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Abstract: Accurate identification of scleractinian coral species is fundamental for proper biodiversity
estimates, for aiding in efforts of reef monitoring, conservation, restoration, and for the management
of coral reefs. Here, we provide the first DNA barcoding reference library for coral species in Eilat,
Red Sea, based on the mitochondrial gene cytochrome c oxidase subunit I (COI), targeting the
identification of stony coral species from shallow (0–12 m) reefs. A total of 191 specimens were
collected, depicting 14 families, 39 genera, and 94 species (all are new full species records to the BOLD
system). Three species (Sclerophyllia margariticola, Cyphastrea magna, and Psammocora profundacella)
are first records for Eilat’s coral reef. The results presented here strengthen the claim that COI is not
universally informative for delimitation of stony coral species, a notion reinforced by the constructed
maximum likelihood phylogenetic tree. This library is the first step in a long journey towards
elucidating coral biodiversity in the coral reef at Eilat and for improving future management and
monitoring efforts.

Keywords: conservation; molecular marker; COI; Indian Ocean; reef management; scleractinian
corals; biodiversity; taxonomy

1. Introduction

The need to safeguard the worldwide sustainability of coral reef ecosystems, their
biodiversity and reef dwelling organisms, and the management of goods and services,
necessitates a well defined biodiversity inventory of the reefs’ key species, the hermatypic
corals [1–3]. While the species richness of scleractinian corals has not been properly evalu-
ated as of yet, it is roughly estimated at more than 700 valid extant species in contemporary
coral reefs [4,5]. Due to key gaps in the current coral taxonomy and biodiversity data [6,7],
validated identification of many species is still pending revision [8–11], and a discrepancy
comes to light when tallying formally described coral species with the actually existing
species [4]. Coral taxonomy is also affected by the lack of experts in taxonomy [12–14], all
leading to ambiguous deductions regarding the ill-defined coral traits, lineages, and actual
numbers of coral species and their distributions [15–17]. The deficient taxonomy of reef
corals also impairs reef monitoring, evaluation of patterns of coral recruitment [3], and reef
management towards global climate change impacts [18,19].

The realization that traditional approaches based on morphology alone are not suf-
ficient in scleractinian corals’ species delineation [13,16,17] has led to the suggestion for
a simultaneous adaptation of molecular-based techniques, collectively termed as DNA
barcoding, including the cytochrome b gene (cytB), 16S rRNA, and the nuclear ribosomal
internal transcribed spacer (ITS) region [12,20,21]. Primarily of all is the 5′ fragment of the
mitochondrial cytochrome c oxidase subunit I (COI) gene (about 648 bp, the barcoding
region), the most commonly used marker [22], that has been extensively utilized in the
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past two decades for identifying species including cnidarian species (e.g., [23–25]) and
scleractinian corals, in particular [9,26–36].

A species inventory of ca. 100 stony corals in the Gulf of Eilat, Red Sea (reef flat
to 30 m depth), has been established in the last decade [37] and is in line with records
from the past five decades [38–40]. Yet, this list is most possibly a less representative
inventory, taking into consideration additional coral species described in the northern Gulf
in general (e.g., [41–48], in Aqaba, Jordan (ca. 80 species: [49–51]) along the Egyptian Red
Sea coastline (ca. 110 species; [52]) and from the Saudi Arabian coastline of the Red Sea
(ca. 140 species; [53]). In the Gulf of Eilat, Scheer and Pillai [48] described 194 scleractinian
coral species, while Devantier et al. [54] reported 260 species from the Saudi Arabian
coastline of the Gulf of Eilat. According to Veron et al. [55], ca. 290 species are present in
the North and central Red Sea, and an updated checklist [1] reported on 307 species of
scleractinian coral species (zooxanthellate and azooxanthellate) in the north and central
regions, followd by Berumen et al. [17] that listed 314 scleractinian species.

The Israeli coast of the Gulf of Eilat is known to possess a diverse coral reef [40].
However, it has been continuously degrading in spite of all conservation attempts during
the past five decades [3,56–59], primarily due to anthropogenic drivers and occasional
natural causes such as southern storms. Monitoring of coral diversity (based on morpho-
logical characteristics) is an important component in the management of the coral reefs of
Eilat (https://www.gov.il/he/departments/publications/reports/national_monitoring_
gulf_of_eilat_reports; accessed on 2 October 2022 in Hebrew), along with approaches that
combine molecular methods in the identification of coral species [3], altogether aiding in
the creation of a partial list of coral species in the Gulf. For that purpose, this study aims to
compile the first inventory of coral species in Eilat, based on their morphological character-
istics and COI barcoding identities, in order to create a comprehensive and complete future
database of the stony corals at the northern Red Sea.

