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Abstract: Accurately describing and evaluating the effects of unsafe acts on maritime accidents is criti-
cal to establishing practical accident prevention and control options. This paper proposes a framework
for the probabilistic analysis of maritime accidents caused by seafarers’ unsafe acts by incorporating
a navigation simulation and dynamic Bayesian network (DBN) modeling. First, the unsafe acts of
seafarers are identified according to an in-depth analysis of global maritime investigation reports.
Then, a navigation simulation experiment is designed to collect the ship-handling data of seafarers
during hazardous accident scenarios. Consequently, a dynamic probabilistic model is proposed using
a DBN to describe the phases of maritime accidents based on the navigation simulation experiment
data. Furthermore, an evolution analysis of maritime accidents is conducted to explore the causal
chain of such accidents through sensitivity analysis. The typical navigational accident-collision is
chosen as the case to interpret the proposed framework, considering the formation process of ship
collision risks, from the occurrence of ship collision risk (phase 1) to the close-quarters situation
(phase 2) and to immediate danger (phase 3). This framework is applied to explore the causal chain
of collision accidents caused by the unsafe acts of seafarers.

Keywords: maritime accident; unsafe act; dynamic Bayesian network; causal chain; maritime accident
investigation reports; navigation simulation experiment

1. Introduction

Global maritime accidents have caused serious social and ecological damage. Stud-
ies have confirmed that human factors are the main causes of maritime accidents [1–3],
especially those navigational accidents related to seafarers’ operations [4]. The British
Maritime Investigation Bureau reported that 65% of ship collision accidents are caused by
improper lookout, and 73% of collision accidents involve improper or poor use of radar [5].
Accurately describing and evaluating the effects of unsafe acts on maritime accidents is
critical to making practical accident prevention and control options [6,7].

The human factor is an essential issue in safety management. Some classic approaches
for human factor analysis include Skill-Rule-Knowledge (S-R-K) taxonomy [8], Generic
Error Modeling System (GEMS) [8], Swiss Cheese Model (SCM) [9], Cognitive Reliability
Error Analysis method (CREAM) [10], Human Factor Analysis, and Classification System
(HFACS) [11]. Among them, Rasmussen’s S-R-K taxonomy and the Reason’s GEMS are the
most typical ones that classify human factors at the individual level, Hollnagel’s CREAM
focuses on human error in the work environment considering common performance con-
ditions. HFACS is an integrated approach that considers the causation and the effects
of unsafe acts under the organizational environment based on the SCM and Software,
Hardware, Environment, and Liveware methods [12,13]. According to the development of
the human factor analysis approaches, the studies have been conducted from human error
gradually transferring into unsafe acts [13,14].
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Unsafe acts, as a highly concerning human error, are closely related to maritime
accidents [15,16]. The research on unsafe acts in maritime accidents has attracted signif-
icant attention from the marine industry and academic fields. International Maritime
Organization (IMO) issued guidelines for the application of the human element analyzing
for (HEAP) to the IMO rule-making process (MSC-MEPC.2/Circ.13). Academic research
has been conducted into the unsafe acts of seafarers as a primary cause of maritime acci-
dents [17]. For example, decision and skilled errors were considered the leading causes of
collision and grounding accidents [18]. Some unsafe acts, such as lack of communication,
fatigued ship handling, and collision regulation violations, were the important elements
associated with higher collision occurrence rates for oil tankers [19]. Using the HFACS,
Celik and Cebi [20] discovered that skill-based behavioral errors and poor communication
by seafarers were the main factors leading to an accident in which a ship exploded. Akyuz
and Celik [21] improved the HFACS analysis framework based on the Swiss cheese model
and summarized ten types of frequent unsafe acts. Ung [22] and Yang et al. [23] used
the CREAM to identify the working environments and individual factors most closely
associated with hazards. Akhtar et al. [24] identified fatigued ship handling as the main
cause of grounding accidents. In the causal analysis and research of maritime accidents,
much research has focused on collision accidents as typical cases and identified the causes
attributed to them [25,26]. These included unsafe human factors in collision accidents,
especially unsafe acts [27], such as decision errors [12] and inappropriate lookout [28].
Reviewing the research as mentioned earlier, studies have focused mainly on describing
the unsafe acts in maritime accidents. However, the dynamic evolution of unsafe acts to
maritime accidents has not been comprehensively discussed.

