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Abstract: Coffee production is the main economic activity for smallholder farmers in Rwanda; it is
also a major export crop. However, Rwandan coffee production has been facing structural changes
with a significant decline in production. Considering the importance of the coffee sector to rural
livelihoods and its potential role in export earnings, there is a need to ensure that small-scale coffee
farmers efficiently use scarce resources in their production activities. Thus, this study estimates
the technical efficiency and possible sources of inefficiency in small-scale coffee farming in the
Northern Province of Rwanda. Three hundred and twenty coffee farmers are sampled to carry out a
simultaneous estimation of the stochastic production frontier and technical inefficiency model. The
results indicate that the mean technical efficiency among small-scale coffee farmers is 82 percent,
implying a potential to increase coffee production by 18 percent with the current level of resources
and technology. Coffee production displays increasing returns to scale and factors such as education,
access to credit, extension services, improved variety of coffee trees, cropping system, and land
consolidation have a positive and significant effect on technical efficiency. Thus, development policies
in the coffee sector might focus more on enhancing the accessibility of farmers to extension services
and credit facilities. In addition, adoption of high-yielding and disease-resistant coffee varieties,
better cropping systems, and management of coffee plantations in land consolidation might reduce
technical inefficiency among coffee farmers in the Northern Province of Rwanda.

Keywords: coffee production; technical efficiency; stochastic frontier analysis; small-scale farmers
in Rwanda

1. Introduction

The Rwandan economy relies heavily on agriculture, a sector that has persistently played a
leading part in employment provision, poverty alleviation, food availability, and export earnings.
Recent world development indicators [1] show that agriculture contributes to 31.5 percent of the gross
domestic product (GDP), and offers employment to nearly 75 percent of the Rwandan population.
This sector also provides 91 percent of the food consumed in the country, and generates 70 percent
of Rwanda’s total export revenues, with coffee, tea, and pyrethrum playing an important role [2,3].
Coffee production in Rwanda is the key source of household income and export earnings [2]. It holds a
unique position in its economy by making approximately 27 percent of total export revenue [3]. Owing
to its importance to rural livelihoods, coffee, of all cash crops, demands more concern in Rwanda.

Coffee production in Rwanda was introduced in 1904 by German missionaries. Since the early
1950s, it has gradually undergone substantial development resulting from proper farm management [4].
Owing to Rwandan soil characteristics, which are suitable for coffee production, coffee plantations are
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found in all four provinces of the country. Arabica and Robusta are the major coffee species cultivated
in Rwanda. Arabica coffee occupies approximately 95% of the country’s total coffee plantations and
is mostly planted at higher altitudes in the Southern, Northern, and Western Provinces of Rwanda.
Robusta coffee comprises the remaining 5% and is planted at lower altitudes below 1400 m in the
Eastern Province [4]. According to Mutandwa et al. [5], the total area under plantations was last
estimated at 33,000 hectares, with 500,000 producers.

Despite its significant contribution in the Rwandan economy, the coffee production sector is
facing a number of challenges, mainly low productivity. According to the authors of [6], coffee yields
in most of the East African counties lag behind Latin-America and Asia. In Rwanda, the average
annual coffee yields varied between 1.5 and 2 tons per ha from 2012 to 2016 [7]. In contrast, in the
same period, the average annual coffee yields were around 8 tons per ha in Colombia, Venezuela, and
Indonesia [7]. As shown in Figure 1, coffee production was devastated during the genocide and civil
war, and then gradually revived, but was stopped in 2004/2005. The current level of productivity was
never recovered fully after the tragic events in 1994 [8]. The low level of coffee yield is the result of
various environmental, institutional, and farm management challenges. Pests and diseases such as
coffee berry disease and coffee leaf rust are the primary limitations for crop productivity [9]. Moreover,
the inability of farmers to adopt good agronomic practices such as weeding, mulching, pruning, use of
improved varieties, fertilizers, and soil erosion control can also threaten coffee yields [6,10,11].

