Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality
Abstract
:1. Introduction
2. Material and Methods
2.1. Olive Grove and Environmental Characteristics
2.2. Foliar Fertilization
2.3. Leaf N Content
2.4. Vegetative Activity
2.5. Leaf Net Photosynthesis (Pn) and Area Dry Mass (ADM)
2.6. Fruits Production, Maturation Indexes and Oil Characteristics
2.7. Statistical Analysis
3. Results
3.1. N Content
3.2. Vegetative Activity
3.3. Leaf Net Photosynthesis (Pn) and Area Dry Mass (ADM)
3.4. Fruits Production, Maturation Indexes and Oil Characteristics
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albornoz, F. Crop responses to nitrogen overfertilization: A review. Sci. Hortic. 2016, 205, 79–83. [Google Scholar] [CrossRef]
- Kirkby, E. Introduction, Definition and Classification of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherland, 2012; pp. 3–5. [Google Scholar]
- Fernández-Escobar, R.; García-Novelo, J.M.; Restrepo-Díaz, H. Mobilization of nitrogen in the olive bearing shoots after foliar application of urea. Sci. Hortic. 2011, 127, 452–454. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Ben El Hadj, S.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Paul, M.J.; Driscoll, S.P. Sugar repression of photosynthesis: The role of carbohydrates in signalling nitrogen deficiency through source: Sink imbalance. Plant Cell Environ. 1997, 20, 110–116. [Google Scholar] [CrossRef]
- de Groot, C.C.; Marcelis, L.F.M.; van den Boogaard, R.; Kaiser, W.M.; Lambers, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 2003, 248, 257–268. [Google Scholar] [CrossRef]
- Scheible, W.R.; Morcuende, R.; Czechowski, T.; Fritz, C.; Osuna, D.; Palacios-Rojas, N.; Schindelasch, D.; Thimm, O.; Udvardi, M.K.; Stitt, M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004, 136, 2483–2499. [Google Scholar] [CrossRef]
- Erel, R.; Kerem, Z.; Ben-Gal, A.; Dag, A.; Schwartz, A.; Zipori, I.; Basheer, L.; Yermiyahu, U. Olive (Olea europaea L.) tree nitrogen status is a key factor for olive oil quality. J. Agric. Food Chem. 2019, 61, 11261–11272. [Google Scholar] [CrossRef]
- Dag, A.; Ben-David, E.; Kerem, Z.; Ben Gal, A.; Erel, R.; Basheer, L.; Yermiyahu, U. Olive oil composition as a function of nitrogen, phosphorus and potassium plant nutrition. J. Sci. Food Agric. 2009, 89, 1871–1878. [Google Scholar] [CrossRef]
- Chatzissavvidis, C.A.; Therios, I.N.; Antonopoulou, C. Seasonal variation of nutrient concentration in two olive (Olea europaea L.) cultivars irrigated with high boron water. J. Hortic. Sci. Biotechnol. 2004, 79, 683–688. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyahu, U.; Van Opstal, J.; Ben-Gal, A.; Schwartz, A.; Dag, A. The importance of olive (Olea europaea L.) tree nutritional status on its productivity. Sci. Hortic. 2013, 159, 8–18. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Marin, L.; Sánchez-Zamora, M.A.; García-Novelo, J.M.; Molina Soria, C.; Parra, M.A. Long-term effects of N fertilization on cropping and growth of olive trees and on N accumulation in soil profile. Eur. J. Agron. 2009, 31, 223–232. [Google Scholar] [CrossRef]