Developing the evolutionary process of unsafe acts related to maritime accidents
is a critical issue worthy of additional attention [29,30]. The Bayesian Network (BN) is
a graphical technique expressing complex probabilistic relationships, especially in non-
precise information estimates prone to uncertainty [31,32], it is widely used in the prob-
abilistic occurrence estimation and quantitative risk assessment of maritime accidents or
incidents [33–39]. The BN can be incorporated with systematic approaches for processing
the evolution, dynamic variation, and complex dependencies of maritime accidents, such
as Accident Map (AcciMap) [34], System Theoretic Process Analysis (STPA) [40,41], and
Functional Resonance Analysis Method (FRAM) [28,42]. Moreover, a Dynamic Bayesian
Network (DBN) is an improved technique for modeling a time series or dynamic process
by expanding BNs [43–45]. Combined with the advantage of BN, the DBN can (1) combine
graph theory with probability theory to form the topological structure of causal links
and achieve a graphical and intuitive description of the breeding, germination, and de-
velopment of maritime accidents [43]; (2) obtain a posteriori probability within a context
of information uncertainty by updating the prior probability after obtaining some data
information in the case of limited accident sample data and asymmetric information, thus
realizing the identification of critical causes of maritime accidents; (3) learn the data pa-
rameters to fit the network structure that most conforms to the data logic, and realize the
deduction and decision-making of the accident process [44] under the condition of having
a large number of historical accident data samples.

The aim of this study is to propose a framework for the probabilistic analysis of
maritime accidents caused by the unsafe acts of seafarers by incorporating navigation
simulation and DBN modeling. The typical navigational accident-collision is chosen as
the case to interpret the proposed framework. The formation process of ship collision risk
has been decomposed into three phases: the occurrence of ship collision risk (phase 1),
close-quarters situation (phase 2), and immediate danger (phase 3). First, we investigated
the unsafe acts most likely to have caused collision accidents from 207 global collision
accident investigation reports by using the text mining technique. Second, we designed
a simulation experiment to collect data on the navigation ship-handling behaviors of the
simulator during the process of ship collision risks from the occurrence of ship collision
risk (phase 1) to the close-quarters situation (phase 2) and immediate danger (phase 3).
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Then, we proposed a probabilistic model using DBN to describe the three phases of the
ship collision risks concerning the navigation simulation experiment data. Furthermore, we
explored the accident causal chain related to ship collision accidents by sensitivity analysis.
The proposed framework can be used (1) to describe the process by which the seafarer’s
behavior can cause maritime accidents; and (2) to address the bottleneck in related research
caused by a lack of data on the acts of seafarers.

The remainder of this paper is organized as follows. Section 2 introduces the frame-
work and associated methods for probabilistic analysis of ship collision risk caused by the
unsafe acts of seafarers. Section 3 interprets the probabilistic ship collision risk modeling
process by a DBN. Section 4 discusses the causal chain of ship collision accidents. Finally,
Section 5 summarizes this study and proposes relevant conclusions.

2. Methods
2.1. Framework

The proposed framework for the probabilistic analysis of maritime accidents caused by
the unsafe acts of seafarers incorporates a navigation simulation and a DBN for exploring
the causal chain of collision accidents caused by seafarers’ unsafe acts. The process includes
four steps, as shown in Figure 1.
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Figure 1. Research framework.

Step 1: Identification of unsafe acts: An in-depth investigation of global maritime
investigation reports is conducted to identify the critical seafarers’ unsafe acts that induce
maritime accidents.

Step 2: Simulation experiment: Following the process of Step 1, a ship-maneuvering
simulator experiment is designed to effectively collect the ship-handling data of seafarers
during hazardous accident scenarios.

Step 3: Process risk modeling: A dynamic probabilistic model is proposed using
a DBN to describe the dynamic process phases of maritime accidents sourced from the
navigation simulation experiment data collected under Step 2.
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Step 4: Evolution analysis. Under the DBN model of Step 3, the proposed DBN model
is further validated and used to explore the causal chain of maritime accidents by sensitivity
analysis, thus revealing the occurrence and evolution mechanisms of maritime accidents
through reverse reasoning.

