O2 and CO2 Responses of the Synaptic Period to Under-Ice Phytoplankton Bloom in the Eutrophic Razdolnaya River Estuary of Amur Bay, the Sea of Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Work, Hydrological Surveys and Water Sampling
2.3. Laboratory Analysis
3. Results
3.1. Hydrological Conditions
3.2. Chl-a Concentration
3.3. DO Concentration
3.4. Chl-a Vs. AOU Curve
3.5. pH, pCO2
4. Discussion
4.1. Light Conditions
4.2. The Concentration of Nutrients
4.3. Water Layer Stability
4.4. Effects of the Bloom on the Estuarine Ecosystem
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cloern, J.E.; Foster, S.Q.; Kleckner, A.E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 2014, 11, 2477–2501. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.; Borges, A.V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Feely, R.A.; Alin, S.R.; Newton, J.; Sabine, C.L.; Warner, M.; Devol, A.; Krembs, C.; Maloy, C. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 2010, 88, 442–449. [Google Scholar] [CrossRef]
- Wallace, R.B.; Gobler, C.J. The role of algal blooms and community respiration in controlling the temporal and spatial dynamics of hypoxia and acidification in eutrophic estuaries. Mar. Pollut. Bull. 2021, 172, 112908. [Google Scholar] [CrossRef]
- Tishchenko, P.; Lobanov, V.; Kaplunenko, D.; Sagalaev, S.; Tishchenko, P. Acidification and Deoxygenation of the Northwestern Japan/East Sea. J. Mar. Sci. Eng. 2021, 9, 953. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Bianchi, T.S.; DiMarco, S.F.; Cowan, J.H., Jr.; Hetland, R.D.; Chapman, P.; Day, J.W.; Allison, M.A. The science of hypoxia in the Northern Gulf of Mexico: A review. Sci. Total Environ. 2010, 408, 1471–1484. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, T.; Huang, D.; Liu, S.M.; Fang, J. Editorial: Eutrophication and hypoxia and their impacts on the ecosystem of the Changjiang Estuary and adjacent coastal environment. J. Mar. Syst. 2016, 154, 1–4. [Google Scholar] [CrossRef]
- Du, J.; Shen, J.; Park, K.; Wang, Y.P.; Yu, X. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Sci. Total Environ. 2018, 630, 707–717. [Google Scholar] [CrossRef]
- Tishchenko, P.Y.; Tishchenko, P.P.; Lobanov, V.B.; Mikhaylik, T.A.; Sergeev, A.F.; Semkin, P.Y.; Shvetsova, M.G. Impact of the transboundary Razdolnaya and Tumannaya Rivers on deoxygenation of the Peter the Great Bay (Sea of Japan). Estuar. Coast. Shelf Sci. 2020, 239, 106731. [Google Scholar] [CrossRef]
- Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1978, 1, 493–509. [Google Scholar]
- Lionard, M.; Azémar, F.; Boulêtreau, S.; Muylaert, K.; Tackx, M.; Vyverman, W. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde estuary (Belgium/The Netherlands). Estuar. Coast Shelf Sci. 2005, 79, 694–700. [Google Scholar] [CrossRef]
- Li, C.; Yang, G.; Ning, J.; Sun, J.; Yang, B.; Sun, S. Response of copepod grazing and reproduction to different taxa of spring bloom phytoplankton in the Southern Yellow Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2013, 97, 101–108. [Google Scholar] [CrossRef]
- Brussaard, C.P.D. Viral control of phytoplankton populationsa review. J. Eukaryot. Microbiol. 2004, 51, 125–138. [Google Scholar] [CrossRef]
- Sarthou, G.; Timmermanns, K.R.; Blain, S.; Tréguer, P. Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 2005, 53, 25–42. [Google Scholar] [CrossRef]
