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Abstract: With the rapid development of global trade, the turnover of shipping containers has
increased rapidly. How to use port resources reasonably and efficiently has become one of the main
challenges that ports need to deal with when planning for the future. In order to develop scientific
and efficient berth plans to improve operational efficiency and service level, this paper proposes
a hybrid prediction model based on Principal Component Analysis (PCA) and Extreme Learning
Machine (ELM) optimized by Improved Particle Swarm Optimization (IPSO), namely, the PCA-IPSO-
ELM model. After assessing the uncertain factors influencing the operation time of the container
ship at berth, this work reduces the dimensionality of the investigational data by the PCA method.
Aiming to solve easy premature convergence of the traditional particle swarm algorithm, this paper
introduces an improved particle swarm optimization algorithm via dynamic adjustment of nonlinear
parameters. This improved particle swarm algorithm is mainly used to optimize the weights and
thresholds of the extreme learning machine. Thus, a PCA-IPSO-ELM model which aims to forecast
the operation time of a container ship at berth, is constructed. Using the historical operation data of
the Tianjin Port Container Shipping Company as the prediction sample, this PCA-IPSO-ELM model is
compared and assessed with traditional models. The results show that compared with other models,
the PCA-IPSO-ELM prediction model has the characteristics of high prediction accuracy, fast running
rate and strong stability, and it has a higher coefficient of determination and a better fitting degree.

Keywords: prediction of operation time at berth; principal component analysis; extreme learning
machine; improved particle swarm optimization

1. Introduction

With the quick development of international trade, maritime transportation has played
a significant part in the global transportation business. Since the port serves as the key
intersection for land and maritime traffic, its operation and management directly relate to
the core values of the port organization. Among them, the projected arrival and departure
times of the ships are the important basis for making berthing plans [1]. Making a compre-
hensive and accurate prediction of the operation time of container ships at berth is a vital
step in developing an efficient berth plan and maximizing the use of port resources. With
the rapid development of the port economy and the continuous improvement of the water
logistics supply chain based on the container port, the port must improve the efficiency
of resource operations to cope with possible future risks and challenges. Numerous un-
predictability elements exist in the actual port operation scheduling, including ship type,
weather, berthing time, the volume of loading and unloading, and so on. Berthing time has
a non-linear relationship with these variables, which affects the accuracy of the prediction.
With few available berthing resources, the accurate prediction of berthing operation time for
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container ships is a crucial step in developing berthing strategies. Improving the prediction
accuracy can improve the utilization rate of berth resources and the proportion of the
effective operation time of quay crane resources. In order to reduce the interference of
ship departure time uncertainty on berth planning, and to provide a decision basis for
the best allocation of container port resources, this work builds a scientific and acceptable
prediction model of a container ship at berth operation time.

At present, the traditional deep learning model is a gradient-based descent algorithm
inevitably leading to some shortcomings, such as local optimum and the restrictions of error
function derivability [2]. To optimize the extreme learning machine, this study introduces
an extreme learning machine algorithm that differs from the conventional neural network.
It also combines principal component analysis and improved particle swarm algorithm,
and proposes a hybrid prediction model based on PCA-IPSO-ELM.

The paper is organized as follows: Section 1 introduces the research background,
the significance of this work, and a brief introduction to combinatorial model building.
Section 2 introduces the literature review in three directions according to the academic
fields involved in this study. Section 3 provides a theoretical introduction of the models
used in this paper and introduces the construction principle of combined forecasting
model. Section 4 conducts experiment and compares the PCA-IPSO-ELM model with other
traditional prediction models. Section 5 reviews the whole paper and proposes directions
for future improvement.

2. Literature Review

In order to explore the research status and development trend of the solved problems,
the research is carried out from the prediction method of container ship berthing operation
time and the prediction of berthing operation time considering uncertain factors. The
specific domestic and international research environments are as follows.

2.1. Traditional Method of Operation Time of Container Ship at Berth

Using normal and uniform distributions to characterize the deviation of a container
ship during the berthing operation is a more typical approach [3]. In order to decrease
the forecast error of berthing operation time, Golias [4] suggested combining Monte Carlo
simulation and an accurate algorithm under the assumption that the probability density of
the distribution of mooring operation time is known. Chen et al. [5] proposed an integrated
planning methodology for the optimization of port rotation direction and fleet deployment
for container liner shipping routes with consideration of demand uncertainty.