2. Materials and Methods
2.1. Sampling

Four sampling sessions were conducted by SCUBA in three sites along the Israeli Gulf
of Eilat in 2013. The first three sampling sessions took place at the Kisoski beach (KIS;
29◦32′49.98′′ N, 34◦57′14.78′′ E) and the Dekel beach (DEK; 29◦32′24.67′′ N, 34◦56′51.23′′ E)
(Figure 1a, Supplementary Table S1) during 18–19 January (down to 6 m depth), 12–15
April (down to 8 m depth), and 13–16 August (down to 7.5 m depth). The fourth session
(28 August, down to 6 m depth) was conducted in front of the Inter-University Institute for
Marine Sciences in Eilat (IUI; 29◦30′07′′ N, 34◦55′02′′ E, Figure 1a, Supplementary Table S1).

Sampled corals were first photographed in situ with a plastic ruler (Figure 1b,d),
numbered, and a small fragment of about 4 cm was removed from each colony (according
to the permit restrictions) and placed in a plastic cup, with its number tag. At the end of
each dive, all samples were transported to water tables supplied with continuous flow
of natural sea water and under ambient lighting at the national center for mariculture
at Eilat, Israel. Specimens were then transported alive to the Israel Oceanographic and
Limnological Research (IOLR) laboratory at Haifa, Israel, acclimated for 24–48 h in water
tables with continuous flow of natural sea water, and photographed under a binocular
(Figure 1c,e). A small live tissue sample was taken for DNA extraction (see below), and
the rest of the sample was stored in 70% ethanol as a voucher and then morphologically
identified. When needed for detailed morphological characteristics, additional sub-samples
were taken from the ethanol-fixed specimens. Their tissues were removed using commercial
bleach (1:4 dilution) for 24 h, washed in distilled water, and air dried.

https://www.gov.il/he/departments/publications/reports/national_monitoring_gulf_of_eilat_reports
https://www.gov.il/he/departments/publications/reports/national_monitoring_gulf_of_eilat_reports
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Figure 1. (A) Sampling sites at the Gulf of Eilat’s reef, Israel: Kisoski beach (KIS), Dekel beach (DEK) 
and the Interuniversity Institute (IUI). (B–E) Photographs of coral vouchers. The in situ and the 
close-up photographs of Platygyra carnosa Veron, 2000 (B,C), and Acropora samoensis (Brook, 1891) 
(D,E). White bars—1.0 cm (B,C), red bars—1.0 mm (C,E). 

2.2. Traditional Taxonomy 
Coral samples were morphologically identified to the lowest taxon level possible, 

based on Veron [47], and followed the keys to genera and species ([47] volume 3, page 
447). Identification was conducted by one team member loudly reading the identification 
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ously examining the coral sample. This protocol was repeated until a full identification 
was reached and agreed upon. The up-to-date species names were confirmed in the World 

Figure 1. (A) Sampling sites at the Gulf of Eilat’s reef, Israel: Kisoski beach (KIS), Dekel beach (DEK)
and the Interuniversity Institute (IUI). (B–E) Photographs of coral vouchers. The in situ and the
close-up photographs of Platygyra carnosa Veron, 2000 (B,C), and Acropora samoensis (Brook, 1891)
(D,E). White bars—1.0 cm (B,C), red bars—1.0 mm (C,E).

2.2. Traditional Taxonomy

Coral samples were morphologically identified to the lowest taxon level possible,
based on Veron [47], and followed the keys to genera and species ([47] volume 3, page 447).
Identification was conducted by one team member loudly reading the identification phrases
from Veron’s ‘keys to genera and species’ and a second team member simultaneously
examining the coral sample. This protocol was repeated until a full identification was
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reached and agreed upon. The up-to-date species names were confirmed in the World
Register of Marine Species [60] and the Corals of the World website (COTW; [61]). The
ethanol-fixed specimens (and accompanying dry skeletal samples, if produced) were
registered and archived at the Steinhardt National Natural History Museum and the
Research Center at Tel Aviv University.

