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Abstract: Fluorine and chlorine are important tracers for geochemical and environmental studies.
In this study, a rapid alkaline digestion (NaOH) method for the simultaneous determination of
fluorine and chlorine in marine and stream sediment reference samples using ion chromatography
is developed. The proposed method suppresses the volatilization loss of fluorine and chlorine and
decreases the matrix effects. The results are in good agreement with fluorine ~100%, chlorine ranging
from 90 to 95% of the expected concentrations. The detection limits of this method were 0.05 µg/g
for fluorine and 0.10 µg/g for chlorine. This method is simple, economical, precise and accurate,
which shows great potential for the rapid simultaneous determination of fluorine and chlorine
in large batches of geological and environmental samples commonly analyzed for environmental
geochemistry studies.

Keywords: fluorine and chlorine; marine and stream sediment; ion chromatography; alkaline
digestion; high pressure bomb

1. Introduction

Fluorine and chlorine are of great interest in geological and environmental studies due
to their special, highly mobile and volatile properties [1,2]. Fluorine is a minor constituent
in a wide range of sedimentary minerals including phosphorites, phosphates, carbonates,
silicates and clay minerals [3–6]. Chlorine is the dominant ligand that enables metal trans-
port in the majority of hydrothermal solutions [6–8]. Thus, the content of fluorine, chlorine
and ratios of element/Cl in sediment can be used as tracers for chemical evolution of
fluids and water/rock interactions in low temperature sediment alteration [9,10] and high
temperature hydrothermal systems [11–14], element recycling during subduction-related
sediment melting [4,15], and early diagenesis of sediment [3]. Therefore, recent studies have
focused on the precise determination of fluorine and chlorine in sediment. Several analyti-
cal techniques have been applied to the determination of fluorine and chlorine: by specific
ion selective electrode [16–18], instrumental neutron activation analysis (INAA) [16], radio-
chemical neutron activation analysis (RNAA) [19–22], prompt gamma neutron activation
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analysis (PGNA) [23] or X-ray fluorescence spectrometry [24–27]. However, an ion selective
electrode requires a rather complex preparation stage and the difficulties of other tech-
niques are the requirement of special instruments and/or time-consuming processes [28].
Moreover, the detection limits of the determination by INAA or X-ray Fluorescence Spec-
trometry (XRFS) are generally too high, relative to usual abundances [29]. In contrast,
ion chromatography, a compact and inexpensive instrument, is commonly used in many
laboratories and is the most suitable method for sensitive and simultaneous determination
of fluorine and chlorine [5,6,28–35]. However, it is difficult to quantitatively extract fluorine
and chlorine from geological materials for ion chromatography analysis. So far, only a few
methods have been used to extract fluorine and chlorine from geological samples, including
pyrohydrolysis [5,6,29,31,32], alkaline fusion [5,17,28,30], microwave digestion [36], com-
bustion [35] and NH4HF2 digestion with subsequent ammonium dilution [37]. However,
the pyrohydrolysis method is not suitable for the analysis of a large batch of samples [37];
alkali fusion requires a high flux-to-sample ratio which results in high blank levels, total
dissolved solids (TDS) content and matrix effects [5,28], microwave digestion has poor
recoveries caused by incomplete digestion of sediment samples containing zircon or other
refractory minerals [38], and the NH4HF2 digestion method cannot extract fluorine from
geological materials [37]. Recently, a high-pressure digestion technique has been generally
applied [8,36,39–41]. However, there are no reports about the simultaneous determination
of fluorine and chlorine in sediment using this technique.

In this paper, a rapid alkaline digestion method for the simultaneous determination
of fluorine and chlorine in marine and stream sediment reference samples using the high-
pressure digestion bomb with a double inner arc seal design is described. The effects of
the digestion parameters on the recoveries of fluorine and chlorine in sediment reference
samples are described in detail. A small amount of the sample was digested, and the
fluorine and chlorine were extracted completely. This method is practical and simple and
can deal with a large number of samples simultaneously.