Although the model’s theoretical validity is unaffected by the inclusion of other
probability distribution functions, the results still cannot be relied upon to be accurate
enough [6]. Aiming at the dynamics and uncertainty of real-world environments in the
berth scheduling problem, Rodriguez-Molins et al. [7] adopted the robustness of the
evaluation schedule to manage the dynamics and uncertainty, and introduced robustness
through operational buffer time to absorb those unknown events. Yu et al. [8] proposed
a robust discrete berth allocation method under a low-carbon target, considering the
uncertainty of ship arrival time and operation time. Considering the uncertainty of ship
arrival time, Liu et al. [9] studied joint berth allocation and quay crane allocation. Based
on the robust optimization idea, a multi-objective robust model adapted to the level of
uncertainty is established.

To improve the accuracy of forecasting, in recent years, many scholars have begun
to apply machine learning, intelligent algorithms, and neural networks to berthing time
forecasting. Aiming at the problem of low prediction accuracy and slow training time for
neural network with single hidden layer forecast, Zhao et al. [10] proposed a combination of
Multitask and DBN neural network used to predict the short-term free berths. Li et al. [11]
combined deep neural network learning computing and logistics generalized computing
for container terminals (LGC-CT) across the boundaries of information space and the
physical world, which initially demonstrated the feasibility and credibility of the proposed
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composite computing architecture and paradigm. Nur Najihah et al. [12] proposed a data-
driven method for cold ironing ship berthing prediction using various models such as
artificial neural networks, multiple linear regression, random forests, decision trees, and
extreme gradient boosting.

In order to improve the accuracy of prediction, scholars have started to use combined
models to make predictions. For example, Farag [13] et al. proposed the ANN-MR model,
which uses a combination of ANN and multiple regression (MR) techniques to estimate
the power and fuel consumption of a ship. The model was used to predict the potential
fuel savings for a voyage of a ship in a Just-In-Time scenario. Lin et al. [2] proposed a
data-driven evaluation model. In this model, an artificial neural network combined with
a dynamic particle swarm optimization algorithm (DPSO-ANN) is solved to predict the
collision response of an offshore platform structure. Chen et al. [14] combined the im-
proved genetic algorithm with the advanced recurrent neural network with long short term
memory unit. The experimental results show that the prediction accuracy is significantly
improved compared with the traditional mainstream models. Ma et al. [15] used a Back
Propagation Neural Network (BPNN) with strong generalization ability for prediction. To
solve the problem of initialization of BPNN parameters, Particle Swarm Optimization (PSO)
combined with variance factors was used to optimize the initial weights and thresholds
of the neural network. In summary, it can be seen that the combined prediction model is
more widely used and has higher prediction. Genetic algorithms and neural networks are
popular in prediction, so their combination can obtain better results.

2.2. Prediction Methods Considering Uncertain Factors

When domestic and foreign scholars study the berthing operation time of container
ships, they often consider the linear effect of a few influencing factors on the berthing
operation time, but they will face many uncertain factors in the actual port operation
scheduling. The accuracy of the prediction is impacted by a non-linear connection between
these variables and berthing operation time. If the inaccuracy is significant, it will frequently
make it difficult to execute the real berthing plan as intended, wasting port resources. As
a result, some researchers have undertaken extensive research on the uncertainty factors
impacting berth operation time in the study of container ships at berth operation time
prediction. In order to construct a scheduling model that would be affected by the variation
of loading and unloading operation time under the condition of uncertain number of quay
bridges allocated, Park and Kim et al. [16] took the number of quay bridge spaces allocated
to the ship into consideration when selecting influencing factors for the berthing operation
time of container ships. When studying the influencing factors of ship berthing, Gui [17]
took the uncertainty factors on the shore into account, and established a prediction model of
continuous berth and dynamic ship arrival. Considering various uncertainties and random
factors in the port system, Peng et al. [18] built a simulation model framework for port
planning and ship management to predict and manage port problems. In order to reduce
the error in predicting ship operation time, Zhen et al. [19] integrated the planning and
operations at container ports to jointly optimize strategical level planning and tactical level
berth and yard space allocation under uncertain vessel arrival times and uncertain numbers
of loading/unloading containers.