Even though coffee productivity decreased and the total amount of coffee production in Rwanda
decreased accordingly, the average price of coffee received by farmers was virtually stable (varying
from U.S. cents 74.20 to U.S. cents 77 per lb of green coffee beans from 1990 to 2017, respectively [8]) as
a result of green coffee beans supply by other competitive production countries. Thus, currently, lower
productivity than that in the early 1990s directly caused the low income in Rwandan coffee farms.

To address this challenge of low coffee productivity in Rwanda, government programs and
development partners emphasized dissemination and adoption of agricultural technologies [12].
However, the increase in agricultural productivity is not only determined by technological adoption,
but also improvement in farmers’ technical efficiency (TE) [13–15]. According to Coelli et al. [16],
TE denotes the producers’ capability to achieve the maximum output using the existing factors of
production. Hence, in a resource-poor country like Rwanda, where the rate of technological adoption
is relatively low, TE improvements in agriculture seem to be more advantageous.
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Figure 1. Green coffee production in Rwanda for selected years. Source: International Coffee
Organization (ICO).

However, there has been no empirical work conducted to analyze the TE in the production of
coffee in Rwanda. Though empirical research in this area is lacking, information on producers’ TE
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helps quantify and compare farmer performance. This information could also contribute to efficient
decision-making at the farmer level and assist policymakers in the formulation of pertinent strategies
geared to improve productivity [14]. Consequently, the present study attempts to analyze TE among
coffee producers using the Northern Province of Rwanda as its case.

2. Materials and Methods

Extant studies on the estimation of TE have mainly used two approaches, namely, the parametric
approach, such as the stochastic frontier analysis (SFA), and the non-parametric approach, such as data
envelopment analysis (DEA). Both approaches provide results that are slightly different depending
on the type of data [13,16–18]. However, Coelli et al. [16] asserted that SFA is likely to be the most
appropriate model for TE measurement in studies related to the agriculture sector, especially in
developing countries. They base their evidence on the fact that it can handle the effect of statistical
noise. Moreover, it also allows hypothesis testing and a single-stage approach for the simultaneous
estimation of the production frontier and inefficiency model. Consequently, this study also uses the
SFA model to estimate TE and evaluate the factors that affect it in coffee farming in the Northern
Province of Rwanda.

The stochastic frontier production function was developed by Aigner et al. [19] and Meeusen and
van Den Broeck [20]. The model was further extended by the authors of [13,21]; it is defined as

Yi = f (Xi; β)·exp{vi − ui}, i = 1, 2, . . . . . . , N, (1)

Here, Yi is the scalar of output for the ith farmer, and f (Xi; β) is a suitable production function,
such as Cobb–Douglas, transcendental logarithmic, and so on. Xi is a vector of input variables
used by producer i, and β is a vector of unknown parameters to be estimated. vi is a symmetrically
distributed random error component that represents the stochastic effects beyond the producer’s
control (for example, weather, natural disaster, and others) and measurement errors. This random error
component is assumed to be identically and independently distributed, with mean as 0 and constant
variance as

[
vi ∼ N

(
0, σ2

v

)]
. Lastly, ui is the non-negative stochastic term (ui ≥ 0) that represents

technical inefficiency of the ith farmer; it ranges between 0 and 1. The inefficiency term ui follows the
half-normal distribution; it is distributed as ui ∼ N+

(
0, σ2

u

)
[16].

TE of an individual farm producer (Equation (2)) is defined as the ratio of the observed output
(Y) to the corresponding frontier output (Y∗) [16]. The model is expressed as follows [21–23]:

TEi =
Yi
Y∗i

=
f (xi; β)·exp(vi − ui)

f (xi; β)·exp(vi)
= exp(−ui), (2)

Technical ine f f iciencyi = 1− TEi, (3)

As the value of the observed output is less than that of the frontier output, TE takes values
between 0 and 1. A TE score closer to 1 implies that a coffee producer is producing nearer to the
maximum output feasible level. Jondrow et al. [24] suggested that the level of TE can be predicted
using the conditional expectation of ui, given the disturbance term εi, which is defined in Equation (4)
as follows [25,26]:

E(ui|εi) =
σuσv

σ

[
f (εiλ/σ)

1− F(εiλ/σ)
−
εiλ
σ

]
, (4)

where σ2 = σ2
u +σ

2
v, λ = σu/σv and f (·) and F(·) denote the normal density function and the cumulative

distribution function, respectively. The maximum likelihood estimation (MLE) of the production
function specified in Equation (1) yields estimators for the variance parameters σ2

u and σ2
v.