2.3. DNA Extraction, PCR Amplification and Sequencing

Genomic DNA was isolated from tissue samples according to Graham [62] and Douek
et al. [63]. Three sets of primers were used in order to amplify the 650–700 bp COI fragments,
using Folmer [64] and Fukami et al. [26] and degenerated primers, designed by modifying
Folmer [64] primers (Supplementary Table S2). Reactions were carried out in a total volume
of 50 µL, which included 1–2 µL of DNA template from each sample, 25 µL of PCR Master
Mix 2× (Fermentas) with DreamTaq™, and 2.5 µL of 10 mM of each primer set. The PCR
conditions comprised an initial denaturation step of 60 s at 94 ◦C, followed by 30 cycles
(60 s denaturation at 94 ◦C, 60 s annealing at 48–55 ◦C, 60 s elongation at 72 ◦C) and a final
10-min elongation step at 72 ◦C. The PCR products were screened on 1.3% agarose gel and
sent for forward and reverse directions sequencing at Macrogen Inc., Korea, using ABI
3730xl. The DNA samples were kept at 4 ◦C at IOLR.

2.4. Data Analysis

DNA sequences were assembled using the DNA Baser Sequence Assembler v4 (www.
DNABaser.com, accessed on 7 July 2022) and compared to Genbank sequences using
BLASTn algorithm in the NCBI website (www.ncbi.nlm.nih.gov; accessed on 15 July 2022).
The criteria for a liable sequencing were a mismatch rate of less than 1% between forward
and reverse sequences and a high quality of the sequence chromatogram. A match between
the taxonomy identification and the NCBI BLASTn algorithm results was made prior to
uploading the sample to the Barcode of Life Data (BOLD) site system, under the project
name “Scleractinia of the Israeli Red Sea” (SIRS). On the BOLD site, the submitted sequences
were translated into amino acids and compared against a Hidden Markov Model of the COI
protein to verify that they derived from the COI gene. Moreover, they were examined for
stop codons and compared against possible contaminants to make sure they were all high-
quality sequences [22]. All sequences were aligned in ClustalW (EBI) using default settings.
According to the model selection test performed, and using MEGA software v11 [65], a
maximum likelihood (Hasegawa-Kishino-Yano Gamma distribution with invariant sites)
phylogenetic COI-based tree was constructed.

3. Results

The four sampling sessions yielded 191 coral samples (17, 80, 54 and 40, respectively
for each sampling session) that were assigned (using morphological and COI results) to
14 families, 39 genera, and 94 species (Table 1; Supplementary Table S1) [66–68]. Out of
these, 177 specimens were fully identified to the species level, of which 14 specimens were
identified to a species level but, due to doubts about their identifications, we consider
these samples as possible morphological variants of existing species in Veron [47], thus
considered as cōnfer (cf.; Supplementary Table S1). Ten specimens of the above list were
identified to the genus level (5 Acropora sp., and single Dipsastraea sp., Echinophyllia sp.,
Echinopora sp., Paragoniastrea sp. and Pavona sp.) and four specimens were assigned to the
Fungiidae family (specimens were too young and small for an accurate identification) due
to incomplete morphological characteristics, as well as COI differentiating outcomes. The
above reveals the possibility of a higher number of species in our 191 samples.

www.DNABaser.com
www.DNABaser.com
www.ncbi.nlm.nih.gov
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Table 1. List of coral families, genera, and species from Eilat with counts of vouchers, and of representatives in each taxonomic subgroup. a—voucher fully identified,
b—voucher identified as cf., c—voucher not fully identified. COI N.I.—COI Not Informative (requiring additional molecular markers for complete identification).

Family/Genus No of Vouchers
Subgroups Species Details Remarks

No. Types

Acroporidae 36 3

Acropora 21 11 5 a,3 b,4 c A. plantaginea 4 b, A. squarrosa 3 b, A. tenuis 4 a + 1 b, A. cytherea 1 a,
A. humilis 1 a, A. samoensis 1 a, A. valida 1 a, A. sp. 1–4: 1 c 1 c 1 c 2 c COI N.I.

Alveopora 4 3 3 a A. daedalea 1 a, A. fenestrata 2 a, A. verrilliana 1 a

Montipora 11 7 3 a M. cryptus 1 a, M. efflorescens 1 a, M. hemispherica 1 a, M. informis 2 a,
M. maeandrina 3 a, M. tuberculosa 2 a, M. verrucosa 1 a COI N.I.

