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Abstract: Accurately monitoring soil moisture content (SMC) in the field is crucial for
achieving precision irrigation management. Currently, the development of UAV platforms
provides a cost-effective method for large-scale SMC monitoring. This study investigates
silage corn by employing UAV remote sensing technology to obtain multispectral imagery
during the seedling, jointing, and tasseling stages. Field experimental data were integrated,
and supervised classification was used to remove soil background and image shadows.
Canopy reflectance was extracted using masking techniques, while Pearson correlation
analysis was conducted to assess the linear relationship strength between spectral indices
and SMC. Subsequently, convolutional neural networks (CNNs), back-propagation neural
networks (BPNNs), and partial least squares regression (PLSR) models were constructed to
evaluate the applicability of these models in monitoring SMC before and after removing
the soil background and image shadows. The results indicated that: (1) After removing the
soil background and image shadows, the inversion accuracy of SMC for CNN, BPNN, and
PLSR models improved at all growth stages. (2) Among the different inversion models, the
accuracy from high to low was CNN, PLSR, BPNN. (3) From the perspective of different
growth stages, the inversion accuracy from high to low was seedling stage, tasseling stage,
jointing stage. The findings provide theoretical and technical support for UAV multispectral
remote sensing inversion of SMC in silage corn root zones and offer validation for large-
scale soil moisture monitoring using remote sensing.

Keywords: inversion of SMC; supervised classification; best variable combination; best
result algorithm; best growth stage

1. Introduction
As living standards continue to improve, individual domestic water consumption

has increased significantly, exacerbating water resource shortages. Statistics show that
agricultural water use accounts for 65% of the total water resources in China, yet its effective
utilization rate is less than 45%, severely hindering the rapid development of agricultural
production [1,2]. This issue is particularly acute in the arid regions of Northwest China,
where scarce rainfall, high evaporation rates, and a dry climate frequently impair normal
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crop growth, leading to reduced yields. Consequently, water scarcity has become a major
factor restricting regional economic and social development [3]. Food security, as a cor-
nerstone of national economic stability and people’s livelihoods, fundamentally depends
on water resources [4]. Addressing this challenge requires the development of precision
agriculture to enhance water use efficiency [5]. Therefore, implementing the national food
security strategy, establishing grain production bases, ensuring energy security, leveraging
the resource advantages of the Hexi Corridor, promoting precision irrigation, and improv-
ing water resource utilization efficiency are critical foundations for building high-standard
farmland and achieving sustainable agricultural development [6–8].

The Hexi region of Gansu Province, located in northwestern China, serves not only
as a major production base for staple grains and cash crops but also as a critical area for
exploring efficient water management strategies. Under conditions of scarce rainfall, arid
climate, and high evaporation rates, the efficient utilization of water resources directly
affects crop yields and the sustainability of agricultural production. Addressing the agri-
cultural water challenges posed by water scarcity requires implementing precise irrigation
during crop growth periods to maximize water use efficiency, which has become a central
issue for agricultural development in this region [9]. Accurate inversion of SMC provides
essential technical support for achieving this goal. However, with increasing population
growth and the mounting pressure of climate change on water resource development,
the region faces worsening imbalances between human activities and water resources, as
well as environmental degradation [10]. Given the high water demands of silage maize,
precision irrigation has become pivotal for ensuring crop growth and agricultural produc-
tivity. Consequently, UAV-based SMC inversion technology holds significant potential for
application in the Hexi region.

In recent years, the use of remote sensing data for large-scale estimation of SMC has
become a prominent research focus both domestically and internationally [11]. As a key
indicator in agricultural monitoring, SMC plays a critical role in guiding precise irrigation
decisions, evaluating crop growth conditions, and predicting yields [12]. Accurate and
efficient assessment of SMC is essential for improving crop yield, quality, and agricultural
water use efficiency [13]. Although traditional sampling methods provide precise mea-
surements, they are time-consuming, labor-intensive, and limited in sample size, making
them unsuitable for capturing SMC variations over large areas. Similarly, conventional
SMC monitoring methods, such as the drying method, gamma-ray method, and neutron
probe, cannot achieve real-time, non-contact, or non-destructive monitoring [14]. While
traditional satellite remote sensing technologies have facilitated large-scale and rapid moni-
toring of soil moisture, their low temporal resolution and coarse spatial resolution often fail
to meet the demands of precise irrigation [15,16]. Compared to traditional remote sensing
technologies, unmanned aerial vehicle (UAV) technology has gained widespread attention
due to its high spatial resolution, flexible flight planning, and real-time data acquisition
capabilities [17]. These features overcome the limitations posed by satellite orbital cycles
and adverse weather conditions. Unlike ground-based measurements, UAVs can cover
large agricultural areas within a short time frame. The collected data, after appropriate
processing, can serve as input for SMC model predictions, effectively replacing manual
labor and enabling non-contact, non-destructive monitoring. Additionally, UAVs facilitate
the transformation of sampling from point-based to area-based assessments, providing
critical technological support for real-time SMC monitoring and precise irrigation in arid
regions [18].