Based on the port operation data of Tianjin Port Container Shipping Company, this
paper predicts and analyzes the berthing operation time of container ships in Tianjin Port.
These data come from a container ship project completed by the university project team
in cooperation with Tianjin Port. The research item in this work has a discrete berth type.
Numerous variables affecting the forecast of berthing operation time are studied and
collated because there are numerous uncertainties in the port’s actual operation scheduling.
In this paper, through actual investigation and the reading of literature, factors such as
ship type, weather, number of assigned quay cranes, number of containers to be loaded
and unloaded, berthing time, number of trucks, and number of assigned yard bridges are
identified as the main determinants of container berthing time. The paper randomly picks
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the data of arriving vessels in port during all four quarters of the year, including holidays,
to prevent bias in the forecast results due to uneven data selection.

According to certain researchers, the link between the influencing factors of at berth
operation time and the prediction result is frequently complex and non-linear. Because of
its superior mapping capabilities and the applicability of nonlinear relationships, the BP
(Back Propagation) neural network is gradually being used in the research of container
ships’ operation time prediction at berth. According to the research of Wang et al. [20],
there is a nonlinear relationship between the berthing operation time and the influencing
elements, and the operation time is influenced by natural factors like hydrology and
meteorological. Based on this, a novel dynamic learning technique for function optimization
is suggested. Additionally, a parallel algorithm and neural network are built for berth
scheduling scheme to forecast the berthing time of a ship, which reduce the overall cost
of the system. To address the nonlinear link between the influencing parameters of the
container ship’s berthing time and the projected value, Han [21] suggested a BP neural
network prediction model. A multi-layer feed-forward neural network, known as the BP
neural network, was proposed by Rumelhart et al. [22]. However, the method has issues
including premature convergence and poor convergence speed, and a large number of
parameters must be set in the training phase. The Extreme Learning Machine (ELM) was
proposed by Huang et al. [23]. This algorithm is based on BP neural network and combines
kernel function idea. Its most important feature is the high generalization ability and fast
training speed. In the extreme learning machine, the connection weights will be randomly
generated between the hidden layer and the input layer. Only the number of neurons in the
hidden layer can be set without repeatedly adjusting the relevant weights, and the unique
optimal solution can be obtained with ideal effect. Additionally, the model compensates
for the drawbacks of BP neural networks to some extent.

Therefore, it can be seen that, in view of the nonlinear relationship between Tianjin
Port data and uncertain factors, the prediction model based on ELM can obtain a relatively
stable decomposition sequence, which retains the inherent fluctuation characteristics of the
data, and can also improve the prediction accuracy and efficiency.

3. Construction of PCA-IPSO-ELM Hybrid Prediction Model

In recent years, the combined forecasting model generally has the advantage of high
forecasting accuracy compared with the single forecasting model, and is also increasingly
applied to forecasting problems. Usually, a single prediction model has limitations in
practical application. For example, although the ELM model can reduce the volatility of the
original modeling data series and predict the berthing time well, it has certain requirements
for the data to be processed and is sensitive to fixed values of the parameters. The combined
model can well overcome the inadequacies of a single prediction model.

This paper considers building a hybrid model from the following aspects. First,
choosing the right model is crucial to the success of model development. Since the ship data
of terminal time is not exactly a linear problem and uncertain factors need to be considered,
the ELM model suitable for nonlinear prediction is selected, which can cope with uncertain
factors and has good prediction accuracy. This model predicts the berthing time more
accurately than other machine learning algorithms. Secondly, considering that there are
many dimensions of ship data at berthing time, and the data is redundant. Therefore, before
ELM makes predictions, we use the PCA method to eliminate the factors that affect the
original data for dimensionality reduction. Finally, considering that ELM relies heavily on
model parameters, we use the IPSO to select the best combination of weights and thresholds
for the ELM model to improve the prediction performance. Therefore, this paper proposes
a hybrid prediction model based on PCA-IPSO-ELM.

