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Abstract: The present paper contains the results of the numerical analysis of the interaction between
a Newtonian incompressible turbulent flow and a linear elastic slender body, together with the
influence of the fluid–structure interaction (FSI) on the noise generation and propagation. The
purpose is to evaluate the differences in term of acoustic pressure between the case where the solid
body is rigid (infinite stiffness) and the case where it is elastic (finite stiffness). A partitioned and
implicit algorithm with the arbitrary Lagrangian–Eulerian method (ALE) is used for the interaction
between the fluid and solid. For the evaluation of the turbulent fluid motion, we use a large eddy
simulation (LES) with the Smagorinsky subgrid scale model. The equation for the solid is solved
through the Lagrangian description of the momentum equation and the second Piola–Kirchoff stress
tensor. In addition, the acoustic analogy of Lighthill is used to characterize the acoustic source (the
slender body) by directly using the fluid dynamic fields. In particular, we use the Ffowcs Williams
and Hawkings (FW-H) equation for the evaluation of the acoustic pressure in the fluid medium. As a
first numerical experiment, we analyze a square cylinder immersed in a turbulent flow characterized
by two different values of stiffness: one infinite (rigid case) and one finite (elastic case). In the latter
case, the body stiffness and mean flow velocity are such that they induce the lock-in phenomenon.
Finally, we evaluate the differences in terms of acoustic pressure between the two different cases.

Keywords: large eddy simulation (LES); fluid–structure interaction (FSI); Ffowcs Williams and
Hawkings (FW-H); noise generation and propagation

1. Introduction

The analysis and prediction of the sound generated by a turbulent flow are of funda-
mental importance in many engineering applications. An important field of application
is acoustic pollution and its effects on the environment, which has led to considerable
interest and to the development of different analytical and numerical techniques to perform
reliable noise predictions [1,2]. Among others, worth of mention is the analysis of the
sound generated by wind turbines, because of its own impact on the environment (see for
example [3]). Among the possible noise sources, a relevant one is the vibration of slender
bodies immersed in a fluid dynamic field. This is the case, for example, of the vocal chords,
of the strings of musical instruments and also of a number of engineering systems, such
as the steel cables of bridges, hydrofoils, blades of wind turbines or of helicopters. Typi-
cally, the mutual interaction between a flow field and a nonrigid structure (fluid–structure
interaction, FSI) gives rise to vibrations of the structure which, in turn, produces a tonal
noise, where with this term, it is intended a narrow-band acoustic signal. FSI has been a
field of intense research because of dangerous aeroelasticity or hydroelasticity phenomena
often occurring in engineering (for example the lock-in and fluttering phenomena, etc.).
The Commonwealth Advisory Aeronautical Council (CAARC) benchmark is widely used
for the validation of different FSI numerical methodologies concerning elastic and slen-
der bodies (see, for example, Huang, Shenghong and Rong [4] and Braun, Awruch and
Miguel [5]). Most literature in the field of computational aero/hydroacoustics (CAA/CHA),
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was initially devoted to the analysis of sound propagation in compressible flow conditions
(see, for example, Inoue and Hatakeyama [6] and Marsden et al. [7]) mostly considering 2D
cases or archetypal geometrical configurations. It is worth to mention that a single-phase
fluid dynamic field may belong to the incompressible or to the compressible flow regime de-
pending on the value of the Mach number (Ma = U