- Armbrust, E. The life of diatoms in the world’s oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef]
- Carstensen, J.; Klais, R.; Cloern, J.E. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuar. Coast. Shelf Sci. 2015, 162, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Hampton, S.E.; Galloway, A.W.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef]
- Kong, X.; Seewald, M.; Dadi, T.; Friese, K.; Mi, C.; Boehrer, B.; Schultze, M.; Rinke, K.; Shatwell, T. Unravelling winter diatom blooms in temperate lakes using high frequency data and ecological modeling. Water Research 2021, 190, 116681. [Google Scholar] [CrossRef]
- Sakshaug, E. Primary and secondary production in the Arctic seas Stein. In The Organic Carbon Cycle in the Arctic Ocean; Stein, R., Macdonald, R.W., Eds.; Springer: New York, NY, USA, 2004; pp. 57–81. [Google Scholar] [CrossRef]
- Grebmeier, J.M. Shifting patterns of life in the pacific arctic and sub-arctic seas. Annu. Rev. Mar. Sci. 2012, 4, 63–78. [Google Scholar] [CrossRef]
- Huntington, H.; Carmack, E.; Wassmann, P.; Wiese, F.; Leu, E.; Gradinger, R. A new perspective on changing Arctic marine ecosystems: Panarchy adaptive cycles in pan-Arctic spatial and temporal scales. In Ocean Sustainability in the 21st Century; Aricò, S., Ed.; Cambridge University Press: Cambridge, UK, 2015; pp. 109–126. [Google Scholar] [CrossRef]
- Trifoglio, N.L.; Salinas, H.F.O.; Franzosi, C.A.; Alder, V.A. Annual cycle of phytoplankton, protozoa and diatom species from Scotia Bay (South Orkney Islands, Antarctica): Community structure prior to, during and after an anomalously low sea ice year. Pr. Oceanog. 2022, 204, 102807. [Google Scholar] [CrossRef]
- Pan, C.-W.; Chuang, Y.-L.; Chou, L.-S.; Chen, M.-H.; Lin, H.-J. Factors governing phytoplankton biomass and production in tropical estuaries of western Taiwan. Cont. Shelf Res. 2016, 118, 88–99. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. Phytoplankton, dissolved oxygen and nutrient patterns along a eutrophic river-estuary continuum: Observation and modeling. J. Environ. Manag. 2020, 261, 110233. [Google Scholar] [CrossRef]
- Zhou, F.; Lu, X.; Chen, F.; Zhu, Q.; Meng, Y.; Chen, C.; Lao, Q.; Zhang, S. Spatial-Monthly Variations and Influencing Factors of Dissolved Oxygen in Surface Water of Zhanjiang Bay, China. J. Mar. Sci. Eng. 2020, 8, 403. [Google Scholar] [CrossRef]
- Nwe, L.W.; Yokoyama, K.; Azhikodan, G. Phytoplankton habitats and size distribution during a neap-spring transition in the highly turbid macrotidal Chikugo River estuary. Sci. Total Environ. 2022, 850, 157810. [Google Scholar] [CrossRef]
- Coffin, M.R.S.; Knysh, K.M.; Roloson, S.D.; Pater, C.C.; Theriaul., E.; Cormier, J.M.; Courtenay, S.C.; van den Heuvel, M.R. Influence of nutrient enrichment on temporal and spatial dynamics of dissolved oxygen within northern temperate estuaries. Environ. Monit. Assess. 2021, 193, 804. [Google Scholar] [CrossRef]
- Thompson, P.A. Spatial and temporal patterns of factors influencing phytoplankton in a salt wedge estuary, the Swan River, western Australia. Estuaries 1998, 21, 801–817. [Google Scholar] [CrossRef]
- Kasai, A.; Kurikawa, Y.; Ueno, M.; Robert, D.; Yamashita, Y. Salt-wedge intrusion of seawater and its implication for phytoplankton dynamics in the Yura Estuary, Japan. Estuar. Coast. Shelf Sci. 2010, 86, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Sim, B.-R.; Kim, H.-C.; Kim, C.-S.; Kim, J.-H.; Park, K.-W.; Lim, W.-A.; Lee, W.-C. Seasonal Distributions of Phytoplankton and Environmental Factors Generate Algal Blooms in the Taehwa River, South Korea. Water 2020, 12, 3329. [Google Scholar] [CrossRef]