3.1. Fusion of PCA and ELM

In this paper, we choose the Extreme Learning Machine (ELM) model for its advantages
of fast learning and generalization ability. ELM is a single hidden layer feedforward neural
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network learning algorithm, which obtains a neural network by computing a generalized
inverse matrix. The connection weights between the hidden layer and the input layer are
created at random, and instead of repeatedly adjusting the weights during the training
process, the globally unique optimal solution can be achieved by simply setting the number
of neurons in the finished hidden layer. Briefly, the network structure of the ELM model
is the same as that of a single hidden layer feedforward neural network (SLFN), except
that instead of the frequently used algorithm (backward propagation) used in traditional
neural networks in the training phase, random input layer weights and biases are used.
The training of ELM is completed after obtaining the weights and deviations on all network
nodes, and then the output layer weights just obtained can be used to calculate the network
output to complete the prediction of the data when the test data comes. In this paper, the
sigmoid function is used as the activation function in the berthing time prediction model.

Contrary to standard neural networks that require gradient-based backpropagation
to adjust weights, extreme learning machines have good generalization performance and
extremely fast learning ability. Therefore, this paper chooses the ELM model as the ba-
sis for prediction. ELM has been widely used in recent years, by extending the ELM
content, Parida et al. [24] combined OL model and ELM model to implement extreme
learning machine algorithm with a single hidden layer feed forward neural network with
a suitable number of nodes in the hidden layer, which is set up prior to the training and
only requires arbitrary assignment of input weights and hidden layer bias. Jia et al. [25]
aimed at the complex nonlinear relationship among factors affecting blasting fragmenta-
tion, the input weight and hidden layer threshold of ELM were optimized by gray wolf
optimizer (GWO) and established the prediction model of GWOELM blasting fragmenta-
tion. Wei et al. [26] proposed a novel and simple machine learning method to evaluate the
stability of rubble-mound breakwaters by using Extreme Learning Machine (ELM) models,
which performed well.

ELM generally uses mini normalization or max normalization in data preprocessing
to eliminate the influence of data dimension and order of magnitude. However, due to the
numerous dimensions of the experimental data, this paper uses the principal component
analysis method to reduce the dimension and forecast the data samples of the ELM pre-
berth operation time of the shipping company, aiming to solve the redundancy problem
of the chosen original data samples. In this way, the interactions between indicators are
eliminated and the distribution of data does not have to be considered. The principal
component analysis is based on orthogonal transformation, which converts a number of
correlated variables into a small number of linearly nearly uncorrelated composite variables,
which are then converted into a number of composite variables that are utilized as principal
components. The number of principal components as new variables is not only reduced,
but also reflects the main information of the original data more intuitively, which facilitates
multivariate statistical analysis and simplifies the research process.

In the above model, although a single hidden layer forward neural network has been
widely used in the field of machine learning because of its simple network structure and
good global approximation ability, most learning algorithms have the disadvantage of slow
convergence and are easy to fall into local minima because they are based on gradient
descent for optimization. Moreover, the parameters of the ELM learning algorithm are
set randomly, so the network performance is relatively unstable. In order to improve
the performance of the ELM algorithm, this paper selects the improved particle swarm
algorithm (IPSO) to improve the ELM model, optimizes the parameters of ELM based on
IPSO, selects the first M optimal individuals, finds their input weights and deviations,
respectively, and then finds the output weights. In the function approximation problem,
according to the error between the actual output and the desired output, the average value
is taken as the final evaluation criterion.



J. Mar. Sci. Eng. 2022, 10, 1919 6 of 18

3.2. Introduction of Improved Particle Swarm Optimization

The choice of parameters in the extreme learning machine has a significant impact
on the prediction effect. Therefore, to improve the accuracy and stability of the extreme
learning machine for predicting the berthing time of the container ship, this study uses an
improved particle swarm algorithm to optimize the extreme learning machine. In recent
years, the improved particle swarm computing has been widely used. Chai et al. [27]
improved the learning factor and inertia weights in the conventional particle swarm
algorithm to improve the system’s merit-seeking performance. Gao et al. [28] proposed a
method for the dynamic obstacle avoidance problem of unmanned surface vehicles (USVs)
under the international regulations for preventing collisions at sea (COLREGs), which
applies the particle swarm optimization algorithm (PSO) to the dynamic window approach
(DWA) to reduce the optimal trajectory finding the time and improve the timeliness of
obstacle avoidance. This approach improves computational accuracy and model stability by
combining the global convergence of SA and the quick convergence of PSO. Bian et al. [29]
designed a particle swarm optimization (PSO) algorithm to increase solution efficiency of
prediction model and introduced a taboo list and aspiration criterion of a Taboo Search
(TS) algorithm to improve the PSO algorithm. To solve existing problems in the PSO
algorithm, Zheng et al. [30] improved PSO from four aspects, namely data processing of
particle swarm population initialization, data processing of iterative optimization, particle
velocity adjustment, and particle cross-boundary configuration, in combination with space
reduction technology.

