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Abstract: Sensitivity analysis (SA) is often applied to evaluate the behavior of ecological models in
which the integrated soil and crop processes often vary over time. In this study, the time dependence
of the parameter sensitivity of a process-based agro-ecosystem model was analyzed for various sites
and model outputs. We applied the Morris screening and extended FAST methods by calculating daily
sensitivity measures. By analyzing the daily elementary effects using the Morris method, we were able
to identify more sensitive parameters compared with the original approach. The temporal extension
of the extended FAST method revealed changes in parameter sensitivity during the simulation
time. In addition to the dynamic parameter sensitivity, we noticed different relationships between
parameter sensitivity and simulation time. The temporal SA performed in this study improves our
understanding of the investigated model’s behavior and demonstrates the importance of analyzing
the sensitivity of ecological models over the entire simulation time.

Keywords: time-dependent sensitivity analysis; parameter screening; Morris method; extended
FAST; crop model; temporal dynamics

1. Introduction

Complex crop growth models are widely applied to assess the productivity and sustainability
of agricultural systems, as well as the effects of climate change on these systems [1–4]. In addition
to simulating crop growth and development, these models also describe biophysical and biological
processes in the soil-crop-atmosphere system. Because of the complex nature of the represented
processes, crop models contain a large number of biophysical and physiological parameters. Moreover,
crop models can be made to describe the characteristics of different crops or cultivars by using distinct
parameters to adjust crop development, phenology, partitioning, etc. However, the determination of
these parameter values is often difficult [5] because their acquisition via field observations is costly and
time consuming. As an alternative approach, parameter values are often estimated using optimization
methods, simulated annealing algorithms, genetic algorithms, or Bayesian approaches [6–9]. However,
such methods can only be applied to estimate a small number of model parameters because their
computational costs are proportional to the number of analyzed parameters.

Sensitivity analysis (SA) is helpful for identifying the parameters and processes that exert the
most influence on the outputs of a model. SA is also applied to improve the understanding of a
model’s structure and behavior. Furthermore, SA provides information about how a model behaves
under different conditions [10], which can be used to guide model simplification and reduction
efforts [11]. SA is an important tool for analyzing ecological models, especially for richly-parameterized
crop growth models. Many studies have shown that only a small number of model parameters are
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responsible for most of a model’s output variability [12–14]. Thus, the identification of the most
influential model parameters may facilitate model calibration, for example, allowing non-influential
parameters to be excluded during parameter estimation.

In many studies in which SA is applied to analyze ecological models, the model responses are
assessed at only a single point in time in the simulations [12,13,15,16]. Such studies neglect the
fact that process-based ecological models involve time-dependent processes. Because of this time
dependence, the influence of the parameters may change during the simulation time. In crop models,
some parameters may be influential during earlier developmental stages but decline in influence as
plant development advances, or vice versa. Moreover, the climate or soil information that is used to
initialize the model simulation has an effect on parameter sensitivity [17–19]. Because SA at a single
simulation period provides an unrepresentative view of parameter sensitivity, temporal sensitivity
analysis is necessary to provide deeper insight into a model’s structure and behavior [18,20,21].

The objective of this study is to highlight the importance of temporal sensitivity analysis in
obtaining an improved understanding of model behavior by demonstrating how this approach
provides additional information on the sensitivity of model parameters for the whole simulation
compared to the widely-used snapshot SA.

We used the agro-ecosystem model MONICA (Model for Nitrogen and Carbon in
Agro-ecosystems, http://monica.agrosystem-models.com) [12,22] to analyze the time-dependent
parameter sensitivity for the example of winter wheat. Because the MONICA model includes
nearly 200 parameters, a two-step approach to the temporal SA was applied. First, we applied a
parameter screening method to identify not only model parameters that were generally relevant,
but also parameters that might be relevant only for a specific period during the model simulation.
We subsequently used a global variance-based method to analyze the main and total effects of the
selected parameters according to the results of the parameter screening. The calculation of the
sensitivity indices was extended to analyze the changes in sensitivity that occurred throughout the
simulation time. We then compared temporal SA results with the results of the original methods.

2. Materials and Methods

2.1. The Crop Growth Model

The MONICA model [12,22] is a process-based agro-ecosystem simulation model for simulating
crop growth, water, and nitrogen dynamics for practical applications. A generic crop model, MONICA
can be adapted to various crops by using specific model parameters that describe their physiology and
development. The simulation time step is one day.

Daily net dry matter production via photosynthesis and respiration is driven by global radiation
and temperature. Crop development is calculated by means of a thermal sum (degree-days)
and modified, when appropriate, for each stage to account for day length and vernalization [23].
Crop growth is limited by water, nitrogen (N), heat, and oxygen stress. The processes of water and N
uptake are calculated from the potential evaporation and crop N status, which depend on the simulated
root distribution, as well as the availability of water and N in different soil layers [23]. The impact of N
shortage on crop growth is calculated based on the concept of a critical N concentration in plants as a
function of crop biomass [24].

The implemented crop growth algorithms are influenced by changes in the CO2 concentration
in the air, which affects the crop’s photosynthesis rate, stomata resistance, and transpiration.
The algorithms for determining the moisture concentration in the soil follow the capacity approach,
enhanced with modifications introduced by [25]. This approach considers the phenomenon of capillary
rise from groundwater. Evapotranspiration is calculated using the reference evaporation provided by
the Penman–Monteith equation [26], adapted by means of crop-specific factors (Kc).

MONICA simulates the carbon cycle by calculating the population dynamics of microbes
in the soil. The organic matter algorithms include the processes of mineralization, nitrification,
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and denitrification. The calculation of organic matter turn-over in the soil is based on the routines
used in the DAISY model [27]. The soil C dynamics are described by three pairs (with slow or rapid
decomposition) of conceptual pools (soil organic matter, soil microbial biomass, and added organic
matter). The decomposition rate coefficients depend on both temperature and moisture and reflect the
environmental conditions of the simulated site.