- Dyer, K.R. Estuaries: A Physical Introduction, 2nd ed.; John Wiley and Sons: Chichester, UK, 1998; p. 210. ISBN 978-0-471-97471-0. [Google Scholar]
- Watanabe, K.; Kasai, A.; Antonio, E.S.; Suzuki, K.; Ueno, M.; Yamashita, Y. Influence of salt-wedge intrusion on ecological processes at lower trophic levels in the Yura Estuary, Japan. Estuar. Coast. Shelf Sci. 2014, 139, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Le Moal, M.; Gascuel-Odoux, C.; Menesguen, A.; Souchon, Y.; Etrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tishchenko, P.Y.; Semkin, P.J.; Tishchenko, P.P.; Zvalinsky, V.I.; Barabanshchikov, Y.A.; Mikhailik, T.A.; Sagalaev, S.G.; Shvetsova, M.G.; Shkirnikova, E.V.; Shulkin, V.M. Hypoxia of bottom waters of the Razdolnaya River estuary. Doklady Earth Sci. 2017, 476, 1207–1211. [Google Scholar] [CrossRef]
- Mikhailik, T.A.; Tishchenko, P.Y.; Koltunov, A.M.; Tishchenko, P.P.; Shvetsova, M.G. The effect of Razdol’naya River on the environmental state of Amur Bay (the Sea of Japan). Water Res. 2011, 38, 512–521. [Google Scholar] [CrossRef]
- Stonik, I.V.; Orlova, T.Y. Summer-Autumn phytoplankton in Amurskii bay, Sea of Japan. Russ. J. Mar. Biol. 1998, 24, 207–213. [Google Scholar]
- Orlova, T.Y.; Stonik, I.V.; Shevchenko, O.G. Flora of planktonic microalgae of Amursky Bay, Sea of Japan. Russ. J. Mar. Biol. 2009, 35, 60–78. [Google Scholar] [CrossRef]
- Sorokin, Y.I.; Konovalova, G.W. Production and decomposition of organic matter in a bay of the Japan sea during the winter diatom bloom. Limnol. Oceanogr. 1973, 18, 962–967. [Google Scholar] [CrossRef]
- Shevchenko, O.G.; Shulgina, M.A.; Shulkin, V.M.; Tevs, K.O. The Long-Term Dynamics and Morphology of the Diatom Thalassiosira nordenskioeldii Cleve, 1873 (Bacillariophyta) from the Coastal Waters of Peter the Great Bay, Sea of Japan. Russ. J. Mar. Biol. 2020, 46, 284–291. [Google Scholar] [CrossRef]
- Zvalinsky, V.I.; Maryash, A.A.; Shvetsova, M.G.; Sagalaev, S.G.; Stonik, I.V.; Begun, A.A.; Tishchenko, P.Y. Production and hydrochemical characteristics of ice, under-ice water and sediments in the Razdolnaya River estuary (Amursky Bay, Sea of Japan). Russ. J. Mar. Biol. 2010, 36, 270–281. [Google Scholar] [CrossRef]
- Grasshoff, K.; Ehrhard, M.; Kremling, K. Methods of Seawater Analysis; Verlag Chemie: Weinheim, Germany, 1983; p. 419. [Google Scholar]
- Tishchenko, P.; Zhang, J.; Pavlova, G.; Tishchenko, P.; Sagalaev, S.; Shvetsova, M. Revisiting the Carbonate Chemistry of the Sea of Japan (East Sea): From Water Column to Sediment. J. Mar. Sci. Eng. 2022, 10, 438. [Google Scholar] [CrossRef]
- Dickson, A.G. pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 1984, 48, 2299–2308. [Google Scholar] [CrossRef]
- Pavlova, G.Y.; Tishchenko, P.Y.; Volkova, T.I.; Dickson, A.; Wallmann, K. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 2008, 48, 438–443. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. (Eds.) Guide to Best Practices for Ocean CO2 Measurements; PICES Special Publication 3; PICES: Sidney, BC, Canada, 2007; 191p, Available online: http://hdl.handle.net/11329/249 (accessed on 31 October 2022).