Agariciidae 9 2
Leptoseris 1 1 1 a L. yabei 1 a

Pavona 8 4 3 a,1 c P. danai 1 a, P. diffluens 3 a, P. varians 3 a, P. sp. 1 c COI N.I.
Coscinaraeidae 2 1

Coscinaraea 2 1 1 a C. monile 2 a

Dendrophylliidae 4 1
Turbinaria 4 1 1 a T. reniformis 4 a

Euphylliidae 5 1
Galaxea 5 1 1 a G. fascicularis 5 a

Fungiidae 17 3 or 4 Fungiidae #1–4: 1 1 1 1

4 vouchers are too small and young
without adequate morphological

characteristics and COI N.I. to assign a
genus or a species

Cycloseris 10 3 3 a C. cyclolites 3 a, C. fragilis 1 a, C. vaughani 6 a COI N.I.
Danafungia 2 2 2 a D. horrida 1 a, D. scruposa 1 a COI N.I.

Fungia 1 1 1 a F. fungites 1 a COI N.I.
Leptastreidae 3 1

Leptastrea 3 3 3 a L. inaequalis 1 a, L. purpurea 1 a, L. transversa 1 a

Lobophylliidae 15 5
Acanthastrea 2 1 1 a A. brevis 2 a

Echinophyllia 3 2 1 a,1 c E. aspera 2 a, E. sp. 1 c

Lobophyllia 5 2 2 a L. corymbosa 4 a, L. hemprichii 1 a

Oxypora 3 2 1 a,2 b O. crassispinosa 1 b, O. lacera 1 a + 1 b

Sclerophyllia 2 1 1 a S. margariticola 2 a

Merulinidae 69 12 COI is partly informative in this group
Astraeosmilia 1 1 1 a A. maxima 1 a

Coelastrea 1 1 1 a C. aspera 1 a

Cyphastrea 5 3 3 a C. magna 1 a, C. microphthalma 2 a, C. serailia 2 a
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Table 1. Cont.

Family/Genus No of Vouchers
Subgroups Species Details Remarks

No. Types

Dipsastraea 27 9 7 a,2 b,1 c D. amicorum 4 a, D. matthaii 2 b, D. speciosa 2 a + 1 b, D. danai 7 a,
D. faviaformis 5 a, D. lacuna 1 a, D. laxa 3 a, D. veroni 1 a, D. sp. 1 c

Echinopora 6 3 2 a,1 c E. fruticulosa 2 a, E. irregularis 3 a, E. sp. 1 c COI N.I.
Favites 4 2 1 a,1 b F. paraflexuosus 1 b, F. pentagona 3 a COI N.I.

Hydnophora 5 1 1 a H. exesa 5 a

Merulina 1 1 1 a M. ampliata 1 a

Mycedium 4 1 1 a M. umbra 4 a

Paragoniastrea 1 1 1 c P. sp. 1 c

Paramontastraea 5 1 1 a P. peresi 5 a

Platygyra 9 5 5 a P. acuta 1 a, P. carnosa 2 a, P. crosslandi 2 a, P. daedalea 1 a,
P. lamellina 3 a COI N.I.

Plerogyridae 6 2
Blastomussa 2 2 2 a B. loyai 1 a. B. merleti 1 a

Plerogyra 4 1 1 a P. sinuosa 4 a

Plesiastreidae 1 1
Plesiastrea 1 1 1 a P. versipora 1 a

Pocilloporidae 14 3
Pocillopora 5 1 1 a P. damicornis 5 a

Seriatopora 4 1 1 a S. hystrix 4 a

Stylophora 5 2 2 a S. kuehlmanni 1 a, S. pistillata 4 a

Poritidae 9 2
Goniopora 3 2 2 a G. pearsoni 2 a, G. tenuidens 1 a COI N.I.