2.2. Simulation Experiment

A navigation simulation experiment designed to explore the unsafe behaviors of
seafarers under the ship encounter phases can be decomposed into four coherent phases
relative to ship collision risk [46], as shown in Figure 2.
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Figure 2. Ship encounter phases.

• Phase 0: Free navigation—In this phase, the risk of ship collision can be omitted.
• Phase 1: Occurrence of ship collision risk—In this phase, the risk of ship collision

is low.
• Phase 2: Close-quarters situation—In this phase, the risk of ship collision is moderate.
• Phase 3: Immediate danger—In this phase, the risk of ship collision is high.

In the experiment, a 360◦ stereoscopic ship-maneuvering simulator was used to collect
ship-handling behavior data from seafarers. The details of the simulation experiment
can be found in [47]. The seafarers were required to sail from the initial position to a
specific destination under random visibility and form a small-angle intersection with a
stand-on vessel driven by a navigation instructor, as shown in Figure 3. Then, the seafarers
were given a series of tasks for navigating the give-way vessel and preventing collision,
including channel crossing, speed, collision avoidance range, and collision avoidance
opportunity selection.
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Figure 3. Experimental scenarios for visibility.

2.3. Dynamic Bayesian Network

A DBN is an uncertainty modeling method that expresses the logical relationship
between variables and captures the dynamic (temporal) aspects of the variables through a
probabilistic graphical model [28], including node analysis, structure analysis, and condi-
tional probability tables (CPTs) estimation, as follows:
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• Node analysis: Each node in the DBN represents a variable or a variable attribute,
which has obvious time-varying relationships and significantly influences the research
content.

• Structure analysis: DBNs are constructed from a set of BNs that express the instanta-
neous relationships between variables [32]. As shown in Figure 4, DBNs are defined as
(B1, B→), where B1 is a BN composed of an initial network (Figure 4a) and a transition
network (Figure 4b), and B→ is a BN containing multiple time slices (Figure 4c), in
which X1ti, X2ti, and X3ti are the respective node variables in the i-th time slice.
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• CPTs estimation: The quantification of a DBN is to determine the conditional prob-
ability distribution of nodes in the network under the premise of a given network
structure. Each node is associated with a probability table indicating the probability
of the variable with respect to its possible states. According to the initial and con-
ditional probability distributions, a dynamic Bayesian network can be expanded to
the t-th time slice to obtain a joint probability distribution spanning multiple time
slices. The conditional distribution between the variables of two adjacent time slices is
determined using Equation (1):

P(Zt|Zt−1) =
N

∏
i=1

P(Zi
t|Pa(Zi

t)), (1)

where Zi
t is the i-th node on the t-th time slice, and Pa(Zi

t) is the parent node of
Zi

t. Each node has a conditional probability distribution P(Zi
t
∣∣Pa(Zi

t)) in each time
slice. The details of the three types of probability distributions for a DBN can be found
in [48].

Consequently, sensitivity analysis is conducted to rank the individual variables with
respect to their contributions to the overall system (as the output) variability and then
identify the key factor path that affects the whole system. The details of the model validation
method for a DBN can be found in [44].

3. Case Study

In this paper, the typical navigational accident-collision is chosen as the case to in-
terpret the proposed framework, considering the formation process of ship collision risks
from the occurrence of ship collision risk (phase 1) to the close-quarters situation (phase 2),
and to immediate danger (phase 3). The framework is applied to explore the causal chain
of collision accidents caused by the unsafe acts of seafarers.
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3.1. Step 1: Identification of Unsafe Acts

The Maritime Accident/Incident Investigation Report (MAIR) is a significant data
source for maritime safety analysis, recording the involved ships, the details of maritime
accidents, and the detailed causes of the accidents [34,49,50]. In light of this, we investigated
global MAIRs for collision accidents from 2000 to 2019 as reported by 9 organizations or
institutions. The collection of the MAIRs is based on two criteria: (1) the report is written
in English or Chinese so that we can understand clearly, and (2) the report describes the
detailed information of the collision accidents, including the causes, evolution process, and
consequences. A total of 207 global collision accident investigation reports were obtained,
and the data source of these MAIRs is shown in Table 1.