- Twomey, L.; John, J. Effects of rainfall and salt-wedge movement on phytoplankton succession in the Swan-Canning Estuary, Western Australia. Hydrol. Process. 2011, 15, 2655–2669. [Google Scholar] [CrossRef]
- González del Río, J.; Romero, I.; Falco, S.; Rodilla, M.; Saez, M.; Sierra, J.P.; Sánchez-Arcilla, A.; Mösso, C. Changes in phytoplankton population along the saline gradient of the Júcar Estuary and Plume. J. Coast. Res. 2007, 47, 63–68. [Google Scholar] [CrossRef]
- Perovich, D.K.; Roesler, C.S.; Pegau, W.S. Variability in Arctic sea ice optical properties. J. Geophys. Res. Oceans 1998, 103, 1193–1208. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97JC01614 (accessed on 31 October 2022). [CrossRef]
- Brzezinski, M.A. The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. J. Phycol. 1985, 21, 347–357. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of sea-water. In The Composition of Seawater: Comparative and Descriptive Oceanography; Hill, M.N., Ed.; The Sea Interscience: New York, NY, USA, 1963; Volume 2, pp. 26–77. [Google Scholar]
- Semkin, P.Y.; Tishchenko, P.Y.; Charkin, A.N.; Pavlova, G.Y.; Anisimova, E.V.; Barabanshchikov, Y.A.; Mikhailik, T.A.; Tibenko, E.Y.; Tishchenko, P.P.; Shvetsova, M.G.; et al. Isotopic, hydrological and hydrochemical indicators of submarine groundwater discharge in the estuary of Razdolnaya River (Amursky Bay, Sea of Japan) in the ice covered period. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2021, 3, 29–43. (In Russian) [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Shulkin, V.; Tishchenko, P.; Semkin, P.; Shvetsova, M. Influence of river discharge and phytoplankton on the distribution of nutrients and trace metals in Razdolnaya River estuary, Russia. Estuar. Coast. Shelf Sci. 2018, 211, 166–176. [Google Scholar] [CrossRef]
- Spaulding, S.; Baron, J. Winter Phytoplankton Dynamics in a Subalpine Lake. Arch. Hydrobiol. 1993, 129, 179–198. [Google Scholar] [CrossRef]
- D’souza, N.; Kawarasaki, Y.; Gantz, J.; Lee, R.; Beall, B.; Shtarkman, Y.; Kocer, Z.; Rogers, S.; Wildschutte, H.; Bullerjahn, G.; et al. Diatom assemblages promote ice formation in large lakes. ISME J. 2013, 7, 1632–1640. [Google Scholar] [CrossRef]
- Semkin, P.Y.; Tishchenko, P.Y.; Lobanov, V.B.; Barabanshchikov, Y.A.; Mikhailik, T.A.; Sagalaev, S.G.; Tishchenko, P.P. Water exchange in the Estuary of Razdolnaya River (Amur Bay, Sea of Japan) in the ice-covered period. Izv. TINRO 2019, 196, 123–137. (In Russian) [Google Scholar] [CrossRef]
- Alldredge, A.L.; Silver, W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 1988, 20, 41–82. [Google Scholar] [CrossRef]
- Passow, U.; Alldredge, A.L.; Logan, B.E. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Res. I 1994, 41, 335–357. [Google Scholar] [CrossRef]
- Riebesell, U. The formation of large marine snow and its sustained residence in surface waters. Limnol. Oceanogr. 1992, 37, 63–76. [Google Scholar] [CrossRef]
- Pavlova, G.Y.; Tishchenko, P.Y.; Khodorenko, N.D.; Shvetsova, M.G.; Sagalaev, S.G. Major ion composition and carbonate equilibrium in the sediment pore water of the Razdol’naya River estuary of Amur Bay, the Sea of Japan. Russ. J. Pac. Geol. 2012, 6, 251–262. [Google Scholar] [CrossRef]
