
����������
�������

Citation: Liang, J.; Li, X.-M.; Fan, K.

Distribution and Source Sites of

Nonlinear Internal Waves Northeast

of Hainan Island. J. Mar. Sci. Eng.

2022, 10, 55. https://doi.org/

10.3390/jmse10010055

Academic Editors: SungHyun Nam

and Xueen Chen

Received: 22 November 2021

Accepted: 30 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Distribution and Source Sites of Nonlinear Internal Waves
Northeast of Hainan Island
Jianjun Liang 1,2,* , Xiao-Ming Li 1,2 and Kaiguo Fan 3

1 Key Laboratory of Earth Observation of Hainan Province, Hainan Research Institute, Aerospace Information
Research Institute, Chinese Academy of Sciences, Sanya 572000, China; lixm@radi.ac.cn

2 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100094, China

3 School of Meteorology and Oceanography, National University of Defense Technology,
Changsha 410015, China; van.fkg@tom.com

* Correspondence: liangjj@radi.ac.cn

Abstract: The distribution and source sites of nonlinear internal waves (NLIWs) northeast of Hainan
Island were investigated using satellite observations and a wavefront propagation model. Satellite
observations show two types of NLIWs (here referred to as type-S and type-D waves). The type-S
waves are spaced at a semidiurnal tidal period and the type-D waves are spaced at a diurnal tidal
period. The spatial distribution of the two types of NLIWs displays a sandwich structure in which
the middle region is influenced by both types of NLIWs, and the northern and southern regions are
governed by the type-S and type-D waves, respectively. Solving the wavefront model yields good
agreement between simulated and observed wavefronts from the Luzon Strait to Hainan Island. We
conclude that the NLIWs originate from the Luzon Strait.

Keywords: internal waves; South China Sea; Hainan Island

1. Introduction

Nonlinear internal waves (NLIWs) are often transformed from the propagation of
nonlinear internal tides. They frequently occur in coastal oceans and marginal seas, and
have strong effects on driving vertical mixing, scattering and ducting acoustic modes, and
endangering underwater equipment and moving objects. Therefore, it is very important to
know their source sites and to evaluate these effects.

The NLIWs in the northern South China Sea (SCS) have received a great deal of
attention, particularly those from the Luzon Strait to Dongsha Atoll [1]. The Luzon Strait
radiates strong semidiurnal and diurnal internal tides westward into the SCS due to the
interactions of strong barotropic tidal currents [2] with the two shallow ridges: the Heng-
Chun ridge and the Lan-Yu ridge [3]. In the deep basin, the semidiurnal internal tides can
steepen to form NLIWs under the influence of nonhydrostatic and rotational dispersion;
by contrast, the rotation significantly inhibits the steepening of diurnal internal tides [4].
Then, the NLIWs diffract and refract around Dongsha Atoll [5], dissipating most of their
energy [6,7]. Continuing with northwestward propagation, the NLIWs may experience a
polarity conversion under the condition that the pycnocline is below the mid-depth [8].

Satellite observations show that NLIWs also occur frequently on the continental
slope-shelf northeast of Hainan Island [9,10], as shown by the black rectangle in Figure 1.
Moreover, field measurements show that the largest NLIWs in the region can reach an
amplitude of 45 m at a water depth of 117 m [11], making them among the strongest waves
observed on global continental shelves [12].
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Figure 1. Satellite observations of NLIWs. The black rectangle shows the study region. The red and 
black lines represent the satellite-observed wavefronts of NLIWs. The red lines are those provided 
by Zhao et al. [13], and the blue lines are extracted from the collected satellite images in this study. 
The black dashed lines show the commonly recognized propagation path of NLIWs originating 
from the Luzon Strait. 

By calculating barotropic tidal forcing and analyzing three Envisat Advanced Syn-
thetic Aperture Radar (ASAR) images, Li et al. [14] suggests that the SAR-observed 
NLIWs northeast of Hainan Island originate from the Luzon Strait. A common view of the 
NLIWs originating from the Luzon Strait is that they can transit through the deep basin 
and diffract around Dongsha Atoll, as shown by the black dashed lines in Figure 1 [5,15]. 
However, whether these NLIWs can directly arrive at the area northeast of Hainan Island 
remains unclear. In contrast, Xu et al. [16] found that the field-observed NLIWs are gen-
erated by nonlinear transformation of diurnal internal tides and they suggest that the di-
urnal internal tides arise from tide-topography interactions at the local continental shelf-
break, distinct from the result of Li et al. [14]. The two above-mentioned opposing opin-
ions on the NLIWs northeast of Hainan Island warrant further investigations into their 
source sites. 