c , where U is the flow velocity scale and
c is the speed of sound in the medium). In the incompressible flow regime (Ma < 0.3), the
density variation does not affect the transport of mass and momentum and the mechanical
energy is decoupled from the thermal one. Mass and momentum conservation equations
assume a simplified form and the pressure loses its own meaning of a thermodynamic
quantity. In marine hydrodynamics as well as in environmental and civil engineering fluid
mechanics, the incompressible flow assumption is the rule, due to the low values of the
Mach number. Obviously, in this case, the hydrodynamic pressure is not representative of
the acoustic pressure since the latter is always related to the fluid compressibility. In other
words, although from a fluid dynamic point of view the incompressible flow hypothesis
is an excellent working assumption, if one is interested in the evaluation of the acoustic
field, fluid compressibility must be considered even in the limit of Ma→ 0. As we discuss
later in the paper, the acoustic analogy allows us to use incompressible flow fields to
calculate the acoustic pressure. More recently, the generation and propagation of sound in
incompressible flow conditions have been the focus of a large number of research projects.
In the literature, the so-called acoustic analogy has been developed and is commonly in use,
enabling one to decouple the acoustic problem from the fluid dynamic one. The acoustic
analogy theory was developed by Lighthill [8], and it consists in recasting the compressible
Navier–Stokes equations in the form of an inhomogeneous wave equation. The source term
of the latter comes directly from the fluid dynamic fields. This numerical methodology
has been used by a number of authors (see [9]) and improved over the years. The research
group in hydraulics of the University of Trieste has recently contributed in the field (see
[10–12]). Specifically, in [10], the authors investigated the acoustic signature of archetypal
geometries, namely a sphere, a cube and a prolate spheroid in a turbulent flow at Re = 5000.
The authors used a large eddy simulation (LES) for the evaluation of the fluid dynamic
incompressible flow and the integral formulation of the wave equation first obtained by
Ffowcs Williams and Hawkings (FW-H) [13] for the evaluation of the acoustic field. In [11],
the authors proposed a novel computational method for the analysis of the noise contribu-
tion coming from the wake of the body (i.e., a slender square cylinder), whereas in [12], the
authors analyzed the noise generated by a ship propeller. In all cases examined, the body
was considered rigid, although it is well established that, in some cases, the flexibility of a
slender body may produce a fluid–structure interaction with consequences on the acoustic
response of the structure. The goal of the present study is to take a step forward to evaluate
the noise generated by a nonrigid slender body to detect differences between the ideal
rigid-body case and the more realistic case of an elastic body. This is, indeed, the case in a
number of applications both in the field of hydroacoustics and in aeroacoustics.

Here, we consider a case where a simple body (a square cylinder, such as that of [11])
placed over a rigid wall and made of a linear elastic material is immersed in a flow
and interacts elastically with it, hence working in the hydroelastic regime. The study is
carried out numerically, using an LES for the evaluation of the hydrodynamic field and the
computational hydroacoustics (CHA) for the evaluation of the noise. The direction along
which the study is carried out is the identification of the differences between the two cases
(rigid versus flexible body) evaluated in terms of the acoustic pressure and characteristics of
the turbulent flow. The computational cost required by a numerical analysis of interaction
between fluid and structure is high. As a result, an initial analysis and feasibility study is
carried out in this study, limiting the required computational cost as much as possible, with
the ultimate goal of continuing the research in a more detailed way once the feasibility of
the methodology has been assessed.



J. Mar. Sci. Eng. 2022, 10, 1918 3 of 16

2. Materials and Methods

The numerical model is composed of three main steps: we use the incompressible
Navier–Stokes equations to evaluate the fluid dynamic field (pressure and velocity) together
with the momentum conservation law for a linear elastic solid to simulate the vibration of
the solid; finally, we use the direct integral formulation of the FW-H equation to calculate
the acoustic pressure. The solvers for the fluid motion and for the solid vibration are
coupled, through an iterative FSI (fluid–structure interaction) algorithm because of the
mutual interaction between the two systems.

2.1. Equations for the Fluid Motion

The governing equations for the motion of a single-phase incompressible and Newto-
nian fluid are the Navier–Stokes equations. The equations written over a dynamic mesh
that deforms in time read as:

∇ · (u− um) = 0 (1)

ρ(
∂u
∂t

+∇ · (u(u− um))) = −∇p + µ∇2 · u (2)

where u and p are the velocity and hydrodynamic pressure, respectively, ρ and µ are
the density and the dynamic viscosity of the fluid and um is the mesh deformation rate,
given by dvm

dt , in which vm is the mesh displacement vector obtained by the solution of the
Laplace equation:

∇2 · γvm = 0 (3)

which has as boundary conditions vm = v, meaning that at the interface, the mesh displace-
ment of the liquid phase and the displacement of the solid wall must be equal.

2.2. Equation for the Solid Motion

The momentum equation for an elastic solid, with the second Piola–Kirchoff stress
tensor, is:

ρsf +∇ · (
1
J

FSFT) =
D2ρsv

Dt2 (4)

where v is the displacement, ρs is the density, f represents the volume force, F is the strain
gradient tensor defined as F = I +∇v, S is the second Piola–Kirchoff stress tensor and
J = det(F); The second Piola–Kirchoff stress tensor relates forces in the reference configura-
tion to surfaces in the reference configuration. The forces in the reference configuration are
obtained via a mapping that preserves the relative relationship between the force direction
and the surface orthogonal to it, in the current configuration.