Currently, UAVs can be equipped with various sensors (e.g., RGB, multispectral,
hyperspectral, and thermal infrared) to capture observational data with spectral, spa-
tial, and temporal variations. These data are used for field surveys to assess crop water
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stress [19–21], estimate crop nitrogen content [22–24], and monitor SMC [25–27]. For in-
stance, Shafian et al. [28] estimated SMC over large agricultural areas by combining Landsat
multispectral data with the perpendicular soil moisture index and DC data, achieving an R2

of 0.703. However, this method is limited by Landsat’s spatial resolution of 30 m, which is
insufficient for small-scale precision irrigation in fields. In contrast, Liu et al. [29] employed
a UAV equipped with a hyperspectral sensor to capture high-resolution images at the
centimeter level, using a stacked ensemble learning model-DO to achieve SMC inversion
with an R2 of 0.81 and an RMSE of 1.6%. However, hyperspectral sensors are costly, and
their data processing is complex, making them unsuitable for large-scale applications.
Additionally, Qin et al. [30] proposed a method based on thermal infrared data combined
with time-series analysis to monitor crop water stress. However, thermal infrared sensors
are highly sensitive to weather conditions, which compromises their timeliness. UAVs
equipped with multispectral sensors can estimate SMC by capturing the canopy reflectance
and vegetation index (VI) [31,32]. Nevertheless, due to the three-dimensional structure
of crops, images often contain shadows when the sensor’s observation direction does not
align with the sun’s direct rays, which weakens the canopy spectral information and affects
the accuracy of SMC inversion [33–35]. Given the limited number of multispectral bands,
optimizing the band combination to improve inversion accuracy remains a challenge. This
study addresses this gap by eliminating shadowed areas, optimizing band combinations,
and exploring advanced algorithms such as neural networks and deep learning to enhance
the robustness of SMC inversion models.

In summary, this study focuses on silage corn in Huarui Farm, Minle County, Zhangye
City, Gansu Province, China. Using UAV multispectral imagery, we compare canopy
reflectance before and after removing the soil background and image shadows, employ
Pearson correlation analysis to select optimal spectral indices for different growth stages,
and build SMC inversion models based on CNN, BPNN, and PLSR. The research objectives
include: (1) comparing the accuracy of SMC inversion before and after removing the soil
background and image shadows; (2) evaluating the spectral indices correlated with SMC;
(3) assessing the effectiveness of CNN, BPNN, and PLSR models in inverting SMC; and
(4) generating SMC inversion maps for the seedling, jointing, and tasseling stages.

2. Materials and Methods
2.1. Study Area

The experimental site for this study is located at Huarui Farm in Liuba Town, Minle
County, Zhangye City, Gansu Province, China. (38◦43′48.33′′ N, 100◦42′6.35′′ E). It lies
north of the Qilian Mountain watershed, in the middle section of the Hexi Corridor, and
southeast of Zhangye City. The terrain slopes from south to north, with an elevation above
2400 m, and it has a temperate continental desert grassland climate. The main crops include
corn, wheat, and potatoes. The soil in Minle County is grey-brown desert soil with a pH
value of approximately 8.5. The organic matter content ranges from 0.2 to 2% in the plains
and 0.8 to 10% in the mountainous areas. The average annual precipitation is 351 mm,
with a frost-free period of 140 days. The experimental plot covers an area of about 3.5 mu
(approximately 0.23 hectares), with silage corn planted at a spacing of 25 cm between plants
and 50 cm between rows, using full plastic mulch coverage. The location of the study area
is shown in Figure 1, and the field experiment layout is depicted in Figure 2.



Agriculture 2025, 15, 331 4 of 19Agriculture 2025, 15, x FOR PEER REVIEW 4 of 20 
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and the DEM of Liuba Town. 