Table 1. Sources of the 207 global collision accident investigation reports.

No Source Number of Reports Link

1 Marine Accident Investigation Branch (MAIB) 58 https://www.gov.uk/government/organisations/marine-accident-
investigation-branch (accessed on 1 October 2022)

2 Australian Transport Safety Bureau (ATSB) 22 http://www.atsb.gov.au (accessed on 1 October 2022)
3 Transport Accident Investigation Commission (TAIC) 8 https://www.taic.org.nz (accessed on 1 October 2022)

4 Transportation Safety Board of Canada (TSB) 15 https://www.canada.ca/en/transportation-safety-board.html
(accessed on 1 October 2022)

5 Swedish Accident Investigation Authority (SHK) 5 https://www.havkom.se/en (accessed on 1 October 2022)

6 National Transport Safety Board (NTSB) 34 https://www.ntsb.gov/safety/Pages/default.aspx
(accessed on 1 October 2022)

7 Maritime Safety Administration of the People’s
Republic of China (MSA) 62 https://www.msa.gov.cn/page/html/shiguyufang.jsp

(accessed on 1 October 2022)

9 Dutch Transportation Safety Board (DTSB) 3 https://www.onderzoeksraad.nl/en/page/12025/investigations
(accessed on 1 October 2022)

Total 207

Before text mining the collected 207 MAIRs of global collision accidents, we identified
the potential risk factors of collision accidents with respect to the identified factors in the
existing publications. Then, the potential risk factors were coded for deep excavating in
the 207 MAIRs by using Nvivo software. Suppose one risk factor is recognized as the
cause of the collision accident. In that case, we count 1, no matter how many times the
factor exists in the MAIRs. Next, the critical risk factors were obtained according to the
frequency of each factor in the 207 MAIRs. Subsequently, based on the frequency statistics
of specific unsafe acts of seafarers which led to collision accidents extracted from the 207
MAIRs, the ship-handling acts whose frequency is higher than 50 and can be reflected
by the navigation simulator are selected. Finally, five critical unsafe acts were identified
related to the frequency of occurrence in these collision accident investigation reports, as
shown in Table 2.

Table 2. Critical unsafe acts of seafarers in the 207 collision accidents.

No Unsafe Act Frequency Percentage * Explanation Reference

1 Unsafe speed 60 29.0% Failure to maintain a safe speed for
collision avoidance [51–53]

2 Issuance of maneuvering and warning
signals failure 55 26.6% Failure to issue maneuvering and warning

signals or issue wrong signals [1,54]

3 Improper decision making 72 34.8% Take avoiding action too late [51,55]

4 Improper collision-avoiding action 78 37.7% Turning range in the alteration of the
ship’s course < 30◦ [51–53]

5 Inadequate VHF communication 127 61.4% Failure to communicate with VHF (very
high frequency) [1,19,54]

* Percentage of times mentioned in the cause of collision in the 207 MAIRs.

It is noteworthy that severe weather, sea conditions, and the condition of the ship were
also important, influential risk factors which induced collision accidents [52,56], which are
considered in the simulation experiment and process risk modeling steps.

https://www.gov.uk/government/organisations/marine-accident-investigation-branch
https://www.gov.uk/government/organisations/marine-accident-investigation-branch
http://www.atsb.gov.au
https://www.taic.org.nz
https://www.canada.ca/en/transportation-safety-board.html
https://www.havkom.se/en
https://www.ntsb.gov/safety/Pages/default.aspx
https://www.msa.gov.cn/page/html/shiguyufang.jsp
https://www.onderzoeksraad.nl/en/page/12025/investigations
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3.2. Step 2: Simulation Experiment

In this step, a simulation experiment was designed to further explore the evolution of
unsafe behavior of seafarers from ship encounter phases, considering the identified critical
unsafe acts by the seafarers from global collision accident investigation reports.