- Klein, I.; Weinbaum, S.A. Foliar application of urea to olive: Translocation of urea nitrogen as influenced by sink demand and nitrogen deficiency. J. Am. Soc. Hortic. Sci. 1984, 109, 356–360. [Google Scholar]
- Fernández-Escobar, R.; Benlloch, M.; Herrera, E.; Garcı́a-Novelo, J.M. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Sci Hortic. 2004, 101, 39–49. [Google Scholar] [CrossRef]
- Connel, J.H.; Ferguson, L.; Krueger, W.H.; Sibbett, G.S. Effects of foliar application of olive on olive leaf nitrogen, growth, and yield. Acta Hortic. 2002, 586, 251–254. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; García-Novelo, J.M.; Molina-Soria, C.; Parra, M.A. An approach to nitrogen balance in olive orchards. Sci. Hortic. 2012, 135, 219–226. [Google Scholar] [CrossRef]
- Fernández-Escobar, R. Olive Nutritional Status and Tolerance to Biotic and Abiotic Stresses. Front. Plant Sci. 2019, 10, 1151. [Google Scholar] [CrossRef]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Hortic. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Reale, L.; Nasini, L.; Cerri, M.; Regni, L.; Ferranti, F.; Proietti, P. The influence of light on olive (Olea europaea L.) fruit development is cultivar dependent. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef]
- Proietti, P.; Famiani, F. Diurnal and seasonal changes in photosynthetic characteristics in different olive (Olea europaea L.) cultivars. Photosynthetica 2002, 40, 171–176. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Ilarioni, L. Photosynthetic behavior of Spanish Arbequina and Italian Maurino olive (Olea europaea L.) cultivars under super-intensive grove conditions. Photosynthetica 2012, 50, 239–246. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Reale, L.; Caruso, T.; Ferranti, F. Productive and vegetative behavior of olive cultivars in super high-density olive grove. Sci. Agric. 2015, 72, 20–27. [Google Scholar] [CrossRef]
- D’Amato, R.; De Feudis, M.; Hasuoka, P.E.; Regni, L.; Pacheco, P.H.; Onofri, A.; Businelli, D.; Proietti, P. The selenium supplementation influences olive tree production and oil stability against oxidation and can alleviate the water deficiency effects. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Proietti, P.; Nasini, L.; Del Buono, D.; Tedeschini, E.; Businelli, D. Increase in the selenium content of extra virgin olive oil: Quantitative and qualitative implications. Grasas Aceites 2014, 65. [Google Scholar] [CrossRef]
- Balestrieri, F.; Bottari, E.; Festa, M.R.; Marini, D. Metodi di analisi di prodotti alimentari; Oli e grassi. SO.GRA.ME: Napoli, Italy, 1988. [Google Scholar]
- Therios, I. Olives: Crop Production Science in Horticulture; CABI Publishing: Wallingford, UK, 2009; pp. 182–409. [Google Scholar]
- Wiesman, Z.; Ronen, A.; Ankarion, Y.; Novikov, V.; Maranz, S.; Chpagain, B.; Abramovich, Z. Effect of olive-nuti-van on yield and quality of olives and oil. Acta Hortic. 2002, 594, 557–562. [Google Scholar] [CrossRef]
