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Abstract: Maritime transportation plays a significant role in international trade and the global
supply chain. To enhance maritime safety and reduce pollution to the marine environment, various
regulations and conventions are proposed by international organizations. To ensure that shipping
activities comply with the relevant regulations, more and more attention has been paid to maritime
surveillance. Specifically, cameras have been widely equipped on the shore and drones to capture
the videos of vessels. Then, computer vision (CV) methods are adopted to recognize the specific
type of ships in the videos so as to identify illegal shipping activities. However, the complex marine
environments may hinder the CV models from making accurate ship recognition. Therefore, this
study proposes a novel approach of integrating the domain knowledge, such as the ship features
and sailing speed, in CV for ship recognition of maritime transportation, which can better support
maritime surveillance. We also give two specific examples to demonstrate the great potential of this
method in future research on ship recognition.
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For many years, the shipping industry has played an essential role in international
trade and globalization [1] and maritime transport outperforms other transportation modes
in terms of the amount of transported cargoes measured in ton-kilometers [2]. Additionally,
containerized trade has increased by more than 42% between 2010 and 2017 [3]. Although
maritime transportation is relatively safe, losses can be great when accidents occur [4].
Meanwhile, the shipping industry produces heavy greenhouse gas emissions and pollutants
to the waters and the air [5]. In particular, maritime transportation accounts for 12% of
global anthropogenic SOx emissions [6]. In addition, the ships burn bunker fuel, which
has a much higher sulfur content than that of other transportation modes. To enhance
maritime safety and environmental protection, numerous international maritime policies
and laws are implemented by the International Maritime Organization (IMO) [7,8] and local
governments [9]. Recently, a large number of articles have spared some efforts to optimize
shipping activities considering the latest ship emission reduction policies [10,11]. However,
some illegal shipping activities may increase the danger of maritime transportation and
bring more damage to the environment. For example, illegal river boats sailing in the sea
may raise the risk of shipping accidents, and illegal fishing and excavating/dumping of
sand may harm the aquatic environment seriously. Therefore, to prevent illegal shipping
activities, maritime surveillance has recently attracted tremendous attention.

With the popularization of artificial intelligence (AI) and Internet of Things (IoT),
maritime transportation have witnessed and benefited from the rapid development of
intelligent vision techniques in video surveillance [12,13]. For instance, at important inlets
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or estuaries, cameras are often set up to catch illegal riverboats entering the sea. Some
cameras are also mounted on unmanned or commercial aircraft to record images of shipping
vessels and are used for identifying illegal shipping practices, such as illegal fishing. One
critical issue in maritime surveillance is the timely, automatic, and accurate recognition
and monitoring of ships. To be specific, on-shore or on-airplane cameras can provide
videos and capture the visual information of ships. Then, CV methods, such as mean
shift [14], deformable part-based models (DPMs) [15], support vector machine (SVM) [16],
and sparse representation [17], are proposed to recognize the specific type of the ships,
called ship recognition in the following context for simplicity. Over the past several years,
various advanced CV models have been developed to improve the accuracy of recognition
results [18].

Nevertheless, the recognition results obtained from the CV models mentioned above
may easily suffer from complicated environments, including water-surface light reflections,
multiple moving ships, and severe weather conditions, e.g., hazy, low-light imaging,
and rainy [18]. In addition, the training errors naturally and inevitably existing in CV
models may exacerbate misjudgment. Therefore, totally relying on static training data and
CV models may induce incorrect ship recognition results and harm the effectiveness of
maritime surveillance. In fact, we should not treat data as a static artifact divorced from
the process that produced it. In other words, simply improving the CV model itself cannot
guarantee an accurate recognition of ships and the shipping domain knowledge, such as
the ship features and sailing speed, should be considered as auxiliary support to aid in
ship recognition decisions. To be specific, we present our proposed integrated decision
framework of ship recognition in Figure 1.

Figure 1. The decision framework of integrating shipping domain knowledge into CV models for
ship recognition.

We propose two potential examples of integrating the domain knowledge in CV for
ship recognition of maritime transportation.

Example 1: Using ship length information to support the ship recognition.
The length of a ship is a significant feature in identifying different types of ships. Some

open databases, such as the World Register of Ships (WRS) database (http://www.tokyo-
mou.org (accessed on 1 December 2021)), have recorded the length of each registered ship.
Based on the ship size in the video recorded by the camera, the actual physical length of the
ship can be calculated. Then, we can compare the calculated ship length with the recorded
length of the recognized ship type by CV model in the database to verify the recognition
results, that is, if the calculated ship length is consistent with the length of the recognized
ship type, the recognition result is correct, otherwise, there might be a misidentification.
In addition, if the CV model fails to identify the specific ship type and provides multiple
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potential ship types, ship length can assist in determining the particular ship type with the
most similar length. Therefore, the accuracy of ship recognition can be improved with the
domain knowledge of ship length.

Example 2: Calculating the ship moving speed to judge the correctness of ship recognition.
Another promising domain knowledge that can be applied to support ship recognition

is the sailing speed. To be specific, this can be adopted in the case when ship images
captured by multiple cameras in different locations are recognized to be the same ship by
the CV model. Then, we can calculate the moving speed of the ship by its captured time and
distance, which can be obtained by the location of the cameras and the relative position of
the ship image in the videos. If the calculated moving speed is obviously unreasonable, i.e.,
much greater than the theoretical sailing speed of the ship, there may be a misidentification
of the CV model. In this way, the mistakes of ship recognition can be greatly reduced.

In conclusion, we believe that employing shipping domain knowledge and embedding
it into the working process of CV for maritime transportation can contribute to enhancing
maritime monitoring. Future studies on this topic are expected to have a significant impact
on reducing illegal shipping activities and prompting safer and more sustainable shipping
industry. To be specific, the researchers can conduct relevant studies by collecting a number
of actual photographs and video data captured by cameras in the shipping industry and
carrying out a series of case studies to further verify the feasibility of this novel approach.
Based on in-depth research, a comprehensive ship recognition framework can be developed
and applied in practice. Notably, this ship recognition framework requires the industry
practitioners to have both a deep understanding of the shipping industry and proficient
skills in CV. Current workers in the shipping industry may not be equipped with relevant
capabilities, which may hinder the promotion of this new approach. Therefore, some efforts
should be made in training industry practitioners or hiring relevant technical experts in
order to better apply this novel ship recognition framework in maritime surveillance.
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