- Smetacek, V. Diatoms and the ocean carbon cycle. Protist 1999, 150, 25–32. [Google Scholar] [CrossRef]
- Kolpakov, N.V.; Milovankin, P.G. Distribution and seasonal changes in fish abundance in the estuary of the Razdolnaya River (Peter the Great Bay), Sea of Japan. J. Ichthyol. 2010, 50, 445–459. [Google Scholar] [CrossRef]
Station Numbers | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
22-Jan. | 75 | 70 | 65 | 60 | 65 | 64 | 56 | 56 | 60 | 56 | 50 | 40 | 53 | 48 | |
28-Jan. | 79 | 73 | 66 | 64 | 65 | 65 | 58 | 56 | 61 | 58 | 51 | 42 | 56 | 51 | 45 |
4-Feb. | 83 | 75 | 68 | 65 | 67 | 67 | 56 | 57 | 62 | 57 | 50 | 35 | 50 | 55 | 49 |
11-Feb. | 81 | 76 | 70 | 69 | 70 | 70 | 56 | 55 | 62 | 58 | 50 | 40 | 64 | 60 | 54 |
23-Feb. | 90 | 79 | 66 | 67 | 69 | 69 | 55 | 55 | 61 | 59 | 52 | 41 | 70 | 66 | 60 |
Profiling | Spectrophotometry | ||
---|---|---|---|
St. | Chl-a, µg/L | Chl-a, µg/L | Pheo, µg/L |
1s | 7.8 | 5.6 | 0.7 |
2s | 9.4 | 6.0 | 1.3 |
2b | 1.0 | 1.6 | 1.9 |
4s | 6.1 | 5.8 | 2.2 |
4b | 19.1 | 8.5 | 2.2 |
5s | 4.2 | 12.8 | 1.6 |
5b | 60.0 | 48.9 | 2.6 |
6s | 6.8 | 11.5 | 1.7 |
6b | 70.0 | 74.2 | 2.7 |
7s | 3.3 | 10.3 | 1.4 |
7b | 60.0 | 32.7 | 2.5 |
8s | 8.0 | 12.8 | 3.5 |
8b | 50.0 | 36.9 | 3.5 |
9s | 6.8 | 11.3 | 1.2 |
9b | 43.7 | 33.0 | 2.2 |
10s | 10.2 | 20.8 | 2.9 |
10b | 20.0 | 17.6 | 1.3 |
11b | 5.5 | 20.9 | 2.1 |
12b | 1.0 | 17.1 | 2.5 |
13s | 0.8 | 7.0 | 0.5 |
13b | 0.2 | 3.2 | 0.5 |
14s | 0.2 | 0.2 | 1.7 |
14b | 0.1 | 1.3 | 0.3 |
15s | 0.3 | 1.1 | 0.4 |
15b | 1.2 | 5.1 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semkin, P.; Tishchenko, P.; Pavlova, G.; Barabanshchikov, Y.; Tishchenko, P.; Shvetsova, M.; Shkirnikova, E.; Fedorets, Y. O2 and CO2 Responses of the Synaptic Period to Under-Ice Phytoplankton Bloom in the Eutrophic Razdolnaya River Estuary of Amur Bay, the Sea of Japan. J. Mar. Sci. Eng. 2022, 10, 1798. https://doi.org/10.3390/jmse10121798
Semkin P, Tishchenko P, Pavlova G, Barabanshchikov Y, Tishchenko P, Shvetsova M, Shkirnikova E, Fedorets Y. O2 and CO2 Responses of the Synaptic Period to Under-Ice Phytoplankton Bloom in the Eutrophic Razdolnaya River Estuary of Amur Bay, the Sea of Japan. Journal of Marine Science and Engineering. 2022; 10(12):1798. https://doi.org/10.3390/jmse10121798
Chicago/Turabian StyleSemkin, Pavel, Pavel Tishchenko, Galina Pavlova, Yuri Barabanshchikov, Petr Tishchenko, Maria Shvetsova, Elena Shkirnikova, and Yulia Fedorets. 2022. "O2 and CO2 Responses of the Synaptic Period to Under-Ice Phytoplankton Bloom in the Eutrophic Razdolnaya River Estuary of Amur Bay, the Sea of Japan" Journal of Marine Science and Engineering 10, no. 12: 1798. https://doi.org/10.3390/jmse10121798
APA StyleSemkin, P., Tishchenko, P., Pavlova, G., Barabanshchikov, Y., Tishchenko, P., Shvetsova, M., Shkirnikova, E., & Fedorets, Y. (2022). O2 and CO2 Responses of the Synaptic Period to Under-Ice Phytoplankton Bloom in the Eutrophic Razdolnaya River Estuary of Amur Bay, the Sea of Japan. Journal of Marine Science and Engineering, 10(12), 1798. https://doi.org/10.3390/jmse10121798