In summary, the improved particle swarm optimization effectively avoids premature
convergence to the global optimal position in the optimization process, which also taking
into account the convergence speed and accuracy of the algorithm optimization, thus
improving the performance of the algorithm [31]. This paper adopts two ways to improve
the particle swarm algorithm, as shown below.

3.2.1. Nonlinear Dynamic Adjustment of Inertial Weights

The key to improving particle swarm optimization algorithms is to balance the global
exploration capability with the local exploitation capability. The inertia weight ω is a crucial
factor in coordinating the overall and local exploration performance since it shows how
much the previously generated particle motion velocity contributes to the current motion
velocity. The common PSO inertia weight allocation strategy is a linear decreasing method,
as in Equation (1), which ωmax, ωmin is generally taken as 0.9, 0.4, t is the number of current
iterations and Tmax is the maximum number of iterations.

ω = ωmax −
(ωmax −ωmin)× t

Tmax
. (1)

In ω Linear Decreasing Particle Swarm Optimization (LDPSO), the inclusion of the
number of iterations variable increases the global search capability at the beginning of
the iteration and the local search capability at the end. However, the whole optimization
process is not linear, which means that if the inertia parameters decrease linearly, it is not
suitable for the development process. Therefore, to ensure that the particles have good
global performance in the initial iteration and good local performance in the later iterations,
the PSO algorithm is enhanced with a dynamic nonlinearly varying inertia factor. ω is
calculated as:

ω = ωmax − (ωmax −ωmin)× arctan(t/Tmax). (2)

where ωmax and ωmin denote the maximum and minimum inertia weights, respectively; t
denotes the current number of iterations and Tmax is the maximum number of iterations;
k is the smoothing factor controlling the smoothness of the ω curves and takes the value
of 0.7.
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3.2.2. Nonlinear Dynamic Adjustment of the Learning Factor

In the PSO algorithm, the learning factors c1 and c2 represent the weight values of
particle self-learning and social learning respectively, and serve to adjust the step size of
particles moving towards the local optimum and the global optimum. Therefore, this paper
adopts a non-linear dynamic adjustment method to improve the learning factors c1 and
c2, so that the value of c1 can be changed from large to small and the value of c2 can be
changed from small to large to enhance the early global exploration ability and the later
local exploration ability of the particles. The specific improvement strategy is shown in
Equation (3): {

c1 = 1.49− 2× log(1 + (t/Tmax))
m

c2 = 1.49 + 2× log(1 + (t/Tmax))
m . (3)

where t is the current number of iterations and Tmax is the maximum number of iterations;
m is the smoothing factor that controls the smoothness of the c1 and c2 curves and takes the
value of 2. The algorithm has the following advantages after improving the learning factors:
the learning factors c1 and c2 change non-linearly as the number of iterations increases;
using larger values of c1 and smaller values of c2 at the beginning of the algorithm iteration
makes the particles have more self-awareness, which reduces the effect of local optimization
and increases the diversity of particles. Using smaller values of c1 and larger values of
c2 values in the later iteration increase the social cognitive ability of the particles and
improves the ability of the particles to reach the global optimum, which leads to better
optimization results.

3.2.3. Empirical Analysis of Nonlinear Dynamic Adjustments

MATLAB’s syntax is more flexible than Python, and the tools for scientific computing
are extremely well developed. All variables are matrix objects, and the speed is fast by
using matrix operations instead of cyclic operations. The data format of MATLAB’s various
toolkits is uniform, while Python packages are independently developed by different author
teams, so it is difficult to achieve a uniform data format and API. MATLAB itself is a perfect
tensor operating system, and the deep learning framework is simple. Therefore, this paper
is based on the MATLAB platform for testing the algorithm and analyzing the results.

To verify the effectiveness of the IPSO algorithm proposed in this paper, we select
single multi-peak standard test functions such as Sphere function, Schwefel 1.2 function,
and Schaffer function for verification. The improved IPSO algorithm is tested against the
LDPSO algorithm and the classical PSO algorithm to find the best performance, and the
results are analyzed.