2.2. Study Sites and Management Settings

We used climate, soil, and management information from an energy cropping experiment (EVA)
conducted in Germany. The objective of this experiment was to assess the suitability of various crop
rotation schemes for a range of site conditions [28–30]. Five experimental sites (Figure 1) were chosen
to study the effects of climate and soil on the parameter sensitivity of the MONICA model. At the
beginning of the project, an extensive investigation was conducted to describe the soil profiles, based on
soil samples drawn from depths of up to 2 m with 6–8 replications. The site-specific characteristic
are given in Table 1. The soil textures differed strongly among the sites, ranging from sandy soils in
Gülzow and Werlte to loamy soils in Dornburg. The average annual precipitation varied between
474 mm in Dornburg and 807 mm in Ascha. Of the sites, Ettlingen has the highest mean air temperature
(11.1 ◦C), whereas Ascha has the lowest (7.5 ◦C).

Figure 1. Locations of the five study sites in Germany. Detailed information and descriptions of the
site characteristics can be found in Table 1.

For the SA, we chose an artificial management setting derived from experiments performed as part
of the energy cropping project [29]. The cultivation of winter wheat starting in 2005 was repeated over
a four-year simulation period. The management steps and dates (e.g., ploughing, sowing, fertilization,
and harvesting) were made consistent at each study site to facilitate the comparison of time-dependent
sensitivity indices (Table 2). Because of the use of the same dates for sowing and harvesting, as well as
the same amounts of fertilizers instead of applying individual settings for each site, the simulation
results were more susceptible to stress situations, e.g., water, nitrogen, or heat stress.
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Table 1. Characteristics of the experimental sites. Soil type is specified according to the FAO
classification system. Corg refers to the first 30 cm of the top soil layer. Total annual precipitation and
mean temperature are averaged between 1971 and 2000.

Name Ascha Dornburg Ettlingen Gülzow Werlte

Geographical
location

48◦59’ N 50◦48’ N 48◦50’ N 53◦42’ N 52◦51’ N

12◦65’ E 11◦35’ E 8◦41’ E 12◦54’ E 7◦41’ E
Height above sea
level

430 m 250 m 170 m 10 m 32 m

Soil type Stagnic Cambisol Luvisol Regosol-Luvisol Planosol Stagnic Cambisol
Soil texture Loamy sand Silty clayey loam Loamy silt Sandy loam Loamy sand
Available water
capacity

117 mm 189–215 mm 199 mm 120 mm 105 mm

Corg 1.3% 1.0% 0.76% 0.7% 1.3%
pH value 6.4 7.2 7.3 6.4 5.2
Total annual
precipitation

807 mm 474 mm 742 mm 559 mm 797 mm

Mean temperature 7.5 ◦C 8.8 ◦C 11.1 ◦C 8.4 ◦C 9.57 ◦C

Table 2. Artificial crop management setting used for the sensitivity analysis, in which CAN was used
as a calcium-ammonium-nitrate-based nitrogen fertilizer. The management steps were repeated for
each cultivation year, starting in 2005. The dates of the management steps were made consistent for
each study site to facilitate the analysis of the temporal SA results.

Ploughing Sowing Fertilization Harvesting

3 October 4 October 31 March 70 kg N CAN 29 July
30 April 30 kg N CAN
22 May 60 kg N CAN

2.3. Parameter Selection and Model Outputs

One hundred eighty-six model parameters were selected for inclusion in the SA. The model
parameters were assumed to be independently and uniformly distributed because of a lack of
information about the prior probability distributions for each parameter. The range of parameters was
limited to 30% on either side of its reference value [12,18,19,31].

Six different model outputs were selected for this study, including the grain yield (grainYield),
the above-ground biomass (AGB), the N content in above-ground biomass (NAGB), the actual
evapotranspiration (ETa), the soil moisture (Moist), and the soil mineral nitrogen (Nmin), each at soil
depths of 0–90 cm. The parameter sensitivity of the model was analyzed for each output separately.

2.4. Parameter Screening

The parameter screening method proposed by [32] and improved by [33] and [34] was applied.
We used this approach to identify the most influential model parameters and to screen out
non-influential parameters. With k as the number of input parameters, a k-dimensional p-level
grid (Ω) was created by dividing the range of parameters into p discrete levels. The model was
evaluated for r trajectories within Ω. The starting point of a trajectory was selected randomly. For each
trajectory, every single parameter was changed separately, whereas the new point of this trajectory
was an element of Ω. The elementary effect (EE, Equation (1)) of the ith parameter xi with respect to
the variation ∆ is defined as:

EEi =
f (x1, ..., xi−1, xi + ∆, xi+1, ..., xk)− f (x)

∆
(1)

where x ∈ Ω and x + ∆ is still in Ω, ∆ as a multiple of 1/(p − 1). EE are scaled due to different
parameter ranges [34] and calculated for different trajectories within the input space. The number of
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model evaluations n required for the Morris method is defined by n = r (k + 1), where r is the number
of trajectories and k is the number of input parameters. For each input parameter, an EE distribution
is generated. Morris proposed two sensitivity indices, µ and σ, which represent the calculated mean
and standard deviation of this distribution. A high µ indicates an input with an overall influence on
the output, whereas a high σ indicates either an input with a non-linear effect on the output or an
input that interacts with other parameters. In this study, the absolute values of the EEs were used to
calculate µ∗, as proposed by [33], to avoid the cancellation of single EEs with opposite signs. Because
the order of importance of the model parameters was irrelevant, we simply used a threshold value τo

to identify a set Ψo of relevant model parameters:

Ψo = { xi | µ∗(xi) ≥ τo } (2)

where µ∗(xi) is the µ∗ of the xi. The choice of the threshold value depends on the objective
of the performed SA. A low threshold value of τo = 0.2 can be used to discard non-influential
parameters, whereas a high threshold value should be selected to identify parameters that are highly
sensitive. In this study, we selected a low threshold value to identify any parameters that somehow
affect the output and to make sure that no sensitive parameters are erroneously excluded from
further investigation.