3.2.1. Experiment Participants

In total, 169 participants were recruited, comprising 75 senior students majoring in
marine technology and 94 seafarers with sailing experience. The students and seafarers
participated in the experiment from 19 November 2017 to 23 April 2018. All participants
were required to hold a crew certificate before participation. All participants were men,
with an average age of 27.4 years (range: 21–39 years, standard deviation (SD) = 6.2) and
average sailing history of 70.8 months (range: 18–204 months, SD = 4.6). The ranks of
seafarers ranged from third officer to captain.

3.2.2. Experimental Procedure

Before conducting the experiment, participants were asked to familiarize themselves
with the basic operations of the simulator, such as docking, deceleration, course alteration,
and course- and speed-change integration. The experimental simulation time ranged from
15 to 20 min, and the voyage distance was approximately 4 nautical miles. Ship A was
driven by a participant, and Ship B, piloted by a nautical teacher, was required to sail from
the initial position to the North Passage of the Yangtze Estuary. A crossing situation was
devised in which the participant, unaware of the intention of ship B and piloting the vessel
required to give way, was required to undertake a series of actions to prevent a collision.
The initial distance between the two ships was four nautical miles. Figure 5 depicts the
vessel track map used in the experiment.
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The navigation experiment simulation overview and the resulting data on behavior
are listed in Tables 3 and 4, respectively.

Table 3. Simulation overview.

Parameter 1 Scenario

Location of Experiment Waters near the north passage of the Yangtze Estuary

Experimental Conditions Good visibility (>10 nautical miles), poor visibility
(foggy; <2 nautical miles)

Duration of Experiment 15–20 min, voyage distance of approximately 4 nautical miles
1 Data source: [47].
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Table 4. Crew behavior when preventing collisions on a navigation simulator during the ship
encounter phase.

No. Visibility Decision-
Making

VHF
Communication

Issuance of Maneuvering and
Warning Signals Speed Turning

Range Ship Status

1 Good No—No—Yes No—No—Yes No action—No action—Correct Maintain speed—Maintain
speed—Maintain speed /—/—15 Collision

2 Poor Yes—No—No Yes—No—No Correct—No action—No action Decelerate—Maintain
speed—Maintain speed 32—/—/ Safety

3 Poor Yes—No—No Yes—No—No Correct—No action—No action Maintain speed—Maintain
speed—Maintain speed 32—/—/ Safety

. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

169 Good No—Yes—Yes No—Yes—Yes No action—Wrong—Wrong Maintain speed—Maintain
speed—Maintain speed /—15—25 Collision

Data source: [47].

3.3. Step 3: Process Risk Modeling

According to the ship encounter phases shown in Figure 2, the DBN model can be
divided into three time slices based on the distance for collision avoidance: the occurrence
of ship collision risk (phase 1), close-quarters situation (phase 2), and immediate danger
(phase 3). The data on unsafe acts were collected through experiments conducted on the
navigation simulator. Table 5 shows the states and related explanations of each network
node, where state i (i = 1, 2, or 3) represents the i-th state of the node. The values for state 1,
state 2, and state 3 are binary, given as [0, 1], indicating the probability of each state.

Table 5. Definitions and states of the DBN nodes.

Phase Node Symbol State 1 (S1) State 2 (S2) State 3 (S3)

Occurrence of ship
collision risk

Low collision risk t1 CRt1 Yes No
Decision making t1 DMt1 Yes No

Visibility t1 Vt1 Poor Good
Adequate VHF communication t1 VHFt1 Yes No

Speed t1 Spt1 Accelerate Decelerate Maintain
Maneuvering and warning signals t1 Sit1 Correct Wrong No_action

Turning range t1 TRt1 Obvious Not_obvious No_turn

Close-quarters
situation

Medium collision risk t2 CRt2 Yes No
Decision making t2 DMt2 Yes No

Visibility t2 Vt2 Poor Good
Adequate VHF communication t2 VHFt2 Yes No

Speed changing t2 Spt2 Accelerate Decelerate Maintain
Maneuvering and warning signals t2 Sit2 Correct Wrong No_action

Turning range t2 TRt2 Obvious Not_obvious No_turn

Immediate danger

High collision risk t3 CRt3 Yes No
Decision making t3 DMt3 Yes No

Visibility t3 Vt3 Poor Good
Adequate VHF communication t3 VHFt3 Yes No

Speed changing t3 Spt3 Accelerate Decelerate Maintain
Maneuvering and warning signals t3 Sit3 Correct Wrong No_action

Turning range t3 TRt3 Obvious Not_obvious No_turn

As the navigation simulation experiment data on the ship-handling behaviors during
collision avoidance include proper very high frequency (VHF) communication, appropriate
issuance of maneuvering and warning signals, and course change speed and turning range,
the above-mentioned behaviors were used as the nodes in each time slice, and a discrete
DBN composed of 21 nodes was created, as shown in Figure 6.
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Figure 6. The structure of the DBN model.