Moreover, apart from the NLIWs separated by a diurnal tidal period as observed by 
Xu et al. [16], we also found NLIWs separated by a semidiurnal tidal period by analyzing 
the satellite data. Hence, there are two types of NLIW northeast of Hainan Island, referred 
to as type-S (S denotes semidiurnal) and type-D (D denotes diurnal) waves. A meaningful 
question then arises of whether there is a general distribution law for these two types of 
NLIW. Here, we combine satellite observations and a wavefront propagation model to 
clarify the distribution and source sites of NLIWs northeast of Hainan Island. 

2. Materials and Methods 
2.1. Satellite Data 

We collected 22 Envisat ASAR images in the three years 2005, 2011, and 2012 to show 
the spatial distribution of NLIWs. All the SAR images are preprocessed by radiometric 
calibration, Lee filtering, and geolocation. The leading wave in a NLIW packet is depicted 
as a blue line in Figure 1. The SAR observations clearly show complete type-S waves and 
only show some segments of type-D waves. Hence, one Moderate Resolution Imaging 
Spectrometer (MODIS) image acquired on 10 September 2005 was used to clearly show a 
pair of complete type-D waves. 

2.2. A Wavefront Propagation Model 
We used the Eikonal equation [17] to simulate the propagation path of NLIWs be-

cause the waves always appear as long stripes (referred to as wavefronts) in satellite im-
ages. The equation is: 
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Figure 1. Satellite observations of NLIWs. The black rectangle shows the study region. The red and
black lines represent the satellite-observed wavefronts of NLIWs. The red lines are those provided by
Zhao et al. [13], and the blue lines are extracted from the collected satellite images in this study. The
black dashed lines show the commonly recognized propagation path of NLIWs originating from the
Luzon Strait.

By calculating barotropic tidal forcing and analyzing three Envisat Advanced Synthetic
Aperture Radar (ASAR) images, Li et al. [14] suggests that the SAR-observed NLIWs
northeast of Hainan Island originate from the Luzon Strait. A common view of the NLIWs
originating from the Luzon Strait is that they can transit through the deep basin and diffract
around Dongsha Atoll, as shown by the black dashed lines in Figure 1 [5,15]. However,
whether these NLIWs can directly arrive at the area northeast of Hainan Island remains
unclear. In contrast, Xu et al. [16] found that the field-observed NLIWs are generated by
nonlinear transformation of diurnal internal tides and they suggest that the diurnal internal
tides arise from tide-topography interactions at the local continental shelf-break, distinct
from the result of Li et al. [14]. The two above-mentioned opposing opinions on the NLIWs
northeast of Hainan Island warrant further investigations into their source sites.

Moreover, apart from the NLIWs separated by a diurnal tidal period as observed by
Xu et al. [16], we also found NLIWs separated by a semidiurnal tidal period by analyzing
the satellite data. Hence, there are two types of NLIWs northeast of Hainan Island, referred
to as type-S (S denotes semidiurnal) and type-D (D denotes diurnal) waves. A meaningful
question then arises of whether there is a general distribution law for these two types of
NLIWs. Here, we combine satellite observations and a wavefront propagation model to
clarify the distribution and source sites of NLIWs northeast of Hainan Island.

2. Materials and Methods
2.1. Satellite Data

We collected 22 Envisat ASAR images in the three years 2005, 2011, and 2012 to show
the spatial distribution of NLIWs. All the SAR images are preprocessed by radiometric
calibration, Lee filtering, and geolocation. The leading wave in a NLIWs packet is depicted
as a blue line in Figure 1. The SAR observations clearly show complete type-S waves and
only show some segments of type-D waves. Hence, one Moderate Resolution Imaging
Spectrometer (MODIS) image acquired on 10 September 2005 was used to clearly show a
pair of complete type-D waves.

