Integrating Shipping Domain Knowledge into Computer Vision Models for Maritime Transportation
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhuge, D.; Zhen, L.; Lee, C.Y. Liner shipping service planning under sulfur emission regulations. Transp. Sci. 2021, 55, 491–509. [Google Scholar] [CrossRef]
- Elmi, Z.; Singh, P.; Meriga, V.K.; Goniewicz, K.; Borowska-Stefańska, M.; Wiśniewski, S.; Dulebenets, M.A. Uncertainties in liner shipping and ship schedule recovery: A state-of-the-art review. J. Mar. Sci. Eng. 2022, 10, 563. [Google Scholar] [CrossRef]
- Abioye, O.F.; Dulebenets, M.A.; Kavoosi, M.; Pasha, J.; Theophilus, O. Vessel schedule recovery in liner shipping: Modeling alternative recovery options. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6420–6434. [Google Scholar] [CrossRef]
- Luo, M.; Shin, S.H. Half-century research developments in maritime accidents: Future directions. Accid. Anal. Prev. 2019, 123, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Jalkanen, J.; Anderson, B.; Corbett, J.; Faber, J.; Hanayama, S.; O’keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; et al. Third IMO Greenhouse Gas Study 2014; International Maritime Organization: London, UK, 2015. [Google Scholar]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; van der Loeff, W.S.; Smith, T.; Zhang, Y.; Kosaka, H.; et al. Reduction of GHG emissions from ships—Fourth IMO GHG study 2020—Final report. IMO MEPC 2020, 75, 15. [Google Scholar]
- IMO. Initial IMO GHG Strategy. 2019. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx (accessed on 25 July 2022).
- IMO. Maritime Safety. 2019. Available online: https://www.imo.org/en/OurWork/Safety/Pages/default.aspx (accessed on 25 July 2022).
- Zhang, J. Maritime Law in China: Emerging Issues and Future Developments; Routledge: London, UK, 2016. [Google Scholar]
- Ma, W.; Zhang, J.; Han, Y.; Zheng, H.; Ma, D.; Chen, M. A chaos-coupled multi-objective scheduling decision method for liner shipping based on the NSGA-III algorithm. Comput. Ind. Eng. 2022, 174, 108732. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, L.; Zhang, X.; Lv, W. Jointly optimizing ocean shipping routes and sailing speed while considering involuntary and voluntary speed loss. Ocean. Eng. 2022, 245, 110460. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhang, J.; You, X. Machine-type communication for maritime Internet of Things: A design. IEEE Commun. Surv. Tutor. 2020, 22, 2550–2585. [Google Scholar] [CrossRef]
- Liu, R.W.; Nie, J.; Garg, S.; Xiong, Z.; Zhang, Y.; Hossain, M.S. Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems. IEEE Internet Things J. 2020, 8, 5374–5385. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, Y.; Shi, C. Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 2009, 113, 345–352. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juang, C.F.; Chen, G.C. A TS fuzzy system learned through a support vector machine in principal component space for real-time object detection. IEEE Trans. Ind. Electron. 2011, 59, 3309–3320. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Shi, C.; Wu, H.; Zhao, J.; Fu, J. Robust ship tracking via multi-view learning and sparse representation. J. Navig. 2019, 72, 176–192. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Guo, Y.; Liu, R.W.; Chui, K.T. Intelligent vision-enabled detection of water-surface targets for video surveillance in maritime transportation. J. Adv. Transp. 2021, 2021, 9470895. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yan, R.; Wang, S. Integrating Shipping Domain Knowledge into Computer Vision Models for Maritime Transportation. J. Mar. Sci. Eng. 2022, 10, 1885. https://doi.org/10.3390/jmse10121885
Yang Y, Yan R, Wang S. Integrating Shipping Domain Knowledge into Computer Vision Models for Maritime Transportation. Journal of Marine Science and Engineering. 2022; 10(12):1885. https://doi.org/10.3390/jmse10121885
Chicago/Turabian StyleYang, Ying, Ran Yan, and Shuaian Wang. 2022. "Integrating Shipping Domain Knowledge into Computer Vision Models for Maritime Transportation" Journal of Marine Science and Engineering 10, no. 12: 1885. https://doi.org/10.3390/jmse10121885
APA StyleYang, Y., Yan, R., & Wang, S. (2022). Integrating Shipping Domain Knowledge into Computer Vision Models for Maritime Transportation. Journal of Marine Science and Engineering, 10(12), 1885. https://doi.org/10.3390/jmse10121885