Figure 6 displays the prior probability distribution determined by the percentages of
collected samples of the seafarers’ actions. The conditional probability of each child node is
consistent with the definition of CPTs, which measures the probability of the child node
occurring given that the parent node has already occurred. Based on the behavioral data
obtained from the experiment and the relevant environmental information (Tables 3 and 4),
the probability distribution of the state of each node in Figure 5 was derived through the
reasoning process described in Section 2.3. The BN development software GeNIe was used
to calculate the network probability propagation based on the prior probability distribution
of the maritime accident network. Figure 7 displays the resulting posterior probability
distribution of the DBN model.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

CRt1

Spt1

DMt1

Vt1
Sit1

VHFt1

TRt1

CRt2

Spt2

DMt2

Vt2

Sit2

VHFt2

TRt2

CRt3

Spt3

DMt3

Vt3

Sit3

VHFt3

TRt3

Phase 1

Occurrence of ship 

collision risk

Phase 2

Close-quarters 

situation

Phase 3

Immediate 

danger  

Figure 6. The structure of the DBN model. 

Figure 6 displays the prior probability distribution determined by the percentages of 

collected samples of the seafarers’ actions. The conditional probability of each child node 

is consistent with the definition of CPTs, which measures the probability of the child node 

occurring given that the parent node has already occurred. Based on the behavioral data 

obtained from the experiment and the relevant environmental information (Tables 3 and 

4), the probability distribution of the state of each node in Figure 5 was derived through 

the reasoning process described in Section 2.3. The BN development software GeNIe was 

used to calculate the network probability propagation based on the prior probability dis-

tribution of the maritime accident network. Figure 7 displays the resulting posterior prob-

ability distribution of the DBN model. 

 

Figure 7. Posterior probability distribution of the DBN model. 

Table 6 displays the relative error between the posterior probability (predicted value) 

and the sample probability (true value) of the target node at each phase. 

Table 6. Model validity analysis of the ship status node in the three phases. 

Phase Ship State Frequency/Number 
Distribution Prob-

ability 

Posterior Probability Distri-

bution 
Relative Error 

Immediate dan-

ger (t3) 

No 98 58.0% 58.3% 0.0052 

Yes 71 42.0% 41.7% 0.0071 

No 45 26.6% 25.6% 0.0386 

Figure 7. Posterior probability distribution of the DBN model.

Table 6 displays the relative error between the posterior probability (predicted value)
and the sample probability (true value) of the target node at each phase.
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Table 6. Model validity analysis of the ship status node in the three phases.

Phase Ship State Frequency/Number Distribution
Probability

Posterior Probability
Distribution Relative Error

Immediate danger
(t3)

No 98 58.0% 58.3% 0.0052
Yes 71 42.0% 41.7% 0.0071

Close-quarters
situation (t2)

No 45 26.6% 25.6% 0.0386
Yes 124 73.4% 74.4% 0.0140

Occurrence of ship
collision risk (t1)

No 3 1.8% 3.2% 0.8258
Yes 166 98.2% 96.8% 0.0150

Note: “No” in phases t1 and t2 refers to a state in which seafarers were not required to take avoidance measures
in subsequent phases to avoid a collision, and “Yes” refers to a state in which seafarers either were required to
take avoidance measures or caused collisions after failing to such take measures.

The data in Table 6 show that the predicted results of the target node were consistent
with the experimental data. More than 80% of the relative error values were below 0.05,
indicating that the network model was reasonable and effective.