The original parameter screening approach provides only a measure of the sensitivity associated
with each input parameter at a single point in time (e.g., the above-ground biomass at the harvest
date). When this screening method is used to identify the most influential model parameters, some
parameters might be classified as negligible even though they may significantly affect some output
of the model during a short period of the simulation. We therefore adopted the parameter screening
method by calculating the EEs and the respective µ∗t values at each simulation time step t to identify
all model parameters that affected the output throughout the entire simulation time. As a result,
we obtained a set Φt as follows:

Φt = { µ∗t (xi) } (3)

where µ∗t (xi) is the µ∗ of the xi at simulation time t and t ∈ {1, . . . , dmax}. For the analysis of the
four-year simulation period for winter wheat, the simulation times t are defined as t = {1, . . . , dmax},
where dmax is the maximum number of simulation days. Following our approach based on the original
screening method, we identified a set of relevant model parameters Ψt based on Φt and a threshold
value τt:

Ψt = { xi | µ∗t (xi) ≥ τt} (4)

A high threshold value τt = 0.8 has been selected to identify only parameters that are highly
influential on the output at some point during simulation time. Parameters with only minor influence
during the whole simulation time should be excluded from further investigation.

In this study, the parameter range for the selected parameters was divided into p = 20 levels
and analyzed for ∆ = 5/19. Among 500 randomly-generated Morris trajectories, we chose r = 40
trajectories with the highest spread to guarantee high coverage of the input space [12].

2.5. The Extended FAST Method

The extended FAST (Fourier amplitude sensitivity test) method [35], a variance-based SA method,
is an extension of the classical FAST method [36]. The main features of the classical FAST method
are that the input parameter space is sampled using a periodic transformation function [14] and the
output variance is separated into the variances associated with the different inputs. Examples of
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different sampling functions are given in [14]. The transformation function proposed by [35] was used
in this paper.

xi =

(
0.5 +

1
π

arcsin[sin(ωis + ϕi)]

)
· Ki (5)

where xi is the ith parameter, s is the sampling range with s ∈ [−π, π], ϕi is a random phase shift
parameter marking the starting point of the search curve where ϕi ∈ [0, 2π], ωi (i = 1, ..., k) is the
individual assigned integer frequency of parameter xi, and Ki is a scaling factor to scale the value
of the transformation function that lies between zero and one to the appropriate parameter range.
ωi (i = 1, ..., k) is the individual frequency of the ith parameter, and for each parameter, a different
integer frequency ω must be selected, in a way that no single frequency is a multiple of another.
Since the transformation function is periodic, a sampling range of 2π is sufficient for decomposition.
Based on the transformation equation and the different frequencies ω for the input parameters, a set
of N samples is generated for the model simulation. The model output can be decomposed into a
Fourier series, whereas the variance of the model output is assigned to the inputs. The first-order
sensitivity indices (Si) describe the main effects of the parameters by quantifying how the variance of
each input contributes to the total output variance. The total sensitivity index STi for an input includes
the variance of that input, but it also accounts for the variance created by its interactions with other
parameters. The difference between the total and first-order sensitivity indices represents the effect of
interactions with other parameters. A detailed description of the extended FAST method applied here
can be found in [12].

We chose different sets of independent frequencies based on an algorithm proposed by [14].
We set the maximum frequency for the parameter of interest to ωmax = 4096; hence, the maximum
frequency for the other parameters was 512. We considered a maximum harmonic of M = 4, which
resulted in a minimum sampling size for each individual output of N = 2M ·ωmax + 1 = 32,769 [35].

Following our approach in the extended parameter screening, we calculated the variance-based
sensitivity measures at each simulation time step t. In this study, we focus on the direct influence
of parameters on the output, which is expressed by the first-order sensitivity index. For each input
parameter, we calculated the daily main effects Si(t) for t ∈ {1, ..., dmax} to analyze the change in the
parameter sensitivity throughout the simulation time.

2.6. Top-Down Concordance Coefficients

We used top-down concordance coefficients (TDCCs, [37–39]) based on Savage scores [40] to
investigate the temporal dynamics of the parameter sensitivities. For each simulation day, we calculated
a parameter ranking based on the main effect of parameters. Then, we calculated TDCCs to compare
the parameter rankings for different simulation days. TDCCs are characterized by an emphasis on
the agreement among important model parameters, whereas disagreements between less important
ones are de-emphasized. A high TDCC close to 1.0 indicates that influential parameters are ranked
similar, whereas a low TDCC close to zero means that the ranking order of the influential parameters
differs considerably.

2.7. Implementation of the SA

The SA of the MONICA model was implemented following the approach of [12]. The SA
algorithms, i.e., the screening method and the extended FAST method, were coded in Python [41].
Python/SWIG [42] was used to create a new software interface for the MONICA model that would
allow direct access to the model’s data structures, variables, and functions [12]. The MONICA
parameter values were thus directly accessed and modified within the Python scripts. The SA of the
MONICA model was executed in parallel on a high-performance computer (HPC) using MPI for
Python [43,44]. Thirty-two cores were used to run the independent SA calculations, resulting in a
speed-up factor of 27.
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3. Results

3.1. Parameter Screening

For each study site, we screened the MONICA model for the most relevant parameters based
on the original and extended Morris approaches. We compared the numbers of relevant parameters
identified by both approaches for all study sites. We analyzed how the number of relevant parameters
changed for both approaches by varying the threshold values τo and τt between 0.2 and 0.9. As an
example, Figure 2 depicts the evolution of the number of parameters for AGB. Regardless of the
threshold value used, the number of relevant model parameters identified by the extended Morris
approach was significantly higher than that for the original approach.