The standard PSO algorithm, LDPSO algorithm, and the IPSO algorithm proposed in
this paper are compared. In this paper, we set the particle swarm size to 100, the maximum
number of iterations to 500, and the dimension to 10. The settings of inertia weights and
learning factors of the three algorithms are shown in Table 1.

Table 1. Algorithm parameters.

Algorithms Parameter Settings

Standard Particle Swarm
Algorithm (PSO) ω = 0.7298, c1 = c2 = 1.496

ω Linearly decreasing particle swarm
algorithms (LDPSO) ωmax = 0.9, ωmin = 0.4, c1 = c2 = 1.496

Improved particle swarm algorithm (IPSO) ωmax = 0.9, ωmin = 0.4, k = 0.7, m = 2

To verify the performance of the improved particle swarm algorithm in dealing with
complex problems, the PSO algorithm based on dynamic adjustment of non-linear parame-
ters (IPSO), and the PSO algorithm with linearly decreasing inertia weights (LDPSO), and
the standard PSO algorithm was tested using the test functions mentioned above. The con-
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vergence curves of the three algorithms for the Sphere function, the Schwefel 1.2 function
and the Schaffer function are shown in Figures 1–3, respectively.
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From the function convergence curves in the above figures, it can be seen that com-
pared with the PSO algorithm and the LDPSO algorithm, the IPSO algorithm has an
advantage in convergence accuracy and speed on the Sphere single-peak function and the
Schwefel 1.2 single-peak function, and the IPSO algorithm has a more desirable search
capability on the Schaffer multi-peak function.

To eliminate the influence of randomness on algorithm performance and quantify
algorithm performance reasonably, the three algorithms are independently run 30 times on
the MATLAB software. The optimum (Fbest), mean (Mean) and standard deviation (Std) of
each algorithm are calculated, and the results are compared and analyzed. Table 2 shows
the data obtained.

Table 2. Results of the test function.

Functions Algorithms Fbest Mean Std

Sphere function
PSO 3.730 × 10−10 4.280 × 101 250.016

LDPSO 2.394 × 10−13 2.450 × 101 162.180
IPSO 3.407 × 10−38 1.184 × 101 83.9579

Schwefel function
PSO 2.262 × 10−1 4.487 × 10−1 0.630

LDPSO 4.674 × 10−2 9.570 × 10−2 0.260
IPSO 1.212 × 10−4 2.365 × 10−2 0.130

Schaffer function
PSO 1.782 × 10−1 1.972 × 10−1 0.0539

LDPSO 3.722 × 10−2 4.915 × 10−2 0.0422
IPSO 7.226 × 10−3 1.192 × 10−2 0.0379

Combining the optimization results of the standard PSO algorithm, LDPSO algorithm
and IPSO algorithm on unimodal and multimodal functions, it can be seen that within
the 500 iterations set by the algorithm, the IPSO algorithm performs well on the Sphere
function, Schwefel 1.2 function and Schaffer function. The optimal value optimized by the
IPSO algorithm is always better than the standard particle swarm optimization algorithm
and LDPSO algorithm. At the same time, its optimized mean and variance are also better
than standard particle swarm optimization and LDPSO algorithm. This demonstrates
that the algorithm’s ideal target value is more likely to be the actual optimal value and its
convergence accuracy is more trustworthy.

The above analysis shows that the inclusion of dynamically adjustable inertia weights
and learning factors in the IPSO algorithm ensures strong global exploration performance
of the particles in the search region in the early stage of particle swarm evolution. At the
end of the iteration, the local search ability of the particles is enhanced, thus improving
the convergence performance of the algorithm. As a result, the IPSO algorithm’s overall
performance is improved. Its search performance and convergence speed are also improved
on the single-peak test benchmark function and multi-peak test benchmark function.

3.3. A hybrid Model of PCA-IPSO-ELM

Aiming to solve the problem that the traditional particle swarm algorithm tends
to converge prematurely, an improved particle swarm optimization algorithm (IPSO) is
introduced, and the extreme learning machine (ELM) is optimized to select the best set
of weights and thresholds. At the same time, to eliminate the redundancy of the original
data samples due to the multiple factors affecting berthing operation time, which appears
to damage the prediction model’s accuracy, the principal component analysis (PCA) is
employed to reduce the dimension of the data. Therefore, a hybrid prediction model based
on PCA and ELM optimized by IPSO (namely PCA-IPSO-ELM) is proposed to predict
the operation time of container ship at berth. The following are the precise steps of the
PCA-IPSO-ELM model.