2.2. A Wavefront Propagation Model

We used the Eikonal equation [17] to simulate the propagation path of NLIWs because
the waves always appear as long stripes (referred to as wavefronts) in satellite images. The
equation is:

T2
x + T2

y = 1/c(x, y)2 , (1)

where T is the time for a wave propagating from an origin to a location (x, y) and c(x, y)
is the local wave speed. Here, we used the statistical propagation speed model given by
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Jackson [18] to calculate c(x, y). The model relates the wave speed in the northern SCS to
local water depth H(x, y) in the following manner:

c(x, y) = 2.971 ×
√

tan h(0.003 + H(x, y)/1390.758). (2)

Thus, the propagation path of NLIWs can be determined when the origin is known.
According to the simulated and measured baroclinic energy flux in the Luzon Strait, we
specified the origin near the Batan Islands [19]. Equation (1) was solved by the fast marching
method [20].

3. Results
3.1. Distribution of the Two Types of NLIWs

An Enivsat ASAR image acquired on 8 June 2011 presenting typical type-S waves is
shown in Figure 2. There are four NLIWs with long wavefronts labeled S1, S2, S3, and
S4. The separation distances between S1, S2, S3, and S4 are 92, 59, and 48 km, respectively.
According to Equation (2), the decrease in the separation distance is caused by a decrease
in wave speed from 2.34 m/s at 1000 m through 1.75 m/s at 500 m to 0.81 m/s at 100 m.
Comparing the four NLIWs with simulated wavefronts, we found the interval between
them is approximately a semidiurnal tidal period. Because it takes 82 h for a wave to
propagate from the Luzon Strait to the position of S1, we examined the tidal forcing during
3–5 June in the Luzon Strait. The TPXO7.2 tidal model [21] predicts the semidiurnal
barotropic tides are near the semidiurnal spring tide, indicating the strong generation of
semidiurnal internal tides in the Luzon Strait. Thus, the four NLIWs are probably generated
by the nonlinear transformation of four successive semidiurnal internal tides, leading to a
semidiurnal tidal period interval. In addition, there is a NLIWs with a shorter wavefront,
labeled SA1, and the wavefront breaks up into two arms near the Shenhu Ansha Shoal,
located at approximately 19.5◦ N, 112.9◦ E. The SA1 was generated by the diffraction of S3
at a time earlier than the SAR acquisition time. This diffraction process is the same as the
well-known one near Dongsha Atoll [14].
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A representative satellite observation of the type-D waves by MODIS is shown in
Figure 3. There are two wave packets labeled D1 and D2. The distance between D1 and
D2 is 97 km, and the associated mean wave speed is 1.03 m/s. A comparison between the
two wave packets and simulated wavefronts clearly reveals that the interval between them
(approximately 26 h) is close to a diurnal tidal period. In addition, the satellite observation
agrees with the field measurements, which also show that the NLIWs are separated by a
diurnal tidal period [16]. However, the TPXO7.2 tidal model predicts the barotropic diurnal
tides during 5–7 September in the Luzon Strait are near diurnal neap tide (close to zero
on 7 September), suggesting weak generation of diurnal internal tides. By comparison,
the barotropic semidiurnal tides are still near semidiurnal spring tide, resulting in strong
generation of semidiurnal internal tides. The weak generation of diurnal internal tides and
strong generation of semidiurnal internal tides appear to contradict the fact that D1 and D2
are separated by a diurnal tidal period. A hypothesis is that the parametric subharmonic
instability of semidiurnal internal tides may lead to the generation of a near-diurnal internal
wave on the continental slope [22] or in the deep basin [23] in the northern SCS, which
accounts for the diurnal tidal period interval between D1 and D2.
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Figure 3. A MODIS image acquired at 03:20:00 UTC on 10 September 2005.

As shown in Figure 1, the wave patterns illustrated by the blue lines are very compli-
cated. Despite the complication, we found a general distribution law for the two types of
NLIWs by comparing other satellite observations with the two cases shown in Figures 2
and 3. Basically, the wave processes observed in other satellite images can be explained
as variations in the two cases. This argument is supported by the inherent nature of the
tidal origin for the NLIWs. Thus, we plotted all the type-S and type-D waves as blue and
magenta lines, respectively, in Figure 4. The boundaries separating the two types of NLIWs
were drawn by visual inspection of their spatial distribution. As can be seen, the region
labeled RS (R denotes region) is dominated by type-S waves, the region labeled RSD is
influenced by both types of NLIWs, and the region labeled RD is dominated by type-D
waves. Note that the region RD contains the mooring position of Xu et al. [16], which sees
remarkable NLIWs separated by a diurnal tidal period.
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Figure 4. A general distribution pattern of the NLIWs. The blue lines represent type-S waves and
the magenta lines represent type-D waves. The two dashed lines depict the boundaries for the
distribution of the two types of NLIWs. The filled black square denotes the mooring position of Xu
et al. [16].