 

Figure 2. Field experiment layout. Note: The silage corn was planted with a spacing of 25 cm be-
tween plants and 50 cm between rows. 
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In this experiment, multispectral remote sensing images were acquired using a DJI 
Matrice 300 RTK quadcopter UAV (Shenzhen DJI Innovation Technology Co., Ltd., China) 
on 18 May 2022, 1 July 2022, and 4 August 2022. The UAV was equipped with an 
MS600Pro multispectral camera (Changguang Yuchen Information Technology and 
Equipment (Qingdao) Co., Ltd., China). The flight altitude was set at 30 m, with a forward 
overlap rate of 80% and a side lap rate of 70%. The flights were conducted between 12:00 
and 15:00, with the multispectral camera lens pointed vertically downward. Each flight 
followed a predetermined route, and the central wavelength reflectance of the diffuse re-
flectance panel is shown in Table 1. The flight speed was 7 m/s, and images of the calibra-
tion panel were taken on the ground before and after each flight. These calibration panel 
images were used for reflectance calibration to compensate for changes in lighting condi-
tions, ensuring data consistency. The ground resolution was 2 cm, and each flight lasted 
about 30 min. Four ground control points (GCPs) were established in the study area, and 
accurate co-ordinates were obtained using RTK. Pix4D Mapper4.8.0 software was used to 

Figure 1. Overview of the study area. Note: On the left side is the research location map of Minle
County, Zhangye City, Gansu Province, China. On the right is the land cover type of Minle County
and the DEM of Liuba Town.
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Figure 2. Field experiment layout. Note: The silage corn was planted with a spacing of 25 cm between
plants and 50 cm between rows.

2.2. Data Acquisition
2.2.1. Spectral Image Acquisition and Processing

In this experiment, multispectral remote sensing images were acquired using a DJI
Matrice 300 RTK quadcopter UAV (Shenzhen DJI Innovation Technology Co., Ltd., Shen-
zhen, China) on 18 May 2022, 1 July 2022, and 4 August 2022. The UAV was equipped
with an MS600Pro multispectral camera (Changguang Yuchen Information Technology
and Equipment (Qingdao) Co., Ltd., Qingdao, China). The flight altitude was set at 30 m,
with a forward overlap rate of 80% and a side lap rate of 70%. The flights were conducted
between 12:00 and 15:00, with the multispectral camera lens pointed vertically downward.
Each flight followed a predetermined route, and the central wavelength reflectance of the
diffuse reflectance panel is shown in Table 1. The flight speed was 7 m/s, and images of the
calibration panel were taken on the ground before and after each flight. These calibration
panel images were used for reflectance calibration to compensate for changes in lighting
conditions, ensuring data consistency. The ground resolution was 2 cm, and each flight
lasted about 30 min. Four ground control points (GCPs) were established in the study
area, and accurate co-ordinates were obtained using RTK. Pix4D Mapper4.8.0 software was
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used to register and precisely correct the images based on manually marked control points.
During image processing, illumination variation was normalized within the same growth
stage, and data from different growth stages were processed using histogram matching.
This process generated accurate crop reflectance information. After setting each parameter,
a raster digital surface model (DSM), orthophoto, and reflectance map containing the
reflectance of each band were produced, facilitating the extraction of silage corn canopy
reflectance. The research flow chart is shown in Figure 3.

Table 1. The central wavelength and reflectivity of the diffuse reflector.

Spectral Band
Center

Wavelength
/nm

Reflectance of
Diffuse Reflector

/%

Spectral
Band

Center
Wavelength

/nm

Reflectance of
Diffuse Reflector

/%

Blue 450 60 Rededge 1 720 60
Green 555 60 Rededge 2 750 60
Red 660 60 NIR 840 60
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When acquiring images with the UAV, shadows caused by the misalignment of the
solar direct radiation direction and the sensor observation direction can weaken the canopy
spectral information. Therefore, false-color image combinations were used in the ENVI5.3
software for supervised classification. The maximum likelihood method, a widely used and
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mature nonlinear classification based on the Bayesian criterion with minimal classification
error probability, was used in this experiment to remove soil background and image
shadows [36,37].

2.2.2. Soil Sample Collection and Processing

After UAV image acquisition, soil samples were promptly collected from the sampling
points set according to Figure 4, and the SMC of the silage corn root zone was determined
using the oven-drying method. Based on the depth of the primary root activity layer of
silage corn, three depth levels were designed: 0–10 cm, 10–20 cm, and 20–30 cm. The
average SMC across these depths was calculated as the SMC for each sampling point at
0–30 cm. Figure 5 shows the statistical results of the SMC sample data. The total number
of soil moisture samples for the seedling, jointing, and tasseling stages was 48 for each
stage. For each growth stage, 2/3 of the data was randomly selected for modeling, and the
remaining 1/3 was used for validation. The specific dataset divisions are shown in Table 2.
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Figure 5. Statistics of SMC samples by fertility period. Note: (a–c) are the sample statistics of
measured SMC at seedling stage, jointing stage, and tasseling stage, respectively, including the total
sample set and the division of the modeling set and validation set.
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Table 2. Statistics on datasets by fertility period.