(1) Data preprocessing. New composite indicators are chosen after dimensionality
reduction of the multi-factor indicators affecting the operation time of container ships
at berth.
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(2) The prediction model’s input is derived from the principal component analysis
after dimensionality reduction.

(3) The set of parameters to initialize the particle swarm. The specific parameters
include particle swarm size, particle velocity and position, set each parameter.

(4) Based on the set objective function, find the fitness value fi of the particle, compare
the fitness value fi of the particle with the individual optimal value Pbesti, if fi > Pbesti,
then Pbesti = fi; compare the individual optimal value Pbesti with Gbesti, if Pbesti > Gbesti,
then Gbesti = Pbesti, and find the global optimal value.

(5) Update the individual extremum and global extremum of the particle; update
the inertia weight and learning factor; and update the speed and position of the particle
according to the fitness value.

(6) Repeat the above steps until the upper limit of the number of iterations is reached
or the accuracy requirement is satisfied.

(7) The optimal particle positions derived in the extreme learning machine are the
corresponding optimal input weights and hidden layer thresholds, and the output weight
matrix is calculated. The obtained optimal results are used for training the ELM model, and
evaluating the model. The PCA-IPSO-ELM model of the container ship berthing operation
time forecasting process is shown in Figure 4.
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4. Experiment and Discussion
4.1. Data Preprocessing

It can be seen from Section 2.1 that there are 11 uncertain factors identified in this
paper, including ship types, and so on. The influencing factors identified in the study are
the number of shore bridge X1, the number of 20-foot containers unloaded X2, the number
of 20-foot containers loaded X3, the number of 40-foot containers unloaded X4, the number
of 40-foot containers loaded X5, the number of special containers unloaded X6, the number
of special containers loaded X7, the type of vessel X8, the time of vessel berthing X9, the
number of collector trucks X10, the number of yard bridges X11, and the weather (wind
level and rain and snow) X12. In this study, it is assumed that each quay bridge, field
bridge, and collecting card performs the same amount of work per unit of time. Since some
categories in the original data are represented by words, it is necessary to code and process
the text records of ship type and weather, while also digitally converting the time series of
berthing time.

The data samples obtained by the coding procedure are shown in Table 3, which
randomly selects 1000 data from the original data. In order to ensure that the prediction
is accurate, 700 samples from the training set and 300 samples from the test set must be
randomly generated in the ratio of 7:3. The container ship operation information sheet is
shown in Table 4.

Table 3. Weather types after coding.

Weather Air Velocity Encoding

Sunny, cloudy, overcast Level 1–6 1
Level 6–8 2

Beijing-Tianjin-Hebei province Level 1–6 3
Level 6–8 4

Light rain Level 1–6 5
Level 6–8 6

Yangtze River Delta Level 1–6 7
Level 6–8 8

Moderate rain, heavy rain Level 1–6 9
Level 6–8 10

Table 4. Container ship operation information sheet.

Serial Number X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

1 1 178 184 40 45 30 29 4 2.6 5 3 1

2 2 120 92 196 71 62 129 3 17.5 7 4 4

3 1 62 114 58 59 43 78 3 18 4 2 3

4 1 41 133 109 133 63 39 4 20.2 4 2 2

5 1 67 95 40 22 61 60 2 22.5 3 2 5

6 4 170 470 379 290 118 60 3 5.4 20 11 3

7 2 190 194 94 100 79 44 5 23 11 6 1

8 3 125 207 127 115 28 33 2 12.5 13 7 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1000 1 62 60 32 30 21 47 5 10.6 3 2 1

Before conducting principal component analysis, the original samples were first ana-
lyzed to confirm whether they met the requirements of principal component analysis. In
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this study, the port ship operation data are analyzed by Pearson correlation analysis using
IBM SPSS Statistics.

This study uses KMO and Bartlett’s spherical test. The degree of correlation between
variables is assessed according to the judgment and the suitability of the sample data when
using principal component analysis method. The results of the test are displayed in Table 5
with a significance level of 0.000 and a KMO measure of 0.717. The resultant value of
the method satisfies the KMO measure’s requirements as well as the significance level of
Bartlett’s sphericity test below 0.01. The analysis demonstrates that the original data’s
parameters show a strong correlation, and the chosen sample data satisfies the necessary
conditions for the principal component analysis approach, which may be used to reduce
dimensionality.