2. Experimental
2.1. Instrumentation

Experiments were carried out using ion chromatography (DX600, Dionex, CA, USA)
at the Laboratory of Spartacus Testing Center, equipped with an anion exchange column in
the suppression mode. Analytical conditions are reported in Table 1. Generally, the F- peak
appeared at about 3.8 min after sample injection. Then, the Cl- peak appeared at about
4.7 min after the injection (Figure 1). One measurement cycle could be completed in ~10
min.

Table 1. Instrumental operating parameters used for ion chromatography analysis.

Operating Parameters

Volume of Sample Injection Loop 25 µL
Column IonPac AS14

Column Size 4 mm × 250 mm
Eluent 3.5 mmol/L Na2CO3 + 1 mmol/L NaHCO3

Detector Suppressed conductivity detector
Flow Rate 1.2 mL/min
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Figure 1. Chromatogram of marine sediment GBW07315.

2.2. Reagents and Certified Reference Materials

Alkaline digestion solution was prepared by diluting NaOH (AR, Aladdin, Shanghai,
China) with pure water (18.2 MΩ·cm grade). Eluent solution was prepared just before anal-
ysis by diluting Na2CO3 (AR, Sinopharm, Shanghai, China) and NaHCO3 (AR, Sinopharm,
Shanghai, China) reagents with pure water. The calibration solutions were prepared by di-
lution from 1000 mg/L fluorine and chlorine standard solutions (National Research Center
for Reference Materials, Beijing, China) with pure water. Three domestic reference materials
GBW07315 (marine sediment from the CC area in the east pacific basin), GSD-9 (stream
sediment from the Yangtze River) and GSD-10 (stream sediment from the catchment basin
in Yishan, Guangxi Province) were used as reference samples. All these samples were in
powder form with size less than 75 µm as originally prepared. Reference GBW07315 was
used to optimize the alkaline digestion temperature and time.

2.3. Laboratory Ware

A screw-top PTFE-lined, corrosive-resistant digestion bomb with a volume of ~15 mL
was used for this research (Figure 2). This bomb has a double inner arc seal design, the
inner tank has an oval cross-section, the upper part of the inner tank plugs into the top of
the lower part. The inner tank was pre-cleaned with 10% HNO3 and heated to boiling for
about 12 h at 120 ◦C, then rinsed with pure water.
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Figure 2. Sketch of the corrosive-resistant digestion bomb (Reproduced with permissions from
Ref. [39], Copyright © 2018 Atomic Spectroscopy).

2.4. Sample Preparation

A total of 40 mg aliquot of sample powder was accurately weighed into the PTFE
bombs and NaOH was added. The sealed bombs were then placed in an electric oven at
240 ◦C for 12 h. After cooling, 6 mL pure water was added, then the bombs were heated
again in the electric oven at 180 ◦C for 12 h. After cooling again, the sample solution
was transferred to a 15 mL centrifuge tube and diluted to 10 mL with pure water. After
centrifuging for 8 min at 3000 rpm, 2 mL sample of the supernatant was transferred to a
new polyethylene tube. The supernatant was measured by ion chromatography.
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2.5. Calibration Curves and Limit of Detection

Fluoride and chloride calibration curves in the range of 1–10 µg/g and 1–200 µg/g
were prepared respectively by dilution from 1000 mg/L standard solutions (National
Research Center for Reference Materials, Beijing, China) with pure water (Figure 3). The
correlation coefficient (R2) of the linear calibration is 0.9999 for fluorine and 0.9997 for
chlorine, respectively. The method’s limit of detection (LOD, three times the standard
deviation of the 6% NaOH blank solution for seven preparation blanks assuming a dilution
factor of 250) for F and Cl were 0.05 µg/g and 0.10 µg/g, respectively.
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Figure 3. Fluoride and chloride calibration curves performed by ion chromatography.

3. Results

The measured concentrations of chlorine and fluorine were compared to the reference
values provided for the standard material, GW07315, GSD-9 and GSD-10-1 (Table 2).
Generally, the results are in good agreement with F- being ~100%, Cl ranging from 90–95%
of the expected concentrations. The relative standard deviation between replicates was
<6% and <10% for fluorine and chlorine, respectively.

Table 2. Results for GBW07315, GSD-9-1 and GSD-10-1, and Comparison with Certified Data.