Data Set Seedling Stage Jointing Stage Tasseling Stage Total

Modeling set 32 32 32 96
Validation set 16 16 16 48

Total 48 48 48 144

2.3. VI Extraction

The VI is a critical indicator for reflecting vegetation vitality and information. By ana-
lyzing the VI, we can effectively extract vegetation coverage, growth status, and trends [38].
In this study, we calculated 10 commonly used VIs based on corn canopy reflectance. The
VIs and their calculation formulas are shown in Table 3.

Table 3. Vegetation index and calculation formulas.

Vegetation Index Formulas References

Normalized difference vegetation index 1 NDVI1 = (G − B)/(G + B) [39]
Normalized difference vegetation index 2 NDVI2 = (NIR − R)/(NIR + R) [40]

Normalized difference rededge index NDRE = (NIR − RE1)/(NIR + RE1) [41]
Green index GI = G/R [42]

Normalized green difference vegetation index GNDVI = (G − R)/(G + R) [43]
Structure intensive pigment index SIPI = (NIR − B)/(NIR + B) [44]

Ratio vegetation index 1 RVI1 = NIR/G [45]
Ratio vegetation index 2 RVI2 = NIR/R [46]

Visible atmospheric resistant index VARI = (G − R)/(G + R − B) [47]
Normalized differential water index NDWI = (G − NIR)/(G + NIR) [48]

Note: B, G, R, RE1, RE2, and NIR represent the spectral reflectance at wavelengths of 450, 555, 660, 720, 750, and
840 nm, respectively.

2.4. Pearson Correlation Analysis

Multispectral image data are characterized by complex combinations, and redundant
and interfering spectral variables can affect the accuracy and precision of soil moisture
inversion models. Therefore, it is necessary to select sensitive spectral index combina-
tions [49]. This study primarily uses Pearson correlation analysis to evaluate the strength
of the linear relationship between spectral indices and soil moisture content, which can
be calculated using Equation (1), where Xi and Yi represent sample values, and X and Y
represent the sample mean values of the two, respectively:

r =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi − Y

)2
(1)

Note: The value range of r is [−1, 1]. Values of 0.8–1.0 indicate very strong correlation,
0.6–0.8 indicate strong correlation, 0.4–0.6 indicate moderate correlation, 0.2–0.4 indicate
weak correlation, and 0.0–0.2 indicate very weak or no correlation.

2.5. Construction of SMC Inversion Models

In recent years, deep learning has been widely applied in disaster monitoring and
pattern recognition [50–53], demonstrating significant advantages. Convolutional neural
networks (CNNs) are one of the representative algorithms of deep learning, known for their
local connections and weight sharing. CNNs excel in handling images, especially in image
recognition tasks such as image classification, object detection, and image segmentation,
making them one of the most widely used models.
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The back propagation neural network (BPNN) is a multi-layer feedforward neural
network trained using the error backpropagation algorithm. It is widely used for classifi-
cation, regression, and prediction tasks, offering advantages such as non-linear mapping,
self-learning, self-adaptation, and strong generalization ability [54,55].

Partial least squares regression (PLSR) is particularly suitable for prediction, as it can
handle both reflective and formative indicators. PLSR can perform multivariate linear
regression analysis, simplify data structures, and conduct canonical correlation analysis.
It is the most commonly used method for parameter estimation in structural equation
models with latent variables, capable of eliminating multicollinearity among variables and
improving model accuracy [56,57].

This study uses MATLAB2022a to construct SMC inversion models using CNN, BPNN,
and PLSR. To ensure that both the modeling and validation sets represent the statistical
characteristics of SMC, the average of soil samples at various depths was taken. From each
growth stage, 32 samples were randomly selected as the modeling sample set, with the
remaining soil samples serving as the validation sample set.

2.6. Model Accuracy Evaluation

This study employed the Kappa coefficient to assess the consistency between classifi-
cation results and reference data, considering the possibility of random agreement. The
calculation formula is provided in Equation (2):

Kappa =
P0 − Pe

1 − Pe
(2)

where P0 represents the observed agreement between the predicted and reference classifica-
tions and Pe denotes the expected agreement due to chance. A Kappa value of 1 indicates
perfect agreement, while a value of 0 suggests that the classification is no better than
random guessing. Typically, Kappa values above 0.8 are considered excellent, while values
between 0.6 and 0.8 indicate substantial agreement.