Battese and Coelli [13] extended this technique by suggesting a model in which certain independent
variables explain the variation of technical inefficiency (ui). These authors propose that the normal
distribution with mean as µ and variance as σ2

u is truncated (at 0) to obtain the technical inefficiency (ui).
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ui = Ziδ+ωi, (5)

where Zi represents a vector of independent variables, and δ denotes a vector of unknown coefficients
to be estimated. ωi is a random error term defined by a normal distribution with a mean of zero and
unknown variance, σ2 [21,26,27].

The application of SFA requires a specification of the appropriate functional form, where
Cobb–Douglas (CD) and transcendental logarithmic (TL) functional forms are commonly known in the
literature. For this study, the likelihood ratio test indicates that CD production function is the most
appropriate functional form that effectively fits our data than the TL. The model is then specified as
follows [21,25,27]:

lnYi = β0 +
∑5

j=1
β jlnXi j + (vi − ui), (6)

where Yi denotes the coffee output of the ith farmer, and j is the jth factor of production. The five
inputs (i.e., Xi) considered in our model are land, labor, organic fertilizer, chemical fertilizer, and
pesticides. As specified earlier, SFA also permits the estimation of the model for technical inefficiency
effects. On the basis of the current state of Rwandan coffee farming and the relevant literature, eight
variables (i.e., Zi) are considered in our technical inefficiency model—education, household size,
extension services, access to credit, land consolidation, soil erosion control, coffee tree variety, and
cropping system.

3. Study Area and Data

This study used cross-sectional data collected through a household survey conducted in Gakenke
district of the Northern Province in Rwanda. Figure 2 show the sites of the study. Our sample comprises
320 coffee farmers from areas covered by the survey during the 2016–2017 season of agriculture. Prior
to the formal survey, research assistants were trained, and the questionnaire was pre-tested. After the
pre-test, a few questions were amended in order to obtain accurate results. A multistage sampling
method was applied to obtain a homogeneous sample of coffee farmers. In the first stage, purposive
sampling was used to select the Northern Province for an in-depth study. This province was considered
based on the concentration of coffee farms and its natural soil endowment. In the second stage,
the district of Gakenke was purposively selected within other districts of the Northern Province
owing to its comparatively large number of coffee trees and growers. The third stage involved a
purposive selection of four administrative sectors that have a large number of coffee trees and producers.
The sectors are Coko, Muhondo, Ruli, and Minazi. In the fourth stage, a simple random sampling
technique was used to select farmers to be interviewed.

Generally, the coffee crop is grown in a tropical or subtropical climate. In the case of Rwanda, coffee
is mainly grown by smallholder farmers, with farming systems characterized by land fragmentation
and many small plots scattered on hillsides [4]. Coffee plants in Rwanda are often intercropped with
bananas and eucalyptus trees that provide shade to coffee [4]. To improve soil fertility and crop yields,
both organic and chemical fertilizers are used in Rwandan coffee farming. Organic fertilizers are
usually prepared by mixing grasses, crop residues, and/or animal manure in compost. For chemical
fertilizers, chemical fertilizer (NPK) (20-10-10) is applied at 400 g per tree per year, or NPK (17-17-17)
at 120 g per tree per year, plus urea (46% of N) at 75 g per tree per year [4]. Coffee is susceptible to
pests and disease; specifically in study area, coffee berry disease transmitted by a tiny insect called
Colletotricum Coffeanum was reported by farmers to be the major disease damaging coffee trees. The
commonly used pesticide to control the disease is copper oxychloride; for its use, 140 g of the product
is diluted in 20 L of water, mixed, and applied to approximately 25 trees [28]. The quantity of fertilizers
and pesticides appears to be enormous compared with other input factors, as conventional coffee
farming is known to produce the most heavily chemically treated foods in the world, which may be
harmful to environments and human health, which demands organic coffee.
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Table 1 presents the summary statistics of the variables used in the analysis of this study.
On average, a household produced approximately 2669 kg of coffee per year. Farmers in the study
area devoted 0.3 hectares, on average, to their coffee plantations, with 315 man-days, on average,
of total labor employed in various farming activities. Organic fertilizer is also considered an input; it is
highly recommended by environmental activists for sustainable improvement of soil fertility. Thus,
the average amount of organic fertilizer (manure and compost) utilized by each coffee producer was
8425 kg, along with 118 kg of chemical fertilizer and 184 L of pesticide per household on average.