Applying both approaches, our objective was to identify all model parameters that were highly
influential at some during simulation time. Choosing τo = 0.2 for the original approach, we could
identify all model parameters that affected the output at some point during simulation time. With a
τt = 0.8 for the extended approach, only parameters were selected that were highly influential at some
point during simulation time. When analyzing Ψo and Ψt, we found that the numbers of identified
parameters were comparable, and the majority of the identified model parameters were identified by
both approaches (Figure 3). However, some parameters were identified by the new approach (Ψt) that
were not identified by the original approach, whereas some parameters were also found to be relevant
using the original approach that were not included in Ψt.

Figure 2. Numbers of relevant parameters identified by the original (dark gray) and extended (light
gray) Morris methods as functions of the threshold values τo and τt, respectively, for the example
of AGB. A parameter was marked as relevant if at any study site µ∗ was higher than the respective
threshold value.

Figure 3. Numbers of relevant parameters identified by the original and extended Morris methods
using τo = 0.2 and τt = 0.8, respectively. Ψo ∩ Ψt denotes the model parameters that exist in both
sets. Ψo\Ψt denotes the model parameters that are included in Ψo, but not in Ψt. Ψt\Ψo denotes the
parameters that are included in Ψt, but not in Ψo.

Table 3 lists the model parameters identified with τt = 0.8 as calculated using the time-dependent
Morris approach for all analyzed model outputs. Including the results of different study sites,
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a parameter was marked as relevant if at any site µ∗ was higher then the threshold value τt. It shows
that each model output is affected by a different set of model parameters. By comparing the results
obtained using the extended approach for each study site, we found that each site was affected by
different model parameters, whereas the identified parameters differed both in their number and
composition. For example, the number (n) of relevant parameters for AGB differed. For Ascha and
Guelzow, n = 8 parameters were selected, for Dornburg n = 10, and for Ettlingen and Werlte, n = 12.
The parameter maxAssimRate was sensitive for all sites, but minAvailableN affected AGB only in
Ascha, Ettlingen, or Werlte. However, because the screening method was only used as a preliminary
means of identifying the most relevant model parameters for each output, we did not further analyze
the differences among the sites using these screening results; instead, as described in Section 3.2.4,
this comparison was performed using the more reliable sensitivity measures calculated using the
time-dependent extended FAST method.

3.2. Extended FAST Method

3.2.1. Original Approach

After identifying the most relevant model parameters based on the results of the extended
screening method, we calculated the first-order (Si) and total (STi ) sensitivity indices using the extended
FAST approach. The computation of both first-order and total sensitivity indices allows one to
distinguish between main and interaction effects. The resulting estimates for the STi averaged over all
sites are shown in Figure 4.

The parameter sensitivity differed slightly among the analyzed sites. For Dornburg, the main
variations in grainYield and AGB were caused by different sensitivity indices. For the heat stress
parameters, the STi and Si values were slightly lower compared with those at the other locations, where
both sensitivity indices were quite similar. For Dornburg, the sensitivity indices for daylengthReq3,
LT50Cultivar, stageTempSum2, stageTempSum3, and vernReq2 were higher compared with the other sites.
Similar results were found for NAGB and Nmin, for which parameters related to the crop phenology
were associated with considerably higher sensitivities in Dornburg compared with the other locations.
Analyzing the parameter sensitivity indices for ETa at the different locations revealed that although the
orders of the parameters based on the sensitivity measures were the same, Ettlingen had the highest
STi and Si values, followed by Gülzow and Werlte. The parameter sensitivities for Moist also differed
among the analyzed sites, but no generally applicable order of the important parameters based on STi

and Si was identified in this case.
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Table 3. Relevant model parameters as identified using the time-dependent Morris approach with τt = 0.8. A parameter was marked as relevant if its µ∗(t) was
higher than the threshold value τt in one of the investigated sites.

Parameter Description Unit Nominal grainYield AGB NAGB ETa Moist Nmin

AOMSlowUtilEff Added organic matter
slow utilization efficiency

0.4 x x x

assimPartitioningStage1lea f Portion of assimilates
assigned for leaf growth
in Stage 1

% 0.5 x x x x x

assimPartitioningStage2lea f Portion of assimilates
assigned for leaf growth
in Stage 2

% 0.2 x

assimPartitioningStage2shoot Portion of assimilates
assigned for shoot
growth in Stage 2

% 0.6 x

baseTemp2 Base temperature for
assimilation in Stage 2

◦C 1 x x x

baseTemp3 Base temperature for
assimilation in stage 3

◦C 1 x

baseTemp5 Base temperature for
assimilation in Stage 5

◦C 9 x x x

beginSensPhaseHeatStress Temperature sum
marking the start of the
sensitive phase for heat
stress

◦C 620 x x x

CNRatioSMB C-to-N ratio of the soil
microbial biomass

− 6.7 x x x

cropHeightP1 Factor for crop height − 6 x x
cropHeightP2 Reduction factor for crop

height
− 0.5 x x

daylengthReq2 Day length required for
maximum growth in
Stage 2

h 20 x x x x
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Table 3. Cont.