- Lavee, S.; Haskal, A.; Tal, Y.B. Girdling olive trees, a partial solution to biennial bearing. Methods, timing and direct tree response. J. Hortic. Sci. 1983, 58, 209–218. [Google Scholar] [CrossRef]
- Levin, A.G.; Lavee, S. The influence of girdling on flower type, number, inflorescence density, fruit set, and yields in three different olive cultivars (Barnea, Picual, and Souri). Aust. J. Agric Res. 2005, 56, 827–831. [Google Scholar] [CrossRef]
- Frega, N.; Garzi, R.; Mancuso, S.; Rinaldelli, E. The effect of foliar nutrition on olive fruit-set and on the quality and yield of oil: Further testing. Adv. Hortic. Sci. 1995, 9, 148–152. [Google Scholar]
- Proietti, P.; Tombesi, A.; Boco, M. Influence of leaf shading and defoliation on oil syntesis and growth of olive fruits. Acta Hortic. 1994, 356, 272–277. [Google Scholar] [CrossRef]
- Proietti, P.; Paliotti, A.; Nottiani, G. Availability of assimilates and development of olive fruit. Acta Hortic. 1999, 474, 297–300. [Google Scholar] [CrossRef]
- Gullo, G.; Pace, L.S. Fruit growth and olive oil quality in relation to foliar nutrition and time of application. Acta Hortic. 2002, 586, 507–509. [Google Scholar]
- Inglese, P.; Gullo, G.; Pace, L.S. Fruit Growth and Olive oil Quality in Relation to Foliar Nutrition and Time of Application. In 4th International Symposium on Olive Growing; Vitigliano, C., Martelli, G.P., Eds.; ISHS: Leuven, Belgium, 2002; p. 586. [Google Scholar]
- Marcelo, M.E.; Jordão, P.V.; Matias, H.; Rogado, B. Influence of nitrogen and magnesium fertilization of olive tree Picual on yield and olive oil quality. Acta Hortic. 2010, 868, 445–450. [Google Scholar] [CrossRef]
- Rosati, A.; Caporali, S.; Paoletti, A. Fertilization with N and K increases oil and water content in olive (Olea europaea L.) fruit via increased proportion of pulp. Sci. Hortic. 2015, 192, 381–386. [Google Scholar] [CrossRef]
Leaf Age | Treatment | ADM | Pn | ADM | Pn | ADM | Pn |
---|---|---|---|---|---|---|---|
(mg cm −2) | (µmoli CO2 m −2 s −1) | (mg cm −2) | (µmoli CO2 m −2 s −1) | (mg cm −2) | (µmoli CO2 m −2 s −1) | ||
10 DAT1 | 10 DAT2 | 10 DAT3 | |||||
Year 1 | |||||||
Current season | Control | 23.45 b | 8.23 a | 20.83 a | 3.20 a | 19.46 a | 7.19 a |
Treated | 25.04 b | 9.26 a | 19.85 a | 2.84 a | 19.90 a | 6.85 a | |
One year old | Control | 27.76 a | 7.76 a | 20.72 a | 2.47 a | 20.03 a | 8.71 a |
Treated | 27.16 a | 9.15 b | 21.45 a | 3.05 a | 20.01 a | 8.41 a | |
Year 2 | |||||||
Current season | Control | 24.76 a | 11.03 a | 19.87 a | 3.45 a | 22.46 a | 11.46 a |
Treated | 25.10 a | 10.87 a | 19.90 a | 3.56 a | 22.90 a | 11.35 a | |
One year old | Control | 27.77 a | 7.94 a | 19.93 a | 2.87 a | 25.83 a | 8.84 a |
Treated | 28.43 a | 8.38 a | 20.05 a | 2.95 a | 24.03 a | 8.17 a | |
Year 3 | |||||||
Current season | Control | 18.94 a | 8.65 a | 19.84 a | 2.80 a | 21.36 a | 12.85 a |
Treated | 18.55 a | 10.31 b | 20.55 a | 3.75 a | 21.80 a | 11.75 a | |
One year old | Control | 20.91 a | 9.30 b | 21.91 a | 2.59 a | 24.73 a | 11.70 b |
Treated | 20.34 a | 5.65 a | 21.35 a | 3.15 a | 23.93 a | 10.09 a | |
Year 4 | |||||||