The survey also collected information on the determinants of technical inefficiency. Table 1 shows
that the average education level of selected households was found to be quite low, that is, limited to
less than five years of formal education. The findings further revealed the average household size to
be approximately six members. Besides, in terms of technical assistance, the frequency of contact of an
extension officer with the farmer was 28 times per year on average in the 2017 agricultural season. The
rate of access to credit in the sample study is still low, such that only 42 percent of farmers received
credit to finance their agricultural activities from 2015 to 2017.

In 2007, the government of Rwanda launched the practice of land consolidation. However, in
the Northern Province, only 39 percent of the sampled coffee farmers had embraced this practice.
Furthermore, 92.5 percent of coffee farmers in the study area had undertaken structural measures
for soil erosion control, such as creation of bench terraces and vegetative measures. Regarding the
cropping system, 63 percent of coffee farmers in the Northern Province had adopted the mono-cropping
system, while about 37 percent intercrop coffee plants with bananas and other fruit trees. Finally, in
our sample, 82 percent of the farmers grew the BM139 variety of Arabica coffee, while the remaining
18 percent grew the Jackson 2/1257 variety of Arabica coffee.
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Table 1. Summary statistics of the variables used in the model.

Variable Description and Unit Mean Standard Deviation

Output Output of coffee in kilograms 2668.69 2865.37

Land Land area in hectares 0.28 0.22

Labor Labor employed in man-days 315.09 311.82

Organic fertilizer Quantity of organic fertilizer in
kilograms 8425.59 8478.29

Chemical fertilizer Quantity of chemical fertilizer in
kilograms 117.91 120.95

Pesticides Quantity of pesticides in liters 184.06 172.97

Education Farmer’s number of years of
education 4.68 2.74

Household size The number of household
members 5.92 1.98

Extension services The frequency of extension visits
per season 28.55 15.42

Access to credit Dummy; 1 for access to credit, 0
otherwise 0.42 0.49

Land consolidation Dummy; 1 if coffee plantation is in
land consolidation, 0 otherwise 0.39 0.48

Erosion control Dummy; 1 if soil erosion is
prevented, 0 otherwise 0.92 0.26

Improved variety Dummy; 1 for the use of improved
variety, 0 otherwise 0.81 0.38

Cropping system Dummy; 1 for mono-cropping
system, 0 otherwise 0.63 0.48

4. Results and Discussion

The primary objective of this study is to estimate TE and analyze the factors that influence it
among small-scale coffee farmers in the Northern Province of Rwanda. Before moving to the discussion
of our econometric results, we carried out tests for our hypotheses (see Table 2).

Table 2. Likelihood ratio tests of hypotheses.

Null Hypothesis Likelihood Ratio (λ) p-Value Critical Value
(χ2, 0.01) Decision

H0 : u = 0 746.18 0.000 6.63 Reject H0
H0 : δ1 = δ2 = . . . = δ8 = 0 197.07 0.000 20.09 Reject H0

First, we tested for the existence of inefficiency where the null hypothesis asserts that the technical
inefficiency effects are 0. However, this null hypothesis was rejected at the 1 percent level of significance,
which corroborates the presence of technical inefficiency in coffee production. Being aware of the
existence of technical inefficiency, the second test attempted to examine whether at least one variable
that could explain the variation in technical inefficiency exists. For this purpose, we set the second
null hypothesis, asserting that, among all variables included in the technical inefficiency model, none
can significantly explain the variation in technical inefficiency. This null hypothesis was also rejected,
which confirms that at least one variable has a significant effect on the variation of technical inefficiency
among coffee farmers.