Porites 6 4 4 a P. harrisoni 1 a, P. lutea 2 a, P. nodifera 1 a, P. rus 2 a COI N.I.
Psammocoridae 1 1

Psammocora 1 1 1 a P. profundacella 1 a
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The most common coral family in our samples was Merulinidae, with 12 genera and
29 species (including two incomplete identifications; a Dipsastraea sp. and a Echinopora sp.),
followed by Lobophylliidae with five genera and eight species (including an unidentified
Echinophyllia sp.), while the rest of the families included one to three genera each (Table 1).
While in most cases Veron’s [47] ‘keys for genera and species’ was satisfactory for full
identification, four samples were more challenging. These include Sclerophyllia margariticola
(Klunzinger, 1879) (samples SIRS-083 and SIRS-129; Figure 2, Supplementary Table S1) that
did not match in the first attempt of identification to any known species from the Gulf of
Eilat, and partly matched Cynarina (pointed septal teeth; yet, Cynarina do not occur in the
Red Sea) or Lobophyllia, with mismatched characteristics to both (our samples were collected
as solitary polyps so no colonial characteristics could be evaluated). Yet, BLAST (blast.ncbi.
nlm.nih.gov; accessed on 21 August 2022) matching with available COI sequences resulted
in 99.7% similarity to Sclerophyllia maxima (accession number FO904931.1). Then, following
Arrigoni et al.’s [69] criteria, the two samples were identified as Sclerophyllia margariticola,
since they represent a solitary polyp mode of life instead of colonial. Another case was
Cyphastrea magna (Benzoni and Arrigoni, 2017) (sample SIRS-080; Figure 2, Supplementary
Table S1), initially identified as Cyphastrea chalcidicum (Forskål, 1775), since it had 12 septa of
equal size, and not irregularly exerted septa. Yet, the corallite size and shape did not match
Veron’s [47] description, and BLAST on the COI sequences for Cyphastrea sp. revealed
discrepancies (see discussion). Referring to the updated literature on Cyphastrea from the
Red Sea, we followed the identification guide by Arrigoni et al. [70] that labeled this species
as Cyphastrea magna (likewise confirmed the identifications of all other Cyphastrea species in
this research). A third case was Psammocora profundacella (Gardiner, 1898) (sample SIRS-184;
Figure 2, Supplementary Table S1), which was first identified as P. haimeana, according to
Veron [47]. WoRMS referred to P. haimeana as a misspelling of P. haimiana, a species that
does not occur in the Red Sea and did not resemble our specimen. Following a taxonomic
note at the Corals of the World website (www.coralsoftheworld.org/species_factsheets/
species_factsheet_summary/psammocora-haimiana/; accessed on 15 September 2022), we
referred to Benzoni et al. [71] and identified the specimen as P. profundacella. Comparing
the COI sequences of P. profundacella from Benzoni et al. [71] (accession numbers FM865879
and AM494853) to our sequence resulted in 99.34% and 99.56% similarity between the
sequences (respectively). Results further revealed the importance of adequate sampling
methodology. Samples SIRS-013, 103, 160, 189, 190, and Acropora sp. 1–4 (Supplementary
Table S1) were too young to exhibit species-specific characteristics. Furthermore, since COI
is not informative for Acropora species, we were not able to identify these species according
to DNA sequences.

Polyps in sample SIRS-152 (Dipsastraea cf. matthaii) were compactly arranged, and the
colony was very narrow, hindering us from examining detailed corallite morphological
characterizations. Dipsastraea cf. speciosa (sample SIRS-144) was composed primarily of
young polyps in the process of intratentacular budding, or immediately after splitting,
hence characteristics of corallites were hard to define. Dipsastraea sp. (sample SIRS-178),
Echinopora sp. (sample SIRS-098), Paragoniastrea sp. (sample SIRS-174), and Pavona sp.
(sample SIRS-047) were all young colonies and, hence, full characteristics of adult colonies
were absent.

A COI-based phylogenetic tree for the coral families and coral species collected in Eilat
(Figure 3, Supplementary Figure S1) revealed two major clades, ‘complex’ and a ‘robust’
clades [72]. The complex clade splits into two major monophyletic groups. One holds the
families Dendrophylliidae and Poritidae, and the second includes the families Acroporidae,
Agariciidae, and Euphylliidae. The robust clade splits into two groups. One includes the
monophyletic family Pocilloporidae, and the second that splits holds on one branch the
families (Lobophylliidae, Merulinidae, Plerogyridae and Plesiastreidae) and on the second
branch the families (Coscinaraeidae, Fungiidae, Leptastreidae and Psammocoridae).