In this study, the accuracy of the SMC inversion models was evaluated using mean
absolute error (MAE), root mean square error (RMSE), and the coefficient of determination
(R2). MAE represents the average of the absolute errors and effectively reflects the actual
prediction error; the smaller the MAE, the higher the model accuracy. RMSE indicates how
close the predicted values are to the actual values, with values closer to 0 showing better
accuracy. R2 represents the goodness of fit of the model, with values closer to 1 indicating
better inversion performance. The calculation formulas are shown in Equations (3)–(5):

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(3)

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
(4)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (5)

where yi is the measured value of soil moisture content, ŷi is the predicted value of soil
moisture content, y is the average value of soil moisture content, and n is the number
of samples.
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3. Results
3.1. Extraction and Statistical Analysis of Canopy Spectral Reflectance

This study processed the results of UAV multispectral images under supervised
classification to obtain canopy vector files for silage corn. The Kappa coefficient reflects
the accuracy of the classifier, and the evaluation of the classification results is shown in
Table 4. The overall accuracy of the supervised classification reached 99%, with Kappa
coefficients consistently above 0.99, which is beneficial for subsequent SMC inversion.
Among all growth stages, the supervised classification performed best during the seedling
stage of silage corn. The extraction process of silage corn canopy reflectance is illustrated
in Figure 6.

Table 4. Classification accuracy and Kappa coefficient.

Growth Stages Accuracy/% Kappa Coefficient

Seedling stage 99.91 0.9986
Jointing stage 99.57 0.9952

Tasseling stage 99.69 0.9964
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Figure 6. Extraction process of maize canopy reflectance. (a) Classification result. (b) Plant bands
were extracted. (c) Canopy vector files were constructed. (d) Canopy reflectance was extracted.

The average spectral data for each growth stage were calculated to compare the
changes in canopy reflectance of silage corn before and after the removal of the soil back-
ground and image shadows. The results are shown in Figure 7. Among the different growth
stages, the near-infrared band of the canopy spectral reflectance shows the most significant
increase after the removal of the soil background and image shadows. The seedling stage
exhibits a greater increase in canopy spectral reflectance compared to the jointing and
tasseling stages.
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3.2. Pearson Correlation Analysis to Screen the Best Combination of Variables

To mitigate potential overfitting in the inversion model, Pearson correlation coefficients
were employed to conduct multivariate correlation analysis between the independent
variables (multi-spectral remote sensing data and spectral information) and the dependent
variable (SMC in the root zone of silage corn) [58]. Figure 8 shows the scatter plot matrix and
Pearson correlation coefficients for each growth stage after removing the soil background
and image shadows, displaying the results of normality tests on the data. The diagonal
of the matrix plots shows univariate density estimates, representing the distribution of
each feature, while the other parts of the scatter matrix depict linear relationships between
different variables.
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Using Pearson correlation analysis, the optimal variable combinations for different
growth stages were selected before and after removing the soil background and image
shadows. After removal, the spectral indices most strongly correlated with SMC during the
seedling stage, in order of strength, are Rededge1, Green, NIR, Rededge2, Blue, Red, NDWI,
RVI1, and NDVI2, with correlation coefficients of 0.832, 0.789, and 0.616 for Rededge1,
Green, and NIR, respectively. In the jointing stage, NIR showed the highest correlation
with SMC, with a coefficient of 0.327. In the tasseling stage, the indices GI, VARI, and
GNDVI exhibited higher correlations with SMC, with coefficients of 0.558, 0.515, and
0.506, respectively. During the tasseling stage, NDVI2 showed little to no correlation
with SMC, suggesting a nonlinear relationship or no significant association between them.
The statistical results of Pearson correlation analysis for selecting the optimal variable
combinations are summarized in Table 5.
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Table 5. Pearson correlation analysis screening results statistics.

Treatment Growth Stages Number of Variables Optimal Combination of Variables

unremoved

Seedling stage 9 Rededge1 ***, Green ***, Red ***, Rededge2 ***,
NIR ***, Blue ***, NDWI ***, RVI1 ***, NDVI2 *

Jointing stage 1 NIR *

Tasseling stage 6 GI ***, VARI ***, GNDVI ***, RVI1 **,
NDRE *, NDWI *

removed

Seedling stage 9 Rededge1 ***, Green ***, NIR ***, Rededge2 ***,
Blue ***, Red ***, NDWI ***, RVI1 ***, SIPI *

Jointing stage 1 NIR *

Tasseling stage 6 GI ***, VARI ***, GNDVI ***, RVI1 **,
NDRE *, NDWI *

Note: ***, **, * represent the significance level of 0.1%, 1%, and 5%, respectively.