The maximum-likelihood estimates of the parameters for both the production frontier and
technical inefficiency models, specified by Equations (5) and (6), are presented in Table 3. The model
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diagnostics show that the estimates of σu and σv are significantly different from zero at a 1 percent level
of significance. Improved Akaike information criterion (AIC) and Bayesian information criterion (BIC)
values show that the SFA model has a better goodness of fit than the simple Ordinary Least Squares
(OLS) regression. The estimated signs of input parameters are all positive as expected; they are all
statistically significant at the 1 percent level. As our stochastic frontier production model uses the
Cobb–Douglas functional form, the estimated coefficient values denote the production elasticities. The
partial production elasticity measures the responsiveness of coffee output to the variation in a particular
input, ceteris paribus [16]. The sum of all partial production elasticities is called scale elasticity, and it
indicates the returns to scale.

Table 3. Estimation results of coffee production function and determinants of technical efficiency.

Variable SFA Model OLS Model

Parameters Coefficient Std. Error Coefficient Std. Error

Production Function

Land β1 0.162 *** 0.041 0.208 *** 0.039
Labor β2 0.182 *** 0.030 0.366 *** 0.034

Organic fertilizer β3 0.275 *** 0.041 0.628 *** 0.058
Chemical fertilizer β4 0.314 *** 0.037 0.161 *** 0.037

Pesticides β5 0.120 *** 0.037 0.090 * 0.054
Constant β0 2.522 *** 0.309 −1.417 *** 0.283

Technical Inefficiency Effects Function

Education δ1 −0.125 * 0.076
Household size δ2 0.096 0.069

Extension services δ3 −0.059 *** 0.012
Access to credit δ4 −0.761 ** 0.306

Land consolidation δ5 −1.358 *** 0.257
Erosion control δ6 −0.417 0.609

Improved variety δ7 −1.300 *** 0.336
Cropping system δ8 −0.637 ** 0.282

Constant δ0 0.357 0.644

Model Diagnostics

σu 0.218 *** 0.026
σv 0.125 *** 0.014
λ 1.739 *** 0.038

Log likelihood 194.783
Adjusted R-squared 0.974

AIC −357.566 −170.488
BIC −297.273 −147.878

Total number of observation 320 320

Notes: ***, **, * denote the level of significance at 1, 5, and 10 percent, respectively.

The results in Table 3 show that all inputs used in the production function are inelastic, implying
that a 1 percent increase in every input will lead to a less than 1 percent increase in coffee output.
Of all five input variables considered in our model, chemical fertilizer (NPK) appeared to be the most
important factor of production that has the highest effect on coffee output with production elasticity
equal to 0.314. This implies that a 1 percent increase in the quantity of chemical fertilizer (NPK)
increases the level of coffee output by about 0.314 percent, ceteris paribus. This finding is consistent
with our expectations, and concurs with other extisting studies that found a significant positive effect
of fertilizer on the crop output, such as Fatima and Azeem [29] and Iráizoz et al. [30]. The following
highest elasticity was for organic fertilizer (manure and compost), with production elasticity equal
to 0.275. This implies that organic fertilizer plays a significant positive impact on raising the coffee
production level, as a 1 percent increase in the quantity of organic fertilizer leads to an estimated
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0.275 percent increase in coffee output, ceteris paribus. This result is consistent with Chiona et al. [22],
Shively [31], and Sorsie et al. [32].