blast.ncbi.nlm.nih.gov
blast.ncbi.nlm.nih.gov
www.coralsoftheworld.org/species_factsheets/species_factsheet_summary/psammocora-haimiana/
www.coralsoftheworld.org/species_factsheets/species_factsheet_summary/psammocora-haimiana/
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Figure 2. Underwater and close-up documentation of: (A,B) Cyphastrea magna (Benzoni and Arrigoni,
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bars—1.0 mm (B,D).
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Figure 3. Condensed phylogram of coral samples from Eilat, based on the maximum likelihood
analysis of the partial mitochondrial COI gene from the 94 species collected in this study. Values
at the nodes represent bootstrap values. The number of taxa is given in brackets (a family with no
brackets is represented by a single taxon). The tree is rooted by the anemone Entacmaea quadricolor
(Actiniidae). A detailed phylogenetic tree is provided in Supplementary Figure S1.
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4. Discussion

Coral reef conservation, sustainable use of the reefs’ goods and services, the rehabilita-
tion of reef resources, its diversity, and the sustainable management of the reefs at local
and global scales all necessitate detailed knowledge of reef biodiversity [73–75]. Decisions
regarding the objectives and priority areas for actions on coral reef management, including
prevention and mitigation of anthropogenic and global climate change impacts, as well
as active reef restoration, are based on detailed knowledge on the biodiversity, and on
reliable inventory of species for key ecological groups such as corals [75–79]. High diver-
sity among coral species ensures the evolvement and adaptation of coral reefs under the
impacts inflicted by anthropogenic activities and environmental changes [80–82], further
identifying and treating potentially devastating processes, such as dwindling populations,
in particular [3]. Establishing the full species inventory repertoire of scleractinian corals in
Eilat is therefore highly important, and the new barcode library initiated here is the first
step in a long journey towards the elucidation of coral species biodiversity in the northern
Gulf of Eilat. The DNA barcoding library is of utmost importance when deciphering early
stage reef recruitments [3,13,83–85], or for foreseen environmental DNA metabarcoding
acts [86].

The Israeli coastline of the Red Sea encompasses 12 km of shoreline, out of which ca.
3.5 km are designated as a nature reserve, of which only 1.2 km are fenced and referred
to as the Coral Beach Reserve. Previously considered as one of the most diverse reefs in
the world [40], the Eilat coral reserve is neighbored by the constantly developing cities
of Eilat and Aqaba, perpetrating a wide range of anthropogenic impacts on the coral reef
biota. Despite all efforts and management activities engaged, a gradual degradation of the
Eilat coral reef has been noted for nearly 40 years [56–59,87,88], some of which is cryptic [3].
Following the development of novel molecular tools for coral identification, it is of prime
interest to accurately document the current biodiversity of coral species, as well as to
improve monitoring and examination of future trends and anthropogenic/climate change
impacts.

This study aims to pioneer the DNA barcoding reference library of shallow water
scleractinian corals from the Gulf of Eilat, combining the skills of local taxonomists and
the methodology of molecular identification. Four limited collection surveys (permit
approval) resulted in a total of 191 vouchered specimens that represent 98 taxa, all of which
were successfully barcoded and uploaded onto the BOLD website (www.boldsystems.
org; accession numbers SIRS-001-SIRS-191; accessed on 15 October 2022, Supplementary
Table S1), creating a new barcode database called “Scleractinia of the Israeli Red Sea” [SIRS].
All vouchered specimens are new full species records in the BOLD system, and three species
(Sclerophyllia margariticola, Cyphastrea magna, and Psammocora profundacella) represent first
records in Eilat’s coral reef, implying that the scientific coverage on the biodiversity and
inventory of Eilat’s corals is still meagre.

Basal metazoans, such as Cnidarians, have extremely slow mitochondrial evolution
rates, around 10–20 times slower than other metazoans [89], but with faster evolving nuclear
genes [89–92]. Revealing that the COI is unsurprisingly not discriminating between closely
related species in all cases is an outcome necessitating reliance on additional molecular
markers and/or morphological parameters. This limited ability of COI to positively identify
coral specimens to the species level is reinforced by the maximum likelihood (HKY + G)
phylogenetic tree constructed, clustering almost all Acropora spp. on the same branch of the
phylogenetic tree and clustering species from the families Merulinidae and Lobophylliidae
on the same branch. Furthermore, our phylogenetic tree results (Figure 3; Supplementary
Figure S1) revealed some incongruencies when compared with other studies that used
several other genetic markers. In the ‘robust’ clade, our phylogenetic tree (Figure 3)
positioned Leptastreidae within the Fungiidae on a branch with the genera Danafungia and
Fungia, separated from the branch of Cycloseris (this clustering is only moderately supported
by a bootstrap value of 68), while Kitahara et al. [15] placed Leptastreidae as a monophyletic
branch, separated from Fungiidae. Kitahara et al. [15] further placed Danafungia closer