3.3. Construction of SMC Inversion Model

The spectral indices highly correlated with SMC were selected to construct SMC inver-
sion models based on CNN, BPNN, and PLSR. The CNN model utilized 2D convolutional
layers and 2D pooling layers to process the data, which helps capture features in the 2D
spatial domain. The convolution kernel size was [3, 1], and the pooling layer used a 2D max
pooling layer with a pooling window size of [2, 1] and a stride of [1, 1]. The PLSR and BP
models use 1D data for modeling and prediction, presenting multiple evaluation metrics to
assess model performance. The BP model created two hidden layer neurons, with training
parameters including 1000 iterations, an error threshold of 1e-6, and a learning rate of 0.01.
Early stopping was implemented during the training process to prevent overfitting caused
by excessive iterations. The SMC predictions obtained from inversion were linearly fitted
to the SMC measurements obtained by the drying method, obtaining a fitting equation as
shown in Figure 9, and analyzing the impact of the soil background and image shadows on
the inversion model.
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As shown in Figure 9, removing the soil background and image shadows significantly
enhances the retrieval accuracy of SMC. During the seedling stage, after removal, the R2
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values for CNN, BPNN, and PLSR increased by 0.161, 0.079, and 0.026, respectively. In the
jointing stage, following removal, the R2 values for CNN, BPNN, and PLSR improved by
0.008, 0.043, and 0.177, respectively. During the tasseling stage, after removal, the R2 values
for CNN, BPNN, and PLSR increased by 0.012, 0.119, and 0.159, respectively. Additionally,
after background removal, CNN shows a decreasing trend in R2 with the progression
of growth stages, while BPNN and PLSR initially decrease and then increase in R2. In
summary, from the model perspective, the retrieval accuracy ranks as follows: CNN >
PLSR > BPNN. From the growth stage perspective, the ranking is as follows: seedling stage
> tasseling stage > jointing stage.

3.4. Comprehensive Evaluation of SMC Inversion Models

As shown in Table 6, this study evaluates the accuracy of three SMC inversion models
before and after removing the soil background and image shadows from the perspectives
of MAE, RMSE, and R2. The analysis reveals the following: (1) After removing the soil
background and image shadows, the accuracy of SMC inversion results improved for all
growth stages across the three inversion models. CNN exhibited the highest accuracy,
with validation set R2 increasing by 20.33%, 0.92%, and 1.28% for each growth stage, MAE
values of 0.156, 0.341, and 0.101, and RMSE values of 0.284, 0.595, and 0.143, respectively.
For BPNN, validation set R2 increased by 10.65%, 6.86%, and 17.20%, with MAE values
of 0.315, 1.025, and 0.120, and RMSE values of 0.552, 1.308, and 0.154, respectively. PLSR
showed an increase in validation set R2 by 2.87%, 31.55%, and 24.05%, with MAE values of
0.357, 0.662, and 0.128, and RMSE values of 0.447, 0.882, and 0.155, respectively. (2) During
the seedling stage, under conditions of removing the soil background and image shadows,
the modeling set R2 for CNN, BPNN, and PLSR was 0.960, 0.906, and 0.727, respectively.
During the jointing stage under the same conditions, the modeling set R2 was 0.875, 0.670,
and 0.738, respectively, and during the tasseling stage, 0.869, 0.811, and 0.820, respectively.
The model inversion accuracy for each growth stage ranks from highest to lowest as CNN,
PLSR, and BPNN.

Table 6. Evaluation of model inversion results.

Model Treatment Growth stages Modeling Set Validation Set

MAE RMSE R2 MAE RMSE R2

CNN

unremoved
Seedling stage 0.223 0.320 0.948 0.412 0.555 0.792
Jointing stage 0.522 0.911 0.883 0.438 0.602 0.867

Tasseling stage 0.083 0.149 0.898 0.099 0.136 0.858

removed
Seedling stage 0.161 0.278 0.960 0.156 0.284 0.953
Jointing stage 0.556 0.87 0.893 0.341 0.595 0.875

Tasseling stage 0.075 0.106 0.934 0.101 0.143 0.869

BPNN

unremoved
Seedling stage 0.494 0.660 0.761 0.389 0.608 0.742
Jointing stage 1.164 1.465 0.675 0.836 1.233 0.627

Tasseling stage 0.156 0.182 0.812 0.169 0.239 0.692

removed
Seedling stage 0.297 0.453 0.906 0.315 0.552 0.821
Jointing stage 1.199 1.476 0.682 1.025 1.308 0.670

Tasseling stage 0.135 0.169 0.831 0.120 0.154 0.811

PLSR

unremoved
Seedling stage 0.607 0.764 0.697 0.339 0.447 0.870
Jointing stage 1.415 1.719 0.681 1.118 1.449 0.561

Tasseling stage 0.209 0.236 0.688 0.164 0.200 0.661

removed
Seedling stage 0.579 0.718 0.727 0.357 0.447 0.895
Jointing stage 1.272 1.487 0.785 0.662 0.882 0.738

