Seg has demonstrated significant potential in segmentation tasks. Refer-
ence [43] used YOLOv8-Seg as a base model, which was further improved for automatic 
segmentation of individual leaves in an image with a mAP50 of 86.4%. Reference [44] pro-
posed improved YOLOv8 instance segmentation (BFFDC-YOLOv8-Seg) for accurately 
segmenting weeds in complex backgrounds. mAP50 was 98.8%, and these two examples 
show that the YOLOv8 family has excellent potential in segmentation tasks. These exam-
ples illustrate the efficacy of the YOLOv8 family in segmentation tasks. 

The VT-YOLOv8-Seg model introduces an innovative approach for seed viability 
analysis, offering a quick, cost-effective, and efficient method for maize seed and germ 
segmentation. Despite significant advancements, further progress is necessary to improve 
the model’s applicability across diverse crops. Key areas for improvement include the cre-
ation of a more comprehensive germ dataset to enhance feature diversity and generaliza-
tion, as well as refinement of model accuracy, which is influenced by the pixel density in 
segmentation outputs. Moreover, to explore germination speed, future research should 
focus on developing algorithms capable of interpreting variations in germination dynam-
ics, which could later be integrated into the model. Looking ahead, 3D image analysis 
could further advance our germ segmentation capabilities. Ultimately, these efforts aim 
to improve seed quality and food production, contributing to agricultural sustainability. 
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5. Conclusions 
To enhance the accuracy of seed viability detection in maize, this study applies the 

YOLOv8-Seg network to the segmentation of maize germs. We propose the VT-YOLOv8-
Seg model, which integrates dynamic snake convolution, ConvUpDownModule, and the 
T-SPPF mechanism to accurately delineate seed and germ boundaries, enabling precise 
observation of seeds’ germination. VT-YOLOv8-Seg efficiently processes multi-scale fea-
ture information, improving detection of irregular germ edges, enhancing segmentation 
accuracy, and reducing model parameters by minimizing redundant feature map infor-
mation. 

The VT-YOLOv8-Seg model was used to count sprouted seeds, calculate the germi-
nation index, and assess the impact of aging gradients on maize seed germination vigor. 
A comparison of the germination counts from the VT-YOLOv8-Seg network with manual 
counting was performed to support the establishment of seed germination vigor classes. 

By applying VT-YOLOv8-Seg to the segmentation of maize seeds and buds, the ger-
mination potential curve was derived, showing the ratio of germinal area to time. The 
slope of this curve indicates germination speed, providing a convenient method for mon-
itoring seed vigor. This model offers a new analytical approach to measuring seed quality 
and serves as a technical reference for studying seed germination vitality and developing 
robust seed vitality rating models. 
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