Parameter Description Unit Nominal grainYield AGB NAGB ETa Moist Nmin

daylengthReq3 Day length required for
maximum growth in
stage 3

h 20 x x

daylengthReq4 Day length required for
maximum growth in
Stage 4

h 20 x

denit3 Denitrification coefficient 0.9 x
endSensPhaseHeatStress Temperature sum

marking the end of the
sensitive phase for heat
stress

◦C 740 x x x

initRootingDepth Initial root depth of the
crop

m 0.1 x

LT50Cultivar Threshold temperature
below which 50% of
the crop dies from frost
injury

◦C -24 x x x x x x

luxuryNCoeff Coefficient describing
the maximum N
concentration relative
to the critical N
concentration in the
crop tissue

− 1.3 x x

maintRespP1 Q10 factor for
maintenance respiration

− 0.08 x x

maxAssimRate Maximum assimilation
rate per leaf area

kg CO2 ha−1 52 x x x x

maxCropHeight Maximum crop height m 0.83 x x
maxCropNDemand Maximum amount of soil

mineral N to be taken up
by the crop

kg m−2 6 x x

minAvailableN Mineral N concentration
in the soil that is not
available for crop N
uptake

kg m−3 0.0008 x x x
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Table 3. Cont.

Parameter Description Unit Nominal grainYield AGB NAGB ETa Moist Nmin

minTempAssim Minimum temperature
required for assimilation

◦C 4 x x x x x

NConcAGB Default N concentration
in above-ground biomass

kg kg−1 0.06 x x x

nConcPN Shape factor for the
critical N curve

− 1.6 x x

nitrRateCoeffStand Nitrification rate default
coefficient

d−1 0.2 x

organMaintRespshoot Maintenance respiration
factor for shoots

kg CO2 kg DM−1 0.15 x x x x x

partSMBSlowToSOMFast Portion of the soil
microbial biomass that
is added to the fast soil
organic matter pool

0.6 x

partSOMToSMBSlow Portion of the soil organic
matter that is added to
the slow soil microbial
biomass pool

0.015 x

referenceAlbedo FAO reference albedo for
green grass

− 0.23 x x x x

referenceLAI Leaf area index of the
reference crop

m2kg−1 1.44 x x

referenceMaxAssimRate Maximum assimilation
rate of the reference crop

kg CO24 ha−1 30 x

rootFormFactor Factor describing the root
mass distribution pattern
with respect to depth

− 3 x

rootPenRate Vertical root growth rate m ◦C−1 d−1 0.0011 x x
SMBSlowMaintRateStand Maintenance rate for

slowly-reproducing soil
microbial biomass

d−1 0.001 x

SOMSlowUtilEff Microbial utilization
efficiency for the
slowly-decomposing
soil organic matter pool

0.4 x
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Table 3. Cont.

Parameter Description Unit Nominal grainYield AGB NAGB ETa Moist Nmin

specificLeafArea1 Specific leaf area for
calculating the leaf area
index for stage 1

m2 kg−1 0.002 x x x x x

specificLeafArea2 Specific leaf area for
calculating the leaf area
index for stage 2

m2 kg−1 0.0018 x

stageAtMaxHeight Stage of maximal crop
height

− 3 x

stageKcFactor1 Kc factor for Stage 1 − 0.4 x x
stageKcFactor2 Kc factor for Stage 2 − 0.7 x x x x x
stageKcFactor3 Kc factor for Stage 3 − 1.1 x x
stageKcFactor4 Kc factor for stage 4 − 1.1 x x
stageKcFactor5 Kc factor for Stage 5 − 0.8 x x
stageTempSum1 Temperature sum for

Stage 1

◦C 148 x x x x x x

stageTempSum2 Temperature sum for
Stage 2

◦C 284 x x x x

stageTempSum3 Temperature sum for
Stage 3

◦C 380 x x x

stageTempSum4 Temperature sum for
Stage 4

◦C 180 x

stageTempSum5 Temperature sum for
Stage 5

◦C 420 x x x

stomataCondAlpha Stomata conductivity
parameter

− 40 x x

vernReq2 Temperature sum
required for optimum
vernalization in Stage 2

◦C 50 x x x x x x

Number of relevant parameters 13 16 21 29 27 29
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Figure 4. Total sensitivity indices for the most relevant model parameters calculated using the extended
FAST approach averaged over all sites. The main effect denotes the portion of the total variance that
is explained by the given parameter. The interactions represent the portion that is explained by all
parameter interactions involving that parameter. The sum of the main effect and the interactions
corresponds to the total sensitivity index (STi ) of the parameter.

3.2.2. Time-Dependent Main Effects

In addition to applying the original approach, we calculated the main effects of the model
parameters for each time step of the simulation. Figure 5 displays the results of the temporal sensitivity
analysis aggregated over all sites for a selection of the relevant model parameters. A complete overview
of the calculated daily main effects for each analyzed parameter differentiated among the different
sites is provided in the Appendix A in Figures A1–A6.

For biomass-related outputs such as grainYield, AGB, and NAGB, the time-dependent extended
FAST method identified more sensitive parameters compared with the original approach. The temporal
analysis of the main effects enabled the identification of not only parameters that were relevant
at harvest time, but also ones that were relevant during earlier stages of crop development.
assimPartitioningStage1lea f and specLeafArea1 strongly affected AGB at the beginning of crop growth,
but their influence decreased strongly over time until harvest. For NAGB, the influence of NConcAGB
was very high during the first stage of development, but decreased once the flowering stage began.

Similar results were found for the soil-related outputs ETa, Moist and Nmin, for which the
temporal sensitivity analysis enabled the detection of parameters that were influential at various
times throughout the simulation, in contrast to the original approach, which analyzed the parameter
sensitivities at only a single point in time. For ETa and Moist, the sensitivities to the crop’s transpiration
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parameters stageKcFactor1–stageKcFactor4 were very high in their respective developmental stages,
but decreased as harvest time approached.