In addition, labor input is also sensitive toward coffee production, as a 1 percent increase in labor
will boost the production of coffee by 0.182 percent, ceteris paribus. This result conforms to prior
expectation of the positive effect of labor use on coffee output; it is also consistent with studies by
Iráizoz et al. [30], Theriault and Serra [26], Binam et al. [33], and Bäckman et al. [34]. Likewise, land
is an alternative input variable that can improve coffee production. We found that land size was
associated with an elasticity coefficient of 0.162, implying that a 1 percent increase in the area under
coffee plantation will lead to a 0.162 percent increase in coffee production. This finding conforms to
prior expectations, and concurs with Khan et al. [14], Fatima and Azeem [29], Theriault and Serra [26],
and Balde et al. [35]. Finally, the elasticity coefficient associated with pesticide input was found to be
0.120. This elasticity value indicates that pesticide application is sensitive toward better production
of coffee, as a 1 percent increase in the quantity of pesticide results in a 0.120 percent increase in
coffee production while holding other inputs constant. This result is consistent with the findings
of Khan et al. [14]. The sum of all partial production elasticities (i.e., scale elasticity) equaled 1.05,
indicating the presence of an increasing returns to scale (IRS) in coffee production. IRS implies that
a proportional increase in all factors of production results in a more than proportional increase in
coffee output.

The results reported in Table 4 indicate the summary of statistics for the TE scores of coffee
farmers in the study area. We found that about 51 percent of coffee farmers in the sample have a TE
ranging from 90 to 100 percent. This range of TE scores of coffee farmers is similar to the findings
of Mukete et al. [36] and Binam et al. [37]. The average level of TE was found to be 82 percent, even
though about half of the farms achieved more than 90 percent, implying that there is a possibility to
boost coffee production by 18 percent, given the proportion of farm inputs and the current technology
used. Alternatively, this result suggests that, on average, 18 percent of the expected coffee production
is lost owing to technical inefficiency of farmers.

Table 4. Distribution of TE scores of coffee farmers.

Range of TE (%) Number of Farmers (n) % of Farmers in TE Interval

<50 30 9.4
50–80 62 19.4
80–90 64 20.0
90–100 164 51.2
Total 320 100.0

Mean TE (%) 82
Standard deviation 0.23

The lower section of Table 3 presents the results of the estimates for the determinants of technical
inefficiency. Owing to the inverse relationship between technical inefficiency and TE (see Equation (3)),
parameter estimates are interpreted in terms of their impact on TE. This implies that a negative effect of
a particular variable on technical inefficiency indicates a positive effect on TE. In addition, the negative
sign of the coefficient of inefficiency variable implies that the variable has a positive effect on the
producer’s TE, whereas a positive sign implies a negative effect on TE [16].

The results show that education level, extension services, access to credit, land consolidation,
improved variety of coffee trees, and the cropping system would significantly improve farmers’ TE.
The farmer’s level of education has a negative and statistically significant coefficient, indicating that
TE levels increase in proportion to the level of a farmer’s education. This finding is in conformity with
the results reported by Khan et al. [14], Fatima and Azeem [29], Binam et al. [37], and Hong et al. [38],
according to whom, the education level significantly and positively affects farmers’ TE in Bangladesh,
Pakistan, Cote d’Ivoire, and China, respectively.
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The negative and statistically significant coefficient of the frequency of extension services rendered
to coffee farmers implies that farmers who receive more advisory services are likely to have higher
levels of TE. This result is consistent with Fatima and Azeem [29], Chiona et al. [22], Binam et al. [33],
and Bäckman et al. [34].

Another factor that influenced TE is access to credit. A coefficient of the access to credit variable
was found to be negative and statistically significant at the 5 percent level of significance. Thus, access
to credit facilities also significantly improves farmer’s level of TE, as it may enhance their ability to
finance the purchase of seasonal farm inputs, and invest in the acquisition of more agricultural land and
expansion of coffee plantations. Other studies that obtained similar findings include Chiona et al. [22],
Binam et al. [33], Binam et al. [37], and Bozoǧlu and Ceyhan [39].

Regarding the land consolidation variable, the results in Table 3 show that managing coffee
plantations through land use consolidation significantly improves the level of TE in coffee production.
This finding is in conformity with Chen et al. [40], Wu et al. [41], and Manjunatha et al. [42], who
acknowledged the significance of the land consolidation process as a key policy instrument to
enhance farmers’ efficiency in China and India. One plausible explanation for this finding is that
the consolidation of spatially dispersed plots into contiguous parcels assists the government in
implementing policies with respect to fertilizer subsidies, credit facilities, marketing access, and rural
infrastructure development. Thus, farmers can take advantage of such schemes to improve their
efficiency and productivity.