www.boldsystems.org
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to Cycloseris as a sister group to Fungia. The analysis of the monophyletic branch that
clusters Merulinidae and Lobophylliidae in our samples (Supplementary Figure S1) reveals
more incongruencies, as the genus Hydnophora (Merulinidae) was placed within the family
Lobophylliidae, while Huang et al. [11] placed it as a sister group to the genus Favites
based on five nuclear and mitochondrial markers, and Kitahara et al. [15] placed it closer
to Coelastrea and Dipsastraea. Moreover, we found that Cypastrea spp. were clustered with
Favites pentagona on a branch containing Lobophylliidae, rather than within the Merulinidae,
while following Huang et al. [11] and Kitahara et al. [15] Cyphastrea is nested at the first
paraphyletic branch diverging inside the Merulinidae branch, neatly separated from the
Lobophylliidae branch. Based on molecular data, Favites pentagona was placed on a sister
branch to Dipsastraea [11], while the morphological data clustered this species with other
Favites spp. Our molecular data suggest the placement of F. pentagona within a different
genus, a consideration necessitating support from additional molecular methods.

Since not all scleractinian species are reliably identifiable via COI, it is indispensable
to use additional markers [13,93]. A combination of barcodes was used in previous studies
for separation, including additional mitochondrial and nuclear genes, such as mitochon-
drial cytochrome B (cytB), nuclear β-tubulin, and the rDNA segment containing parts of
18S, internal transcribed spacers (ITS), 5.8S, 28S [26,27,29–31], mitochondrial noncoding
intergenic region (IGR), and nuclear histone H3 [8,9]. For Acroporidae, nuclear Pax-C and
the mitochondrial putative control region [94–96] were useful.

Morphological identifications of corals are also associated with difficulties, primarily
when samples were taken from colonies too young to present the mature characteristics
required for species identification. In our collections, this was mostly noticed in the
specimens collected from artificial substrates during the fourth set of sampling (permit
constraints). In some genera, the mature form of the colony is critical for the identification
process, with Acropora being a major genus following this notion ([47] volume 3, page 447).
This is also true for Merulinid species, such as Dipsastraea and Coelastrea, that are identified
based on corallite form of mature colonies, while young colonies may present mixed shapes
and sizes of corallites, primarily at the colonial peripheries. The preferred sample site when
considering reduced damages is inflicted by sampling. A well established and documented
DNA barcoding reference library of stony corals may solve the morphological constrictions.

The results of this study thus suggest that sampling of large coral colonies is preferred
for morphological identification for the development of corals’ DNA barcoding reference
library, along with the use of more than a single genetic marker. Since this is a first step
in creating a DNA barcoding reference library of stony corals from the Gulf of Eilat, the
number of species obtained are clearly lower than the actual number of existing species,
including the lists of cryptic species and first records assigned to the area.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10121917/s1. Table S1. Full list of samples collected in this
research. Sample session (1) 18–19 January 2013. (2) 12–15 April 2013. (3) 13–16 August 2013. (4) 28
August 2013. Sample sites include the following. (KIS) Kisoski beach (29◦32′49.98′′ N, 34◦57′14.78′′ E).
(DEK) Dekel beach (29◦32′24.67′′ N, 34◦56′51.23′′ E). (IUI) the Inter-University Institute for Marine
Sciences in Eilat (29◦30′07′′ N, 34◦55′02′′ E), (Figure 1). N/A—Not Available, Field ID—temporary
identification code for sample as given in the field before assigning final voucher number *—in
parentheses original scientific name, **—Veron, 2000 volume 3, page 447, bold number—transition
to genus. Table S2. Primers used for amplifying the COI gene. Figure S1. Phylogenetic tree of coral
samples from Eilat, based on the maximum likelihood of the partial mitochondrial COI gene from the
191 coral samples collected in this study. Values at the nodes represent bootstrap values. (A) Full tree
view. (B) Detailed view of robust clade. (C) Detailed view of complex clade. The number preceding
the scientific name is the sample number in the study detailed in Supplementary Table S1. The tree is
rooted by the anemone Entacmaea quadricolor (Actiniidae).
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