(a) grainYield (b) AGB (c) AGB

(d) NAGB (e) NAGB (f) NAGB

(g) ETa (h) ETa (i) ETa

(j) Moist (k) Moist (l) Moist

(m) Nmin (n) Nmin (o) Nmin

Figure 5. Variations in parameter sensitivities with simulation time for various outputs averaged
over all study sites. The solid lines indicate the time-dependent parameter sensitivities based on the
main effects (Si). The dotted lines represent the sensitivity values calculated based on the main effect
indicated by the original extended FAST approach at harvest time (Figure 4). The gray shaded ranges
correspond to the cultivation period for winter wheat, from sowing in October up through harvest in
July (Table 2). Further information can be found in Figures A1–A6 in the Appendix A, which show in
detail the time-dependent main effects differentiated for each study site.
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3.2.3. Temporal Sensitivity Patterns

For each simulation day, we generated a parameter ranking based on the daily main effects.
We used the TDCCs to compare the parameter rankings for different simulation days averaged over all
sites (Figure 6). For all crop-specific outputs (grainYield, AGB, and NAGB), we compared the parameter
sensitivity rankings solely for the cultivation period, because these outputs were not calculated for
the fallow time. grainYield was calculated only for the last three developmental stages of the winter
wheat. For this short period, we found an annual pattern of similar parameter sensitivities in which
the sensitivities were more comparable at the beginning of this period and then decreased. For AGB,
regardless of the simulation year, the agreement among parameter rankings was higher in earlier
developmental stages at all sites. With the onset of the flowering phase, the differences in the parameter
rankings increased. This general pattern could be found in every study site. However, analyzing the
TDCC of AGB for each study site (Figure 7) showed that there are some periods where this pattern was
only weakly pronounced. In Ettlingen, for example, the parameter ranking of 2006 and 2007 during
spring differed highly. This indicates that due to differences in the site-specific climate conditions
of both years, the parameter sensitivity for AGB differed. 2007 was characterized by a long spring
drought with no precipitation compared to a relative wet spring in 2006. For NAGB, we found few
agreements between parameter rankings for the early developmental stages in a single simulation year.
For a short period at the end of crop growth, the parameter rankings for the different simulation years
were quite similar. Analyzing the TDCC of NAGB showed less concordance for 2007 compared to the
other years; again, presumably due to the exceptional weather conditions in 2007.

Fewer seasonal patterns were found for the soil-specific model output. We identified a small
annual pattern of similar parameter sensitivities for ETa and Moist, especially at the beginning of crop
growth, but also during further crop development. This means that sensitivity ranking did not differ
for these periods. Comparing these time periods with the temporal main effects in Figure 5j–l, we found
that ETa and Moist were mostly affected by the parameters stageKcFactor1–stageKcFactor4 regardless
of the analyzed study site. For both outputs, the TDCC showed high consistency in parameter ranking
in the early simulation days ending with the sowing of the crop. However, the TDCC also showed that
the parameter sensitivity of the first growing season beginning with sowing in October 2005 differed
strongly compared to the following growing seasons. Only a few agreements between the parameter
sensitivities for different simulation days were found for Nmin. Regardless of the simulation year,
a high TDCC was found for a short period directly before crop harvest. In this period, Nmin was mainly
affected by parameters luxuryNCoe f f and NConcPN. Additionally, the TDCC for Nmin showed that
the parameter rankings during crop growth for the last two cultivation periods were more similar than
those for the first cultivation period.
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(a) grainYield (b) AGB (c) NAGB

(d) ETa (e) Moist (f) Nmin

Figure 6. TDCCs of parameter rankings based on the daily main effects for different simulation
days, averaged over all study sties. A higher TDCC indicates greater similarity of the parameter
rankings. The dark areas indicate periods during which the parameter rankings were similar for
different simulation times.

(a) Ascha (b) Dornburg (c) Ettlingen (d) Gülzow (e) Werlte

Figure 7. TDCCs of parameter rankings for AGB based on the daily main effects for different simulation
days differentiated for each study site. A higher TDCC indicates greater similarity of the parameter
rankings. The dark areas indicate periods during which the parameter rankings were similar for
different simulation times.

3.2.4. Influence of the Different Sites

Regardless of the selected output, the parameter sensitivities differed among the analyzed
sites (see Figure 8 and Figures A1–A6 in the Appendix A). Only minor differences in parameter
sensitivity were found for grainYield. Site-specific differences for AGB were caused mainly by the
parameters assimPartitioningStage1lea f , maxAssimRate, specLeafArea1, and minTempAssim. For NAGB,
the variations were caused by NConcAGB and minAvailableN, especially during the first cultivation
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period. Regardless of the cultivation period, the parameter sensitivities of the remaining relevant
parameters consistently differed among the different sites. Substantial variations in the sensitivities to
several parameters were found for ETa, Moist, and Nmin, originating from site-specific differences in
the most influential parameters.

Figure 8. Variations in the main effects caused by site-specific differences in soil or weather conditions.
The violin plots aggregate the maximum standard deviations of the daily Si values for all sites and
each analyzed parameter.

4. Discussion

The previously-performed SA of the MONICA model [12] increased the understanding of the
model and served as input for a later model calibration, but it yielded only a static snapshot of the
parameter sensitivity at harvest time. The time-dependent SA presented in this study provides a
deeper understanding of the model behavior and more detailed information about the influence of
the model parameters throughout the simulation time. Many studies have used snapshot SAs to
obtain general information on model behavior [12,15,16,33,39,45–48]; however, only a few studies
have addressed the fact that parameter sensitivity is a function of time, and changes throughout the
simulation time [18,19,33,49–51]. [20,21] present an alternative approach to account for the dynamics
for parameter sensitivity complementing the approach applied in this study. This study, however,
is the first to analyze the effect of the simulation time on the parameter sensitivity based on elementary
effects calculated using the Morris screening design. The general approach used in this study can be
easily applied for time-dependent SAs of other ecological models.