4. Discussion

A sensitivity analysis was used to compare changes in the probability values of a
target node’s associated nodes to identify the nodes that had the greatest effect on the target
node. Mutual information was the main indicator to measure the degree of association
between random variables in the sensitivity analysis [57]. The larger the value of mutual
information, the greater the degree of association between the variables. To identify the
dynamic causal chain of ship collision accidents, this study conducts sensitivity analysis on
the respective three ship encounter phases to identify the key unsafe acts that affect ship
safety in each phase.

4.1. Phase 1: Occurrence of Ship Collision Risk

The sensitivity analysis of output nodes under the influence of the low collision risk
(CRt1) node in the occurrence of ship collision risk phase is shown in Figure 8. The tornado
diagram with “CRt1” as the target variable for sensitivity analysis is shown in Figure 9.
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The influence analysis was carried out in the software GeNIe to examine the validity
of the DBN model. It can be seen from Figures 8 and 9 that when the node (variable) CRt1 is
used as the sensitivity analysis target, the important effects are TRt1, Sit1, and DMt1, which
shows that that failure to undertake a substantial alteration of course in time, issuance of
maneuvering and warning signals failure, and a failure to make early decisions are the
critical factors that fail to detect the danger of collision and avoid the occurrence of collision
in time.

4.2. Phase 2: Close-Quarters Situation

The sensitivity analysis of output nodes under the influence of the medium collision
risk (CRt2) node in the occurrence of the ship collision risk phase is shown in Figure 10. The
tornado diagram depicting the full range analysis of the sensitivity of the DBN model with
the node of medium collision risk “CRt2” as the target variable of the sensitivity analysis is
shown in Figure 11.

The influential degree of each act factor shows an increasing trend with time. It can
be seen from Figures 10 and 11 that the most prominent factors are TRt2, TRt1, Sit1, DMt1,
VHFt1, and Spt2, noting that their mutual information values were all higher than 0.01.
Compared with phase 1, the collision risk in phase 2 is not only related to the avoidance
range (in phases 1 and 2), the issuance of warning signals (in phase 1), and early decision-
making (in phase 1) but also related to whether VHF communication had been carried out
in time (in phase 1) and whether unsafe speed had been used (in phase 2).
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4.3. Phase 3: Immediate Danger

In the same way, the sensitivity analysis results with CRt3 (high collision risk) used as
the target node are shown in Figures 12 and 13, respectively.

The important effects of TRt3, TRt2, VHFt3, DMt3, Spt3, DMt2, and Vt3 and their
resultant statistical sensitivity numerical values are shown in Table 7.

Table 7 shows that the mutual information value of the avoidance range in the imme-
diate danger phase was the largest, reaching 0.2091. The second largest was that for the
avoidance range in the close-quarters situation phase, with a mutual information value
of 0.0351. The third largest was that for VHF communication in the immediate danger
phase, with a mutual information value of 0.0336. The mutual information values of the
other nodes were relatively small. These results indicate that improper maintenance of the
avoidance range was the primary act leading to a collision.
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Figure 13. Tornado diagram with “CRt3” as the target variable for sensitivity analysis.

Table 7. Sensitivity analysis results.