Tasseling stage 0.187 0.216 0.726 0.128 0.155 0.820
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According to the comprehensive evaluation results of the prediction model, the SMC
inversion results for the experimental area are presented in Figure 10.
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4. Discussion
4.1. The Influence of Soil Background and Image Shadow on the Inversion Accuracy of SMC

SMC is a primary factor determining crop yield and quality. Real-time monitoring
of its variation through UAV remote sensing is fundamental and crucial for achieving
precise irrigation. Under stable conditions of light and temperature, SMC becomes a
key factor affecting crop growth. Especially under water stress conditions, the crop’s
reflectance undergoes significant changes. However, existing studies show that due to
the influence of multiple factors on UAV remote sensing platforms, the high-resolution
multispectral imagery they capture is prone to interference from soil background and
image shadows. When a single pixel contains reflectance information from multiple
land cover types, the mixed spectra reduce the model’s accuracy. These interferences
weaken the spectral information of vegetation, reducing the accuracy of root zone SMC
inversion [59,60]. Therefore, this study applies supervised classification to remove soil
background and shadow areas from the imagery, reducing the spectral mixing effect,
extracting only the plant reflection spectrum to create canopy vector files. By comparing
the canopy spectral reflectance values before and after removing the soil background and
image shadows, results indicate an improvement in canopy spectral reflectance values
across all growth stages of silage corn. The most noticeable enhancement is observed in the
near-infrared band, particularly during the seedling stage, which shows a more pronounced
change in canopy spectral reflectance compared to the jointing and tasseling stages. Further
analysis revealed that removing the soil background and image shadows improved the
stability and robustness of the inversion model. This is consistent with the findings of Li
Meixuan and Zhu Wenjing, who demonstrated an increase in R2 to 0.723 by removing image
shadows using the shadow index, thus improving nitrogen content inversion accuracy [61].
Zhu Wenjing used methods such as Otsu’s method, threshold segmentation, and support
vector machines for fine semantic segmentation of remote sensing images of wheat scab,
increasing the R2 of the validation set from 0.68 to 0.77, effectively enhancing the monitoring
accuracy of wheat scab [62]. In this study, the improvement is particularly evident during
the seedling stage, as the soil and maize seedlings are clearly distinguishable and easier to
separate from the region of interest compared to the jointing and tasseling stages.

4.2. The Influence of Model on the Inversion Accuracy of SMC

This study employs three models—CNN [63], BPNN, and PLSR—to invert SMC. These
models are based on different principles and algorithms, resulting in varying accuracy in
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inversion. A CNN is a type of feedforward neural network with a convolutional structure,
comprising an input layer, convolutional layers, pooling layers, fully connected layers,
and an output layer [64,65]. It excels in handling spatial data, particularly in recognizing
and analyzing images or spatial layouts. CNNs possess four main characteristics: local
connectivity, weight sharing, pooling operations, and a multi-layered structure [66]. Their
advantage lies in their ability to automatically learn features from data through multiple
layers of nonlinear transformations, replacing manually designed features. The deep
structure of CNNs endows them with strong representation and learning capabilities [67].
The BPNN is an effective model for parameter estimation, widely used in various prediction
algorithms. However, it has a relatively slow convergence speed [68]. PLSR is a regression
modeling method for multiple dependent variables (Y) against multiple independent
variables (X). This algorithm extracts principal components from both Y and X while
maximizing the correlation between the components derived from X and Y [69]. The study
results indicate that the CNN model exhibited higher inversion accuracy, as the R2 values
for the modeling set were all around 0.9. Although the BPNN model’s inversion accuracy
was lower than that of the CNN and PLSR models, it still achieved good results on certain
datasets, such as during the seedling stage. This suggests that different models have varying
adaptability to the characteristics and structure of the input data. The comparison between
the inverted SMC at the sampling points and the observed SMC is shown in Figure 11.
Zhang et al. [70] utilized multispectral and thermal infrared remote sensing data collected
throughout the entire growth stages of soybean and maize. By employing the random forest
regression (RFR) model and combining indices to estimate SMC, their results indicated
that multispectral remote sensing methods provided higher accuracy in SMC estimation
compared to thermal infrared remote sensing. Seo et al. [71] collected multispectral and
thermal infrared data to monitor SMC in large-scale potato fields. By comparing the SMC
retrieval accuracy of CNN and deep neural networks (DNN), the results demonstrated that
CNN exhibited superior performance in SMC estimation. Yin et al. [72] used alfalfa as the
study object, acquiring RGB, multispectral, and thermal images to evaluate SMC using
four regression models: PLSR, SVM, RF, and DNN. The results indicated that integrating
multimodal data significantly improved the ability to estimate SMC, with the DNN model
utilizing multimodal data achieving the best performance, yielding an R2 of 0.72 and an
RMSE of 4.98%. In this study, multispectral images of silage corn were acquired, and the
removal of the soil background and image shadows, along with the selection of optimal
variable combinations, significantly improved the accuracy of the SMC inversion model.
CNN demonstrated superior accuracy and robustness in SMC inversion, followed by PLSR
and BPNN. The specific performance of these models may vary depending on the study
area, data type, and model parameters.
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4.3. Uncertainty Analysis