2.3. Fluid–Structure Interaction Equations

The coupling is based on setting proper boundary conditions at the interface between
the two systems. Namely, the BCs are:

σ f · n f = σs · ns (5)

u · n f =
d(v · ns)

dt
(6)

That is, the pressure and normal component of the velocity at the interface between the
fluid and the solid must coincide. The interaction between the solid and the fluid motion is
computed using a partitioned algorithm, which makes use of two different solvers for the
fluid and the solid part respectively. The algorithm exchanges information, respectively,
between one solver and the other. The information, before being taken in a definitive
way, enters in an iterative loop until convergence using an implicit method (“2-WAY”).
Both solvers are based on the finite volume discretization method and require the use of
a deformable mesh. Consequently, at each time step, the mesh is geometrically modified
congruently to the deformations of the linear elastic beam. The method adopted is called
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ALE because the fluid is solved through an Eulerian approach, taking into account the de-
formation of the mesh, while the solid is solved through a Lagrangian approach. Finally, the
mesh is deformed at the interface and diffused in the interior through a Laplace equation.

2.4. Ffowcs Williams and Hawkings Acoustics Equation

Ffowcs Williams and Hawkings [14] generalized the Lighthill’s equation in the pres-
ence of a moving solid immersed in a fluid arriving at the following formulation:

4π p̂(x, t) =
∂

∂t

∫
S

ρvn

r[1−Ma]τ
dS +

1
c0

∂

∂t

∫
S

pn̂i r̂i
r[1−Ma]τ

dS

+
∫

S

pn̂i r̂i
r2[1−Ma]τ

dS +
1
c2

0

∂2

∂t2

∫
V

Trr

r[1−Ma]τ
dV

+
1
c0

∂

∂t

∫
V

3Trr − Tii
r2[1−Ma]τ

dV +
∫

V

3Trr − Tii
r3[1−Ma]τ

dV

(7)

where p̂ is the acoustic pressure, r = |x− y| is the distance of the observer from the source,
r̂ = (x− y)/r, Ma is the Mach number, Trr = Ti,j r̂i r̂j with Ti,j ∼ ρuiuj is the Lighthill tensor
and Tii its trace.

The first integral term is known as a thickness noise component. It represents the
noise generated by the displacement of the fluid mass caused by the movement of the body
(in our case the vibration of the cylinder), the second and third terms depend directly on
the hydrodynamic pressure acting over the body and are referred to as the loading noise
components. The latter three volume integrals are known as quadrupole noise terms and
take into account all possible nonlinear sources occurring in the flow field.

2.5. The Numerical Method

The Navier–tokes equations were solved using a large eddy simulation (LES), which
provides a three-dimensional time-dependent representation of the actual turbulent field.
In an LES, the large, anisotropic and energy-carrying turbulent structures are solved directly
through a 3D time-dependent numerical simulation, whereas the small, more isotropic and
dissipative structures are parametrized by means of a subgrid scale (SGS) model. Literature
studies have proven that the SGSs of motion do not contribute significantly to noise
production. Similarly, these dissipative structures are ineffective in the mutual interaction
between the fluid and the solid. As the SGS model, we used the standard Smagorinsky
model with C2