Node Mutual Information Percentage

CRt3 0.9802 100%
TRt3 0.2091 21.30%
TRt2 0.0351 3.92%

VHFt3 0.0336 3.44%
DMt3 0.0136 1.39%
Spt3 0.0129 1.31%

DMt2 0.0108 1.11%
Vt3 0.0090 1.03%

4.4. Reverse Reasoning

The high collision risk of the CRt3 node in the final phase was used as the starting
point, and the state of collision (Yes = 100%) was used as the evidence node to identify
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the causal probability of the seafarers’ acts and the nodes with the maximum posterior
probability through reverse reasoning. Figure 14 shows the reverse reasoning diagram of
the DBN model.
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Figure 14 demonstrates that in the occurrence of ship collision risk (phase 1), the
posterior probability values for failing to turn to avoid collision, maintaining speed, failing
to perform VHF communication, failing to make decisions, and poor visibility were 77.7%,
94.5%, 81.2%, 77.9%, and 52.6%, respectively. In the close-quarters situation (phase 2),
the probability values for failing to turn to avoid collision, maintaining speed, failing
to perform VHF communication, and poor visibility were 62%, 77%, 68.8%, and 52.6%,
respectively. In the immediate danger (phase 3), the probability of being unaware of the
avoidance range, failing to perform VHF communication, failing to make decisions as
soon as possible, maintaining speed, and having a poor navigational environment rose
from 46.4%, 47.9%, 44.5%, 92.2%, and 49.7 % to 71.6%, 56.2%, 52.5%, 96.3%, and 52.6%,
respectively. Furthermore, the causal chain of accidents was identified by analyzing changes
in the probabilities of the aforementioned nodes. When the high collision risk of CRt3
reached 100%, the parent node with the maximum posterior probability was identified
downward, and the state was the most likely path (causal chain) to a collision. Table 8
shows the maximum posterior probability distribution of the behavior nodes.

Table 8. Maximum posterior probability distribution of act nodes.

Vt1 DMt1 DMt2 DMt3 VHFt3 Spt3 Sit3 TRt3

Poor
No (77.9%) No (66%) No (52.5%)

No (77.9%) No (66%) Yes (47.5%) No (56.2%) Maintain
(96.3%) Correct (64%) Not_obvious

(71.6%)

Table 8 indicates that collisions occurred more frequently during poor visibility condi-
tions. A total of 52.5% of the collisions resulted from the following chain of events: poor
visibility→ no avoidance decision in the occurrence of ship collision risk (phase 1)→no
avoidance decision in the close-quarters situation (phase 2)→no avoidance decision in the
immediate danger (phase 3)→collision. A total of 47.5% of the collisions resulted from
the following chain of events: poor visibility→ no avoidance decision in the occurrence of
ship collision risk (phase 1) or the close-quarters situation (phase 2)→making an avoidance
decision in the immediate danger (phase 3)→failure to perform VHF communication→
failure to decelerate→ unclear turning range→ collision.
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5. Conclusions

This paper proposes a framework for probabilistic analysis of maritime accidents
caused by the unsafe acts of seafarers by incorporating navigation simulation and dynamic
Bayesian network modeling. Ship collision is chosen as the case for multiple analyses of the
causal networks of collisions caused by seafarers’ unsafe acts, which revealed the occurrence
of collision accidents and their evolutionary mechanisms. Based on data analyzed in
historical collision accident investigation reports, the acts of seafarers collected through a
navigation simulator, and a dynamic Bayesian model, this study analyzes the key unsafe
acts and dynamic causal processes that affect ship safety and yielded notable results.

The framework is applied to explore the causal chain of collision accidents caused by
the unsafe acts of seafarers. Results demonstrate that poor navigation environment (poor
visibility) and unsafe seafarers’ acts were the primary causes of collisions. The acts–accident
causal chain reveals that failure to undertake a substantial alteration of course (turning
range >30◦), failure to perform VHF communication, failure to decelerate, and in particular,
unawareness of the avoidance turning range, which had been rarely mentioned in the
literature, were the main causes of the collision. This study has practical importance for
the prevention of maritime accidents. According to the findings, further research can be
conducted on topics such as differences in behavior across various experimental conditions
and the outcomes of interventions to reduce the unsafe acts of seafarers. For example, by
changing the scenes of the simulation experiment, such as in narrow or open waters, it
can be recognized whether there are differences in the seafarers’ ship-handling behaviors
under different scenes. In addition, the relationship between individual characteristics and
unsafe behaviors can be determined by combining corresponding psychological tests in
subsequent experiments.

Improvements can also be made in future experiments. First, the navigation simulator
can effectively reproduce the navigation risk situation to collect data of seafarers’ ship
handling behaviors under the risk situation, but can only reproduce a limited number
of scenes, such as some specific ship types and tonnage, as well as specific waterways.
Secondly, only seafarers’ unsafe acts and visibility in navigation are considered in this
paper. In further study, other factors such as insufficient management and ship equipment
failures mentioned in the maritime accident investigation reports can be considered to
improve the causal chain. Moreover, the validity of DBNs depends on the reliability of
prior knowledge given to them, and minor mistakes in the prior knowledge may distort
the results of the entire network. Collecting more experimental sample data is necessary to
obtain more reliable prior beliefs in future modeling.
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