3.2. Source Sites of the Two Types of NLIWs

Following the distinction of the two types of NLIWs, we next examine their source
sites. Solving Equation (1) obtains the simulated wave propagation from the Luzon Strait
to Hainan Island (black lines in Figure 5). The simulated wavefronts agree with all the
observed wavefronts, including those from the deep basin of the SCS through Dongsha
Atoll and the continental slope-shelf to the coastal region of Hainan Island. In particular,
the simulated wavefronts agree surprisingly well with the easternmost wavefront and
northern portions of other wavefronts in Figure 6a and the two wavefronts in Figure 6b.
The agreement shown in Figures 5 and 6 indicates that the source site of NLIWs northeast
of Hainan Island is in the Luzon Strait. Further evidence that supports this argument is
that both the easternmost wavefronts in Figure 6a,b appear on the continental slope and
run across the water depths from 200 to 1000 m, suggesting they have a remote source site.
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4. Discussion and Conclusions

Li et al. [14] found that the NLIWs also originate from the Luzon strait by analyzing
three Envisat ASAR images and the phase-locked relation between the NLIWs and the
tidal forcing in the Luzon Strait. However, they did not further discriminate the NLIWs
separated by a semidiurnal and diurnal tidal period. Li et al. [14] labeled four NLIWs S1,
S2, S3, and S4 in the SAR image taken on 6 November 2005 (Figure 7). They noted that S1
and S3 are generated with a 36 h lag in the Luzon Strait, implying that they are generated
within two lunar days. However, we found that S1 and S3 have a 12 h lag by comparing the
observed and simulated wavefronts. The generation time lag of 36 h may not be reduced to
12 h when they propagate from the Luzon Strait to the SAR observation site. In addition,
analysis of the barotropic tidal forcing during 1–3 November in the Luzon Strait reveals that
semidiurnal tides are near semidiurnal spring tide, and diurnal tides are in the transition
period from diurnal neap to spring tide (Figure 8). The tidal forcing implies the generation
of strong semidiurnal internal tides and somewhat weak diurnal internal tides. Thus, a
more reasonable explanation is that S1 and S3 are generated by successive semidiurnal
internal tides within one lunar day (Figure 8). Given that the crest length of S2 wavefront is
significantly shorter than those of S1 and S3, and S2 is more southerly, we infer that S2 is
generated by the nonlinear transformation of the diurnal internal tide formed within the
same lunar day as the semidiurnal internal tides, according to Figures 4 and 8.

Although the wavefront propagation model developed by Jackson [18] is sufficiently
robust to simulate the propagation of wavefronts from the Luzon Strait to continental slopes
and Dongsha Atoll [24], it has relatively large uncertainties in predicting the propagation
of wavefronts near shelf-break regions, particularly as revealed by the second easternmost
wavefront in Figure 6a. This mismatch is caused by the effects of wave amplitudes and
mesoscale currents on the propagation speed, which are not well accounted for in the
statistical propagation model proposed by Jackson [18]. A more accurate propagation
speed model for shelf-break regions needs to be developed.

As revealed by Figures 2, 3 and 7, the easternmost NLIWs will undergo complicated
evolution when they propagate onshore, such as wave fission, polarity transformation,
refraction, and dissipation, leading to more dense wavefronts on the middle continental
shelf. The wave evolution is probably caused by the highly variable continental slope-shelf
topography and mesoscale eddies and fronts. How and where these processes primarily
affect the vertical mixing, local ecosystem, and sediment transport remains unknown.
These questions may need further investigations because the NLIWs are among the largest
waves on the global continental shelves.

The confusion regarding the source sites of NLIWs northeast of Hainan Island has
persisted for nearly ten years. Here, we combine satellite observations and a wavefront
propagation model to clarify the two types of NLIWs, provide a general law for their
distribution, and demonstrate that these waves originate from the Luzon Strait.
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