s = 0.028 in conjunction with an equilibrium wall-layer model, to skip the
direct resolution of the viscous sublayer. A detailed discussion on the wall-layer model
is found in [12]. The equations were solved using the PISO algorithm, as implemented
in the open-source numerical framework OpenFoam. We used the extended version
foam-extend 4.0, which contains the FSI numerical algorithm (the reader is addressed
to foam-extend.org for more information). The acoustic postprocessing was carried out
using a homemade utility built within the OpenFoam library. The time advancement of
the algorithm for the fluid motion was carried out using the implicit second-order (Crank–
Nicolson) scheme. For spatial discretization, we used the second-order Gauss integration
scheme with a linear interpolation. Further, for the Laplacian term, we used the Gauss
integration scheme with a correction of the skewness. In this way, we avoided instability
phenomena that might be triggered by excessive deformation of the mesh. We used the
GAMG multigrid method to solve the Poisson equation for pressure, using a smoother
based on the Gauss–Seidel scheme. We used the PBICG method for the velocity components
and the turbulent SGS viscosity. Finally, we used the nonorthogonal corrector, because
the mesh deformed in the FSI case. The equation for the deformation of the solid was
solved using the unsTotalLangragianSolid solver. The time derivative of the displacement
was discretized using a first-order explicit Euler method. For spatial discretization, we
used the Gauss integration method with a least squares interpolation method (leastSquare).
The solution algorithm for the solid movement was the PCG method with a relaxation
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factor of 0.5. We used the dynamic Aitken relaxation factor to enhance the convergence
of the residuals of the coupling equations, reported above. We set the factor at 0.1 and
used 20 iterations per time step. The fluid solution algorithm was, overall, second-order
accurate, whereas the solution algorithm for the solid was second-order accurate in space
and first-order accurate in time. Finally, once the FSI algorithm had been applied, the
fluid dynamic data were stored at specific time instants and postprocessed by the acoustic
solver. The latter solved the advective form of the FW-H equation described with details
in [10,11]. The method would require the evaluation of the integral terms at the time τ
different from the time t at which the data are available. This is known as the time-delay
problem, which makes the evaluation of the volume terms computationally unaffordable.
However, [11] introduced the maximum frequency parameter (MFP), which informs on
the range of frequencies which are unaffected by the approximation τ = t. Specifically, the
condition required for a correct evaluation of the noise associated with a certain frequency
is MFP > 1. The fulfillment of this condition was verified for the case under investigation.

2.6. Numerical Setup

We considered a simple geometry, namely, a square cylinder mounted over a plane
wall in an incompressible turbulent flow (Figure 1). It was substantially different from
the case of [10,11], since it belonged to the class of flows classified as junction flows. In
particular, a horseshoe vortex developed at the junction making the flow field substantially
three-dimensional. The frame of reference had the x-axis along the fluid motion, the y−axis
in the cross stream direction parallel to the wall and the z-axis parallel to the axis of the
cylinder. The inlet flow was uniform with velocity U0 = 10 m/s along the x-direction. The
square cylinder had a side d = 0.4 m and a length h = 30d. The value of kinematic viscosity
was chosen in such a way as to obtain a value of the Reynolds number of Re = 4000,
based on the side d. This value was large enough to generate an energetic turbulent
wake, characterized by a wide energy spectrum, and, at the same time, computationally
manageable.

Figure 1. Sketch of the problem under investigation and numerical domain.

The domain was 125d × 75d × 50d long in the x−, y−, z−direction, respectively, (see
Figure 1 for the frame of reference). The center of the cylinder was placed at 25d from the
inflow plane of the domain.

As boundary conditions, we set the wall-layer model at the surface of the cylinder
and at the bottom wall and the symmetry condition at the lateral and top boundaries of the
domain; we imposed a velocity (u = U0) and zero gradient for the pressure at the inflow
boundary and a zero gradient for the velocity, and we imposed arbitrary pressure p = 0 at
the outflow boundary.

We adopted quite a coarse mesh (1,193,000 number of cells) to reduce the computa-
tional efforts, which was allowed by the use of the wall-layer model approach.

In the x–y plane, the minimum cell length, located near the body, was ∆x = ∆y = 0.09d
and the maximum cell length in the far field region was 2.9d. The grid resolution along
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the z-direction was uniform with ∆z = 0.75d. A zoom of the mesh around the cylinder is
shown in Figure 2. We also expressed the cell dimension in wall units s+ = ν/(uτ s) with s
a generic direction. The friction velocity was calculated as uτ =

√
τw/ρ, with the bulk wall

shear stress τw = C f 0.5ρU2
0 and C f = [2log(Re)− 0.65]−2.3. With these values, the grid

resolution used by [10] was ∆x+ ≈ 20, ∆y+ < 1 at the walls of the cylinder and ∆z+ ≈ 20,
because the viscous sublayer was directly resolved there (wall-resolved LES).

Our resolution was ∆x+ = ∆y+ ≈ 30 at the walls of the cylinder and ∆z+ = 250.
In our case, we skipped the resolution of the thin viscous sublayer, still maintaining a
fine resolution in the wake, to reduce the computational cost while holding the resolution
needed for an accurate prediction of the fluid–acoustic field. The present resolution at the
solid walls constitutes the standard for a wall-layer-model LES.