The results of the original and adopted Morris approaches strongly depend on the chosen
threshold values τo and τt that are used to identify the relevant model parameters. When the threshold
value is lower, a greater number of relevant model parameters are identified. We compared the
identified parameters in Ψo with the parameters in Ψt. We used a low τo to exclude parameters
with negligible influence from Ψo, respectively identify influential parameters. For Ψt, we chose a
high threshold value τt = 0.8 to identify model parameters that had a significant influence at any
point during the simulation time. With all outputs considered, the numbers of parameters in both
sets were comparable, but not identical. The majority of parameters were identified in both sets,
but some parameters were found to be relevant using one approach, but negligible according to the
other approach. Similarly to [12,18,19,45,52], we used the Morris approach to screen out less influential
parameters. The selection of a high threshold value allowed us to identify model parameters that had
a strong effect at some point during the simulation time. Because the results of the original approach
represent the aggregated parameter sensitivity based on a single point in time, we found the set of
parameters identified using the temporal extension for the objective of this study to be more reliable
and used the parameters in Ψt for further temporal sensitivity analysis.
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The original extended FAST method provides a measure of the sensitivity at only a single point
throughout the simulation time, in our case at the harvesting of the winter wheat. The daily analysis
of the main effects performed in this study showed that more parameters than those identified by the
original approach affected the selected model outputs. With the new approach, we were also able
to analyze the relationships between parameter sensitivity and crop growth using daily sensitivity
values. Several parameters were highly influential during the early stages of crop development, but the
corresponding parameter sensitivities declined during crop growth. For example, stageTempSum1 had
a minor effect on AGB (Si = 0.0) according to the original approach. However, upon analyzing the
parameter sensitivity using the daily main effect values, we found that this parameter had a major
impact on AGB during the initial stages of crop development (Si > 0.8) and then steadily decreased in
influence until harvest time. Similar observations apply to other parameters (specLeafArea1 for AGB,
NConcAGB for NAGB, stageKcFactor1 for Moist), whose associated sensitivities decreased during crop
development or with increasing simulation time. Additionally, we identified parameters that had no
effect at the beginning of crop growth, but whose influence increased during crop development, e.g.,
endSensPhaseHeatStress for grainYield and NConcPN for NAGB or Nmin. Other parameters showed a
peak-shaped sensitivity evolution; the model’s sensitivity to these parameters was low during early
stages of crop growth, then increased to a maximum, and finally steadily decreased once again as the
simulation progressed further (stageKcFactor1–stageKcFactor4 for ETa or Moist). referenceAlbedo was the
only parameter that had a major effect during fallow time, but only a minor influence on ETa and
Moist during crop growth.

Often, SA at a single simulation time is used to identify relevant model parameters that are later
used for model calibration [12,53]. The time-dependent SA results presented here demonstrate that
such snapshot SAs may lead to incorrect interpretations of the parameters’ influences. Calibration
studies relying on snapshot SAs may be insufficient and lack the necessary information on how the
parameter sensitivity changes over the simulation time. Additionally, the analyses of parameter
sensitivities for different sites indicate the strong influence of soil and climate conditions on parameter
sensitivity [18,19]. A temporal sensitivity analysis can improve the calibration process for a model,
depending on the scope of the calibration and the data available to be used for calibration. Temporal
sensitivity analysis enables the identification of influential parameters for different simulation periods.
A crop model calibration can benefit from such results if measured data regarding the model outputs
are available for different times throughout the model simulation. Then, a set of parameters that
are specific to a certain simulation time for which measured data exist can be selectively adopted to
improve the results of the model calibration. If experimental data are available for only one specific
time, then a snapshot sensitivity analysis should be sufficient for model calibration.

The TDCCs based on the parameter rankings for different simulation days revealed some temporal
patterns of similarity in parameter sensitivities. For each output, we found an annual pattern of similar
parameter sensitivities for some phase of crop development, although the climate conditions differed
for each cultivation year. For the crop-specific model outputs, more pronounced seasonal sensitivity
patterns could be identified, which means that the calculated parameter rankings were similar for
longer simulation periods, as well as for different simulation years. Such a pattern could be expected
as some relevant model parameters are only active during a specific developmental stage. Parameter
rankings for soil-related model outputs such as Moist or Nmin were less homogeneous and were more
affected by site-specific conditions of different simulation years. Similar parameter rankings were only
identified for small simulation periods during crop development caused by the high influence of only
a few parameters for this period. However, the temporal TDCCs also demonstrated the site-specific
effect of soil and climate conditions on the parameter sensitivity, as the parameter rankings from one
year differed highly compared to the other simulation years.

Differences in the soil and climate conditions also affected the parameter sensitivities [13,15,18],
as indicated by the fact that the values and shapes of the sensitivity results differed for the different
analyzed study sites. ETa and Moist showed the highest differences in parameter sensitivity. Because
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both of these outputs strongly rely on the water storage capacity of the soil and the available water
(precipitation and capillary rise from groundwater), both are highly sensitive to different site and
climate conditions. NAGB and Nmin were affected by a similar set of parameters (e.g., minAvailableN,
luxuryNCoeff, NConcPN), although the form of the relationship differed slightly. The parameter
sensitivities for the different analyzed sites differed greatly, especially with regard to the most
influential parameters. Both outputs depend on the available nitrogen (N) stored in the soil, which
is influenced by the soil type at the site. Additionally, mineralization processes of the soil microbial
biomass (SMB) that transform added organic matter (e.g., crop residues or organic fertilizer) into
plant-available nitrogen are highly dependent on temperature. Both of these factors contributed to the
site-specific differences we detected in the parameters to which NAGB and Nmin were sensitive. Because
the simulation time over which grainYield was calculated was rather short, only minor site-specific
differences were identified in this output.

The temporal sensitivity analysis in this study was based on the calculation of first-order sensitivity
indices. We used main effects (1) for analyzing the course of sensitivity during simulation time and
(2) for generating the parameters’ ranking on which the calculation of TDCCs was based. As Figure 4
shows, the interaction effects of parameters are quite high. In this study, we deliberately focused
on the main effects to quantify the direct effect of model parameters on the output. Using the total
effect would not deliver any information on the direct contribution of the model parameters or on the
contribution of the interaction with other parameters. For a sound interpretation of total effects, it is
still necessary to know the main effect of model parameters.