The study on SMC inversion based on CNN, BPNN, and PLSR achieved satisfactory
results, but some limitations remain. Although UAV technology is widely used in various
fields, it is highly susceptible to weather conditions during flight. Thick cloud cover can
significantly alter lighting conditions during the flight, resulting in unstable spectral data
captured by the sensors. This leads to fluctuations in object reflectance, causing tonal
shifts in multispectral images. Consequently, VIs used for SMC inversion (NDVI, GNDVI,
etc.) are disturbed, as reflectance characteristics cannot maintain consistency, affecting
the model’s stability and predictive accuracy. In crop monitoring, such variations in
lighting conditions influence the intensity of reflected light across different spectral bands,
leading to color distortions that make inversion results inaccurate and compromise the
analysis of critical indicators. Additionally, strong winds can destabilize the UAV, causing
decreased spatial resolution, image quality, and positional accuracy. Furthermore, complex
meteorological conditions may result in imaging data that are difficult to match with actual
ground conditions.

To address these limitations, future research should focus on exploring real-time cor-
rection methods for spectral data instability caused by adverse meteorological conditions,
as well as advanced image processing techniques to mitigate tonal shifts and spectral
inconsistencies. For the instability caused by strong winds, future efforts should consider
improving UAV stabilization technologies or integrating data from multiple sources, such
as satellite imagery, to compensate for gaps resulting from UAV data limitations. These
advancements would not only enhance the predictive capacity and accuracy of SMC inver-
sion models, but also enable more informed decision-making in precision irrigation and
agricultural environmental sustainability.

Agricultural data are sensitive to countries, due to political and ecological food security.
However, these limitations are unfavorable for big data research. It is suggested that in
the future work, data should be shared to construct an agricultural big data model and
enhance the generalization of its interpretability under the premise of ensuring safety in
a local range. This study focuses on the SMC retrieval of silage maize in the Hexi region,
with methods that are particularly suitable for arid climates and crops with high water
demand. The findings provide critical technical support for developing more generalizable
precision irrigation systems and promoting sustainable agriculture in the future. For other
crops or climatic regions, adjustments to model parameters would be necessary.

5. Conclusions
This paper aimed to investigate the impact of the soil background and image shadows

on SMC inversion. First, supervised classification was used to remove soil background and
image shadows. Then, Pearson correlation analysis was performed, showing a significant
improvement in the correlation between independent variables (spectral indices) and
the dependent variable (SMC). Finally, CNN, BPNN, and PLSR models were used to
compare and analyze the inversion results at different growth stages, and their accuracy
was evaluated.

(1) Due to the varying spectral characteristics of different bands, the VI constructed from
canopy reflectance at different growth stages will differ. The correlation between
NDVI1, GI, SIPI, and SMC was not significant before and after removing the soil
background and image shadows. During the seedling and jointing stages, the correla-
tion between NDVI1, GI, and SMC was near zero. Similarly, during the jointing and
tasseling stages, the correlation between SIPI and SMC was near zero, indicating a
nonlinear relationship or no apparent association between them.
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(2) At each growth stage, removing the soil background and image shadows improved
the accuracy of SMC inversion. In the CNN-based inversion model, the R2 of the
validation set increased by 20.33%, 0.92%, and 1.28% during the seedling, jointing,
and tasseling stages, respectively, after removal. In the BPNN-based inversion model,
the R2 increased by 10.65%, 6.86%, and 17.20% during the seedling, jointing, and
tasseling stages, respectively, after removal. In the PLSR-based inversion model, the
R2 increased by 2.87%, 31.55%, and 24.05% during the seedling, jointing, and tasseling
stages, respectively, after removal. All three models showed the highest inversion
accuracy during the seedling stage, with validation set R2 values of 0.953, 0.821, and
0.895, respectively.

(3) The inversion accuracy of the three models before and after removing the soil back-
ground and image shadows followed the order seedling stage, tasseling stage, jointing
stage. Removing the background improved the inversion accuracy at each growth
stage numerically but did not alter the order of accuracy across growth stages.
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