Figure 2. Mesh distribution around the square cylinder.

The density of the fluid was ρ = 1000 kg/m3 and the kinematic viscosity ν = 1× 10−3 m2/s,
giving a Reynolds number equal to 4000. The solid was modeled with a density of
ρs = 1.85× 105 kg/m3 and a stiffness module (Young’s module) E = 1× 1013 N/m2.
These values were chosen so that the frequency of the first mode of vibration of the cylinder
was as close as possible to the frequency of the detachment of the vortices from the cylinder.
Consequently, we considered the analytical solution of the homogeneous equation of a
cantilever beam for the identification of the frequency of the first fundamental mode. To
comply with a Courant number smaller than 0.5, we set the time step equal to 0.001 s. The
junction flow introduced substantial variations with respect to the case of a free cylinder, in
the region of the three-dimensional horseshoe vortex. To minimize the differences with the
case of the free cylinder, for comparison purposes, we considered a region of the cylinder
far from the plate, where the flow field was, on average, substantially two-dimensional.

3. Results and Discussion

Here, we first discuss the hydrodynamic field and the modification induced by the
resonant vibration of the beam. Successively, we analyze the differences in terms of acoustic
signals at different distances from the body.

3.1. The Hydrodynamic Field

For the rigid case, the simulation was run for a nondimensional time tU0/D = 700
and the statistical properties calculated over a time window equal to 375 nondimensional
times. The 3D motion of a fluid around a finite size cylinder does not exhibit homogeneous
directions, but the length of the cylinder was large enough to consider and compare the
data with an equivalent 2D case in the central region of the cylinder (around z = 0, namely
the midplane of the cylinder). Moreover, the use of such region allowed us to minimize the
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effect of the presence of the plane wall on the fluid dynamic field. For this reason, velocity
components were averaged both in time and space along the z direction for a length ranging
from −5d to 5d. In order to validate the numerical results, we compared the mean velocity
profiles with the results obtained in [10,11], where the authors considered a free cylinder
and used a wall-resolved LES. In Figure 3, we report the profile of the streamwise velocity
component (averaged as discussed above), at various streamwise locations over the lateral
side of the cylinder. We observed that the use of the wall-layer model did not reduce
appreciably the accuracy of the simulation. A difference was observed in the position of
the separation point (about 0.375d), typical of simulations which make use of wall-layer
models. At this location, obviously, we found a maximum difference in the velocity profile
of about 8.8%, between the maximum reference velocity and that of our simulation.

The figure also shows the velocity profiles obtained in the case of a flexible cylinder. We
note that the velocity profiles were practically not sensitive to the vibration of the cylinder.

Figure 3. Profiles of the mean streamwise velocity component at different locations: (a) x = −0.375d,
(b) x = −0.125d, (c) x = 0.25d and (d) x = 0.5d. Ure f refers to the results of [10,11].

We also computed the turbulence intensities in the two cases (rigid versus flexible
cylinder), identified by the standard deviation of the fluctuating velocity and the Reynolds
shear stresses. We observed that the level of fluctuation in the velocity field increased in the
case of an elastic body, due to the interaction between the fluid and the structure (Figure 4)
and the consequent vibration. The figure shows that the largest differences were for the
level of fluctuation along the streamwise direction (about 21.3%) and for the Reynolds
shear stress 〈u′w′〉 (about 21.1%), whereas the differences were less important for the other
elements of the Reynolds stress tensor.
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Figure 4. Profiles of turbulence intensities and square root of Reynolds shear stresses for the rigid case
and the FSI case, respectively, at streamwise locations: (a) x = −0.375d, (b) x = −0.125d, (c) x = 0.25d
and (d) x = 0.5d.

We also analyzed the drag and lift coefficients, and, for the rigid cylinder, we compared
them with literature values (see Table 1).

Table 1. Drag coefficients and Strouhal number from different simulations.