In this study, we deliberately focused on the main effects to quantify the direct effect of model
parameters towards the output. By using the total effect, there would be a high uncertainty for how
much this influence was caused directly by the model parameters or how much it was caused by the
interaction with other parameters. For a correct interpretation of the total effects, it is still necessary to
know the main effect of the model parameters.

In this study, SA was performed at five different sites to demonstrate the influence of different
soil and climate conditions on parameter sensitivity. We focused on the general effects of the different
sites on the time-dependent SA results. Consequently, this study lacks a detailed analysis of how
the parameter sensitivity is affected by single driving variables (e.g., soil texture, air temperature,
precipitation). Future SA studies performed to further improve the understanding of the model
behavior should consider both the temporal dynamics of parameter sensitivity and the effects of
different sites and climate conditions. Such a study using a more comprehensive SA scheme should
therefore concentrate on the specific effects of individual driving variables on the time-dependent
parameter sensitivity.

5. Conclusions

The temporal dynamics of parameter sensitivity and the use of site-specific data will typically
hamper a comprehensive sensitivity analysis of an (agro-)ecological model. Our comparison
of the original and time-dependent screening approaches revealed that the original approach,
which aggregates the parameter sensitivity over a certain simulation time, will fail to identify
parameters to which the model is highly sensitive for only a limited period during the simulation.
The time-dependent screening approach permits more reliable identification of the relevant model
parameters, which helps to yield a better understanding of the behavior of process-based models and
to better assist in their improvement. It is evident that calibration studies in which SA is applied to
identify relevant model parameters must include an analysis of the temporal dynamics of parameter
sensitivity; otherwise, the results of a snapshot SA may lead to incorrect interpretations of the
parameters’ influences.

Most process-based agro-ecosystem models include processes that are only active during a
certain period of the simulation, and consequently, their parameters are similarly only relevant
during a certain period. A model calibration can benefit from a temporal SA because it enables a
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detailed identification of the influential model parameters that acknowledges their limited temporal
activity. Unlike a snapshot SA, a temporal SA also permits the analysis of the relationships between
model parameters and outputs, which supports a more thorough understanding and evaluation of
model behavior. This is particularly important for understanding the influence of site conditions
on the simulation and considering parameter estimation with respect to a particular environment.
A temporal SA may provide hints regarding how to prioritize the experimental observations of
crucially sensitive parameters to improve the general logic of the experiment-algorithm-simulation
model-prediction chain.

Although it still seems challenging to quantify the influence of site conditions to obtain a more
objective interpretation of parameter sensitivity, this study already serves as a step toward reducing
the uncertainty of model simulations conducted with limited available data, as demonstrated by [54]
for the improvement of a model algorithm that had previously been identified in a variable-focused
SA as being a source of disagreement between models [55].
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Above-ground biomass
Corg Organic carbon
CAN Calcium-ammonium-nitrate-based fertilizer
EE Elementary effect
ET0 Potential evapotranspiration
ETa Actual evapotranspiration
FAST Fourier amplitude sensitivity test
HPC High-performance computer
Moist Soil moisture
MONICA Model for Nitrogen and Carbon dynamics in Agro-ecosystems
NAGB N content in above-ground biomass
Nmin Soil mineral nitrogen
SA Sensitivity analysis
Si First-order sensitivity index
STi Total sensitivity index
TDCC Top-down concordance coefficients
TDSA Time-dependent sensitivity analysis

Software availability

Name of Software MONICA—Model for Nitrogen and Carbon dynamics in
Agro-ecosystems

Version 1.2
Developer Claas Nendel
Contact Claas Nendel, Leibniz Centre for Agricultural Landscape Research

(ZALF), Research Platform ’Models’, Eberswalder Straße 84,
15374 Müncheberg, Germany
Email: nendel@zalf.de Tel.: +49-33432-82-355 Fax: +49-33432-82-181
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Year first available 2011
Required hardware and
software

MONICA will run on Windows or Linux machines. When building the
model directly from the source code MONICA requires Boost.Python
Version 1.0. For Windows systems the compilation process requires
Visual Studio 2015 (Community Edition).

Availability and Cost Information about the MONICA model can be found at http://monica.
agrosystem-models.com. For Windows an installation wizard can be
downloaded at http://monica.agrosystem-models.com. The source
code of the model is available at Github (https://github.com/zalf-rpm/
monica).

Cost and License Free. MONICA is distributed under the Mozilla Public License, v.2.0
(http://mozilla.org/MPL/2.0/)

Program Language MONICA was developed using the programming language C/C++.
Model parameters are stored in a separate SQLite database that comes
with the model.

Program size Source code: approx. 20 MB
Windows installer: 2.6 MB

Appendix A. Daily Parameter Sensitivities Based on SI Differentiated among the Different Sites

In this section, the main effects calculated for each site based on the extended FAST method
are presented.

Figure A1. Daily Si values calculated using the extended FAST method for grainYield differentiated
among the different sites.

http://monica.agrosystem-models.com
http://monica.agrosystem-models.com
https://github.com/zalf-rpm/monica
https://github.com/zalf-rpm/monica
http://mozilla.org/MPL/2.0/
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Figure A2. Daily Si values calculated using the extended FAST method for AGB differentiated among
the different sites.
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Figure A3. Daily Si values calculated using the extended FAST method for NAGB differentiated among
the different sites.
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Figure A4. Daily Si values calculated using the extended FAST method for ETa differentiated among
the different sites.
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Figure A5. Daily Si values calculated using the extended FAST method for Moist differentiated among
the different sites.
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Figure A6. Daily Si values calculated using the extended FAST method for Nmin differentiated among
the different sites.
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