Current season | Control | 19.46 a | 13.67 a | 20.14 a | 3.82 a | 20.36 a | 7.19 a |
Treated | 19.90 a | 13.07 a | 19.75 a | 4.45 a | 21.09 a | 6.85 a | |
One year old | Control | 20.03 a | 10.76 a | 20.63 a | 3.78 a | 22.73 a | 8.71 a |
Treated | 20.01 a | 11.41 a | 21.75 a | 3.49 a | 22.93 a | 8.41 a |
Treatment | Water Content | Dry Weight (DW) | Oil Content | Pulp/Pit | Detachment Force | Colour | Pulp Firmness |
---|---|---|---|---|---|---|---|
(%) | (g) | (% FW) | (FW/FW) | (N) | (0–5) | (kg) | |
Year 1 | |||||||
Control | 55.0 a | 0.85 a | 21.57 a | 2.71 a | 2.63 a | 2.22 a | 0.32 a |
Treated | 55.7 a | 0.89 a | 20.72 a | 2.75 a | 2.77 a | 1.94 a | 0.34 a |
Year 2 | |||||||
Control | 46.6 a | 1.03 a | 22.85 a | 3.71 a | 3.16 a | 2.11 a | 0.36 a |
Treated | 47.2 a | 1.05 a | 22.59 a | 3.68 a | 3.00 a | 2.19 a | 0.34 a |
Year 3 | |||||||
Control | 45.4 a | 0.94 a | 22.92 a | 2.79 a | 2.56 a | 4.05 a | 0.32 a |
Treated | 46.7 a | 0.98 a | 21.83 a | 2.86 a | 2.28 a | 3.75 a | 0.34 a |
Year 4 | |||||||
Control | 60.8 a | 0.64 a | 19.91 a | 1.79 a | 3.45 a | 2.61 a | 0.52 a |
Treated | 61.2 a | 0.68 a | 18.81 a | 1.98 a | 3.39 a | 2.79 a | 0.48 a |
Treatment | Acidity | Peroxides | Polyphenols | Panel Test |
---|---|---|---|---|
(%) | (meq O2 kg −1) | (mg kg −1) | (1–9) | |
Year 1 | ||||
Control | 0.41 a | 5.00 a | 609.27 a | 8.0 a |
Treated | 0.43 a | 4.00 a | 599.79 a | 8.0 a |
Year 2 | ||||
Control | 0.46 a | 5.25 a | 639.27 a | 8.0 a |
Treated | 0.51 a | 6.5 a | 599.89 a | 7.8 a |
Year 3 | ||||
Control | 0.29 a | 5.3 a | 558.44 a | 7.9 a |
Treated | 0.31 a | 5.6 a | 588.04 a | 7.8 a |
Year 4 | ||||
Control | 0.25 a | 8.0 a | 468.45 a | 7.9 a |
Treated | 0.35 a | 9.5 a | 488.05 a | 7.9 a |
Treatment | Oleic | Linoleic | Linolenic | Eicosenoic | Margaric | Palmitic | Palmitoleic | Arachic | Stearic | Margaroleic |
---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |
Year 3 | ||||||||||
Control | 62.97 a | 9.41 a | 0.58 a | 0.19 a | 0.04 a | 13.89 a | 1.36 a | 0.26 a | 2.19 a | 0.01 a |
Treated | 70.18 a | 11.31 a | 0.59 a | 0.21 a | 0.04 a | 13.74 a | 1.18 a | 0.31 a | 2.32 a | 0.01 a |
Year 4 | ||||||||||
Control | 76.95 a | 6.78 a | 0.78 a | 0.27 a | 0.05 a | 11.29 a | 0.91 a | 0.38 a | 2.47 a | 0.11 a |
Treated | 76.08 a | 7.33 a | 0.72 a | 0.26 a | 0.06 a | 11.94 a | 1.14 a | 0.31 a | 2.05 a | 0.09 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regni, L.; Proietti, P. Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality. Agriculture 2019, 9, 252. https://doi.org/10.3390/agriculture9120252
Regni L, Proietti P. Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality. Agriculture. 2019; 9(12):252. https://doi.org/10.3390/agriculture9120252
Chicago/Turabian StyleRegni, Luca, and Primo Proietti. 2019. "Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality" Agriculture 9, no. 12: 252. https://doi.org/10.3390/agriculture9120252
APA StyleRegni, L., & Proietti, P. (2019). Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality. Agriculture, 9(12), 252. https://doi.org/10.3390/agriculture9120252