Rigid Case FSI Case Ref. [10] Fine
Grid

Ref. [10] Coarse
Grid

C̄d 1.5316 1.440 2.073 1.607
f d/U 0.129 0.132 0.132 /

The lift coefficient was almost zero as expected, since it exhibited periodic oscillations
around the zero value. The drag coefficient exhibited a large-scale fluctuation around
a mean value together with a number of small-scale fluctuations. Averaging over the
time window reported above, we obtained a value close to that obtained with a coarse
mesh of the reference study (difference of −4.6% and a bit more underestimated compared
to the value obtained with the fine mesh of the reference study (difference of −26.12%).
This did not constitute a serious issue for two main reasons. First, the evaluation of the
coefficient was very sensitive to the choice of the time window used for averaging the time
record; in particular, a very long time window would be necessary to obtain a robust value,
which would require an excessively long simulation. Second, since here, we were mainly
interested in the analysis of the differences between the rigid and the flexible-body case,
a small difference in the value of the drag coefficient was acceptable, in view of the fact
that we used a wall-layer model. Finally, we show the time records of the drag and lift
coefficients (see Figure 5) and the spectrum of the lift force, which allowed us to evaluate
the Strouhal number (St = f d/U), the latter being of great importance for the evaluation
of the response of the elastic structure. The Strouhal number was underestimated by about
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2%, showing the good quality of our simulation. The spectrum exhibited peaks at the main
Strouhal frequency as well as at a larger frequency, due to nonlinear characteristics of the
wake. In the case of an elastic cylinder, the time records of the drag and lift coefficient
appeared somewhat different from the rigid case (see Figure 6). We observed that the
vibration of the cylinder reduced the drag and slightly increased the Strouhal number.
Moreover, the time record of the lift force appeared modified by the flexibility of the
cylinder, with a more energetic low-frequency mode.

Figure 5. Time record of the drag coefficient (top panel); time record of the lift coefficient (middle
panel); spectrum of the lift coefficient (bottom panel). The values refer to the rigid case.

Figure 6. Time record of the drag coefficient (top panel); time record of the lift coefficient (middle
panel); spectrum of the lift coefficient (bottom panel). The values refer to the FSI case.
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In Figure 7, we report the time record of the displacement of a point positioned at
the center of the free edge of the cylinder, in the direction of motion and in the transversal
direction, respectively.

Figure 7. Time record of the displacement of the edge of the cylinder: displacement along the direction
of motion (top panel); displacement along the transversal direction (middle panel), spectrum of the
transversal displacement (bottom panel).

The displacement in the direction of motion was initially characterized by significant
oscillations and successively by a quasi-static condition, characterized by a value of dis-
placement comparable with the theoretical value of a girder embedded and subject to a
uniform and stationary load. In fact, if we represented the system as a cantilever beam,
characterized by a stiffness E = 1× 1013 N/m2 and a length of l = 12 m subject to a uni-
formly distributed load q = 0.5CdρU2

0 d = 28, 842 N/m, then the maximum deformation
would be equal to

vmax =
ql4

8EI
= 0.0035 m.

This value was consistent with the mean displacement obtained from the numerical
calculation, vmax = 0.0027 m.

Of particular interest is the vibration in the direction perpendicular to the motion
of the fluid. We observed two main behaviors: initially the development was similar to
that of a system subject to a dynamic forcing with a frequency slightly different from
the fundamental one of the solid, thus leading to beats and the identification of two
fundamental frequencies of the displacement signal ( f1d/U0 = 0.130 and f2d/U0 = 0.147),
as shown in the bottom panel of Figure 8. After the initial transient, the signal of the
lift coefficient and the displacement tended to synchronize over a single fundamental
frequency f d/U0 = 0.133 (see Figure 9). A similar behavior was found in [5] where the
authors studied the aeroelastic response of the CAARC standard tall building analyzing its
structural response under five different wind speed levels.
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Figure 8. Time record of the displacement of the edge of the cylinder: displacement in the direction
of motion (top panel); displacement in the transversal direction (middle panel); spectrum of the
transverse displacement (bottom panel); time record in the time interval 0–180 tU0/d.

Figure 9. Time record of the displacement of the edge of the cylinder: displacement in the direction
of motion (top panel); displacement in the transversal direction (middle panel); spectrum of the
transverse displacement (bottom panel); time record in the time interval 180–360 tU0/d.

Finally, we report the velocity of vibration at the same point discussed above, along
the direction of motion and in the transversal direction, respectively (see Figure 10). We
observed a rapid decay in the streamwise direction, after the initial transient, whereas an
almost steady oscillatory behavior was observed in the transversal direction, associated to
the steady vibration of the body. Of note, the vibrational velocity was about three orders of
magnitude smaller that the main stream velocity.
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Figure 10. Time record of the velocity of vibration or the edge of the cylinder: velocity component in
the direction of motion (top panel); velocity component in the transversal direction (bottom panel).