The use of an improved variety of coffee trees was also found to significantly improve the level
of farmers’ TE. Specifically, in the study area, farmers who planted the BM139 variety of Arabica
coffee were more technically efficient than their counterparts, who still had low yielding varieties
of coffee, such as Jackson 2/1257. This finding supports Fatima and Azeem [29], Chiona et al. [22],
and Sorsie et al. [32], who acknowledged the importance of modern and upgraded crop varieties in
improving productivity and efficiency in Pakistan, Zambia, and Ethiopia, respectively.

Finally, the cropping system is a variable that explains variations in technical inefficiency. It was
included in the technical inefficiency model as a dummy variable to determine whether the adoption
of a mono-cropping system can improve TE of coffee farmers. Consequently, the cropping system was
found to be statistically significant with a negative sign. This implies that farmers who produce coffee
under the mono-crop system tended to have higher levels of TE than those with intercropped coffee.
This finding is in line with Binam et al. [37], who supported the benefits of the mono-crop system in
enhancing coffee farmers’ efficiency in Cote d’Ivoire.

5. Conclusions

Researchers worldwide have been drawn to the analysis of farmers’ level of TE and its determinants,
which is a critical necessity for both farmers and policymakers. Farmers find it useful because an
improvement in their managerial skills leads to efficient allocation of inputs in order to produce desired
levels of output. Also, it helps policymakers formulate pertinent policies geared toward improving
crop productivity.

This study applied the SFA model on a sample of 320 coffee farmers operating in the Northern
Province of Rwanda in order to derive their TE scores, and then investigated the factors that influence
TE of coffee farmers in the study area. The mean level of TE among coffee farmers in the study area was
estimated at 82 percent. From a technical standpoint, this implies that there is a potential to increase
coffee production by about 18 percent with the current levels of inputs and farm technologies available
in the country through the reduction of technical inefficiency. The analysis of partial production
elasticities and returns to scale revealed that all inputs used in the production function are inelastic,
that is, a 1 percent increase in each input will lead to a less than 1 percent increase in coffee output.
In addition, we found that coffee production was more responsive to chemical fertilizers, followed by
organic fertilizer, labor, land, and pesticide. The returns to scale (RTS) coefficient was found to be 1.05,
which implies that farmers in the Northern Province of Rwanda experience IRS in coffee production.
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In other words, this suggests that a proportional increase in all factors of production results in a more
than proportional increase in coffee output. Our results further revealed that education, extension
services, access to credit, land consolidation, improved variety of coffee trees, and cropping system
significantly improved coffee producers’ TE.

On the basis of the results of the study, the following policy implications are proposed. The main
focus should be put on promoting education in the rural areas and encouraging farmers to participate in
training programs. In addition, extension services should be strengthened and should target all farmers
in all locations. This will improve the farmers’ managerial skills, thus resulting in higher technical
efficiency. The government should support small-scale farmers to get access to credit. The findings
further suggest that research and development is needed to develop and release improved coffee
varieties. In this regard, the task of extension agents would be to advise and encourage farmers to
adopt high-yielding and disease-resistant coffee varieties like BM139. Finally, our results suggest that
the practice of mono-cropping system and managing coffee plantations through land consolidation
could also reduce the level of technical inefficiency among coffee farmers in the Northern Province
of Rwanda. Currently, mechanization has not been adopted in coffee farming in Rwanda because
of different challenges such as the hilly topography of the terrain, the fact that some coffee plants
are grown under shade tree canopy, high cost of machinery, and so on. Although the mechanization
of coffee farm operations is difficult to achieve, its introduction can be a viable option for effective
maintenance of coffee plantations, and improve the efficiency and productivity of labor.

However, when it comes to improving the level of TE among coffee farmers across Rwanda, our
findings may not be generalizable. Hence, future research must consider a larger sample of farmers
that covers all Rwandan provinces.
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