GWB07315 GSD-9-1 GSD-10-1

F (µg/g) Cl (µg/g) F (µg/g) Cl (µg/g) F (µg/g) Cl (µg/g)

1 1055 33,037 467 49 149 41
2 1176 34,452 503 43 140 48
3 1099 34,992 482 46 151 45
4 1152 33,982 518 56 161 49
5 1058 36,987 503 45 144 49
6 1034 31,972 525 44 157 45
7 1156 33,650 490 48 142 40

Measured Average Value 1104 34,153 498 47 149 45
Reference Value 1100 36,000 ± 3000 494 ± 39 52 ± 11 149 ± 38 50

Relative Standard
Deviation 5.2% 4.6% 4.0% 9.5% 5.2% 8.0%

Accuracy 100% 95% 101% 90% 100% 90%

4. Discussion
4.1. Effect of the Amount of NaOH

Although acid digestion has been commonly used for the decomposition of geological
samples [38], mineral acids should be avoided to prevent losses of volatile halogens [37].
Alkaline fusion with NaOH can quantitatively extract fluorine [17] and chlorine [20–22]
from geological materials, and the high-pressure digestion bomb requires a small amount of
reagent, therefore NaOH was used as the digestion reagent. Figure 4 shows the agreements
of F and Cl as a function of added NaOH amount for the digestion of 40 mg of GBW07315.
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The agreements are expressed as ratios of the measured values relative to their reference
values. It can be seen that F was completely recovered with 0.75 mL 6% NaOH, and the
agreement for Cl was good with both 0.75 mL 6% NaOH and 0.50 mL 6% NaOH. Thus, the
adopted optimum amount is 0.75 mL 6% NaOH.
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4.2. Effect of Digestion Temperature

Figure 5 illustrates the variation of the agreements for F and Cl in GBW07315 at
different digestion temperatures (150–260 ◦C) with 0.75 mL 6% NaOH. The observation
demonstrates that the digestion temperature is the critical factor for the complete recovery
of F and Cl. The recoveries of both F and Cl increased from 150 ◦C to 240 ◦C and they were
completely recovered at 240 ◦C and 260 ◦C. Therefore 240 ◦C was used as the optimum for
further extractions.
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4.3. Method Efficiency

The recovery of the pyrohydrolysis method is not stable [8], probably due to the loss of
the halogens or the incomplete extraction during the pyrohydrolysis process [21,22]. In con-
trast, the digestion bomb used in this study has a double inner arc seal design, allowing the
evaporating material from the top to the bottom without clinging onto the inner tank wall,
which provides an effective circulation and suppresses the volatilization loss of fluorine and
chlorine. The present method consumes a small amount of alkaline (0.75 mL 6% NaOH
can extract fluorine and chlorine from 40 mg sample completely) and decreases the matrix
effects in comparison to the alkaline fusion method, which requires a large amount of flux
and the matrix separation step leading to a high procedural blank [5,28,30]. The NH4HF2
digestion method has been proposed recently, which suppresses the volatilization loss
of chlorine effectively owing to the formed ammonium salts with high boiling points,
however, this method cannot determine fluorine and chlorine simultaneously [37]. In
addition, compared to the complicated pyrohydrolysis, alkaline fusion and combustion
methods [5,6,17,28–32,35], the rapid alkaline digestion method is simple and can deal with
a large batch of samples.

5. Conclusions

Our results show that NaOH digestion in a high-pressure bomb with double inner arc
seal design can be used for the quantitative extraction of fluorine and chlorine in sediments.
The proposed method is economical and requires a small amount of the sample and reagent.
This effective and simple method has no contamination problems, with good accuracy, and
shows great potential for the determination of fluorine and chlorine in large batches of
geological and environmental samples.

Author Contributions: Y.G.—Conceptualization, Data curation, formal analysis, writing and editing;
X.W.—Conceptualization, funding acquisition, writing and editing; X.F.—formal analysis; X.Y.—
Data curation, methodology, validation; L.C.—Data curation; J.B.—formal analysis; Y.M.—funding
acquisition; S.C.—funding acquisition. All authors have read and agreed to the published version of
the manuscript.
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