3.2. The Acoustic Field

In this section, we report the numerical results of the acoustic pressure obtained
from the application of the FW-H equation. Of particular interest is the evaluation of the
differences in the acoustic field between the two cases, namely rigid versus elastic case.
In order to evaluate the acoustic field, we analyzed the acoustic pressure in terms of root
mean square (rms) in polar coordinates. The part of the solid considered for the acoustic
analysis was in the range −6d ≤ z ≤ +6d. The volume considered for the FW-H equation
was chosen in order to keep the microphones outside the volume of integration. At this
stage, we did not calculate the loading term associated to the lower wall (bottom patch),
and we did not consider the scattering effect associated to the lower boundary either. We
compared the results obtained in the rigid case with those of the elastic one. We calculated
the directivity plot of the acoustic pressure at different points placed over concentric circles
around the body, placed over a plane orthogonal to the axis of the cylinder at a distance 6d
from the edge; the radii of the circles were, respectively, 1d, 5d, 10d, 100d, 200d, 300d and
600d. For the points very close to the body (r = 1d), we evaluated the acoustic pressure
with the linear part of the FW-H equation only. Indeed, in that case, it is well known that
the linear contribution to the noise is dominant. For the other distances, we considered all
terms and compared separately the linear and the nonlinear parts of the FW-H equation.

In Figure 11, we observe that, near the source (r = 1d), the vibration of the cylinder
induced a noise more intense compared to that of the rigid cylinder case. Specifically, the
vibrational velocity of the body produced, from one side, a nonzero value of the thickness
term of the FW-H equation and, from the other side, a more intense acoustic pressure. The
dipolelike shape of directivity was maintained with larger values of the acoustic pressure
associated to the vibration.
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Figure 11. Directivity plot of prms [Pa] determined by the linear solution of the FW-H equation at
r = 1d: solid line, rigid cylinder; dashed line, elastic cylinder.
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From Figure 12 and beyond, it is possible to figure out that with an increasing distance
from the body, the difference between the rigid case and the elastic one became less and
less intense, from the point of view of the linear terms of the FW-H equation. However,
regarding the nonlinear terms, Figure 13 shows that substantial differences were evident in
the presence of a vibration of the structure, which had to be ascribed to the modification of
the turbulent field (see Figure 4). The differences between the rigid cylinder case and its
flexible counterpart were well visible at all distances examined; in particular, the amplitude
as well the shape of the quadrupole changed from one case to the other. Near the body
(r = 5d), we did not observe appreciable differences from the point of view of the preferred
directions of propagation of the acoustic pressure; rather, the intensity was larger in the
elastic case. Increasing the distance from the source produced a significant variation of the
preferred directions of propagation of the acoustic pressure. This meant that the behavior
of the turbulent wake was substantially different in the two cases examined. The total
noise, the sum of the linear and of the nonlinear contributions, is plotted in Figure 14. It
is interesting to note that in the near-to-intermediate field, the nonlinear part of the noise
was dominant and thus the nonlinear terms of the FW-H equation dominated near the
cylinder, while with an increasing distance from the source, the linear terms dominated the
acoustic pressure.
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Figure 12. Directivity plot of the prms [Pa] determined by the linear solution of the FW-H equation
on points placed on concentric circles at (a) r = 5d, (b) r = 10d and (c) r = 100d. Solid line, rigid
cylinder; dashed line, flexible cylinder.
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Figure 13. Directivity plot of the prms [Pa] determined by the nonlinear solution of the FW-H equation
on points placed on concentric circles at (a) r = 5d, (b) r = 10d and (c) r = 100d. Solid line, rigid
cylinder; dashed line, flexible cylinder.

Beyond r = 100d, we did not observe significant differences between the rigid case
and the elastic one, with regards to the linear terms, whereas differences persisted in the
nonlinear terms (not shown). With regard to the nonlinear terms, when increasing the
distance from the body, the preferred directions of propagation of the sound pressure
tended to coincide between rigid and elastic case, until the formation of an almost perfect
quadrupole at a distance of 600d (see Figure 15). However, as is well known from the
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classical theory, at that distance from the body, the linear terms dominate and, consequently,
differences between the two cases are not appreciable.
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Figure 14. Directivity plot of the prms [Pa] determined by the solution of the FW-H equation on points
placed on concentric circles at (a) r = 5d, (b) r = 10d and (c) r = 100d. Solid line, rigid cylinder;
dashed line, flexible cylinder.

Overall, we noted that in the near-body region, the intensity of the acoustic pressure
was larger in the FSI case due to the presence of the thickness term and to an enhanced
loading term, whereas in the very far field, the differences between the two cases tended
to disappear. The near-to-intermediate field was substantially affected by the elasticity of
the body because of the nonlinear contributions. This behavior reflected the fact that the
elasticity of the body reduced the formation of large-scale turbulent structures in the wake
and increased the number of small-scale turbulent eddies. However, since in the far field,
their contribution to the noise was some orders of magnitude smaller than that of the linear
term of the FW-H equation, we could say that in the far to very far field, the effect of a
small-amplitude resonant vibration was not perceptible in the acoustic field.
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Figure 15. Directivity plot of the prms [Pa] determined by the nonlinear solution of the FW-H equation
on points placed on concentric circles at (a) r = 200d, (b) r = 300d and (c) r = 600d; the solid line is
the rigid case and the dashed line is the FSI case.

Finally, we report the decay of the rms of the total acoustic pressure along the direction
of motion and the transversal direction, respectively, in Figure 16. Along the x-direction, a
slightly higher intensity was observed in the elastic body case, and the decay of the acoustic
energy was piecewise linear (in the log–log plot). In the transversal direction, the difference
between the rigid case and the elastic one was significant in the near field only, and the
decay was strictly linear in the log–log plot in the intermediate-to-far field. Specifically,
the acoustic pressure was substantially larger in the very near field in the elastic case;
then, as the distance increased the signals overlapped, consistent with the results of the
previous section. The decay of the acoustic pressure in the direction of motion initially
was proportional to ∝ r−3 and as the distance increased the decay became proportional to
∝ r−2, while in the transverse direction the decay was proportional to ∝ r−2.
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Figure 16. Decay of the acoustic pressure rms along the x-direction (left) and the y-direction (right):
rigid body case, solid blue line; flexible body case, dashed orange line; solid black line, ∝ r−3; dashed
black line, ∝ r−2.

4. Conclusions

In the present study, we investigated the differences that may occur between the sound
generated by a rigid slender body and that given by an equivalent linear elastic body, both
immersed in a turbulent flow field. The structural characteristics of the solid were such that
the first mode of vibration was excited through the von Karman vortex sheet developing
in the wake. In order to correctly detect the interaction between fluid and structure and
the implications for the noise generated by the body, we took advantage of the acoustic
analogy. First, the hydrodynamic field was obtained through a large eddy simulation
of the turbulent field, coupled with the equation for the deformation of a solid body by
means of the ALE (arbitrary Lagrangian–Eulerian) algorithm. The numerical solution was
successively used by the acoustic solver, which was based on the FW-H equation. We
considered a slender square cylinder immersed in a uniform current, characterized by a
Reynolds number of 4000. The solid was considered as characterized by two different
values of stiffness, one infinite and one finite, in order to evaluate the differences between
the rigid and the elastic case. First, we analyzed the hydrodynamic field and we found
that, although the mean field was nearly unaffected by the vibration of the solid, the
turbulent fluctuations were substantially enhanced by the fluid–structure interaction. The
elastic case was characterized by a larger Strouhal number (about 6% higher than the one
associated with the rigid case) and a reduced drag coefficient (about 2.27% lower than the
rigid case). Subsequently, we evaluated the acoustic response of the structure in terms of
directivity plot of the acoustic pressure and compared the noise generated in the two cases
discussed above. The analysis showed that due to the substantial variation of the pressure
and velocity fluctuating field associated with the vibration of the solid, the interaction
between the fluid and the elastic structure significantly modified the acoustic signature of
the body. In particular, the very near field was strongly affected by the vibration of the solid,
basically because of the vibrational velocity of the body and the associated pressure field.
The near-to-intermediate field was controlled by the nonlinear terms and, consequently,
by the wake, which was substantially altered by the fluid–structure interaction. The far
to very far field remained little affected by the vibration, since the modification of the
pressure/velocity field at the body surface was not able to be propagated at large distances.
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