Table 5. KMO measurement and Bartlett test.

Statistical Quantity Numerical Value

KMO 0.717

Bartlett’s spherical test chi-square statistic 3944.940

(number of) Degrees of freedom (physics and statistics) 66

Saliency 0.000

Using the MATLAB software, principal component analysis is carried out on the
container ship’s berth operation time data. Principal component analysis is performed on
the original samples using the princomp function after they have been first normalized
with the zscore function. A control group is added to the zscore function standardization
of the container ship at berth operation data shown in Table 4 to confirm the logic and
validity of the zscore standardization process. In the control group, the steps of the zscore
standardization process are skipped, but other conditions are keeping constant. This allows
us to assess the logic and validity of the zscore standardization process.

The data information on the number of different types and sizes of containers loaded
and uploaded has become the main data of the container ship’s berthing operation data. It
is discovered when performing principal component analysis on the data of the control
group, it is found that because its values are significantly higher than other data indicators.
Because of this, both the size of the coefficient matrix and the size of difference between
each primary component’s contribution rate are too large. It is therefore determined that the
magnitude difference of the coefficient matrix of principal component analysis will be too
big when the original data are not standardized by the zscore function, which will damage
the outcome of experimental data analysis. Therefore, using the zscore standardization
step can eliminate the negative impact of different index magnitudes in the original data
on the model effect, and reduce the impact of high-level numerical indicators on low-level
numerical indicators. Additionally, this method can also avoid the impact of some higher
value indicators on the main data sample score. Following zscore normalization, Figure 5
displays the principle component variance contribution rate.

Figure 5 illustrates the contributions of each principal component and the variance of
each principal component on the horizontal and vertical axes, respectively. A bar graph
displays the variance contributions of each principal component. The eigenvalues of each
variable in Figure 5 are sorted from largest to smallest, and the cumulative contribution
of the first seven principal components, F1, F2, F3, F4, F5, F6, F7, is over 85%, meeting
the standard of covering the main information in the original sample. Therefore, the
principal component matrix can be obtained from the above seven eigenvalues. The 7-D
principal component matrix retains the main information of the original data and elimi-
nates the irrelevant information. Table 6 shows the composition matrix. Seven principal
component calculation formulas composed of 12 influencing factors can be obtained from
the table. Each column of numbers corresponds to the coefficient of each factor. Thus,
principal component analysis reduces the complexity of the data and produces more con-
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densed and informative data samples for the next stage of training the prediction model
by replacing the muti-indicators of high-dimensional samples with low-dimensional and
comprehensive indicators.
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Table 6. Composition matrix.

Variable 1 2 3 4 5 6 7

X1 −0.017 0.454 −0.013 0.144 0.240 −0.010 −0.835

X2 −0.017 0.420 −0.556 −0.056 −0.047 0.005 0.107

X3 0.019 0.450 −0.452 −0.049 −0.109 0.001 0.313

X4 0.004 0.454 0.483 −0.037 −0.108 −0.044 0.198

X5 −0.015 0.449 0.489 −0.051 −0.126 −0.053 0.173

X6 0.018 0.058 0.053 −0.489 0.831 0.168 0.182

X7 0.466 0.007 0.081 0.013 −0.112 0.356 −0.067

X8 0.420 0.020 −0.053 −0.060 −0.065 0.316 −0.047

X9 0.449 0.018 0.014 0.009 −0.066 0.390 0.016

X10 −0.033 0.059 0.018 0.848 0.396 0.182 0.283

X11 0.460 −0.005 −0.033 0.053 0.094 −0.494 0.033

X12 0.437 −0.012 −0.007 0.067 0.157 −0.558 0.044

4.2. Parameters Setting of PCA-ELM-IPSO Model

In this section, we use the principal component matrix as the input matrix for the con-
tainer ship berthing operation prediction model experiments, and use the actual berthing
operation time as the output variable. Besides, we also use the MATLAB tool for model
training and prediction.

In this paper, the parameters of particle swarm optimization algorithm, extreme
learning machine and principal component analysis are shown in Table 7. The number
of nodes in the implicit layer in the limit learning machine is determined by the formula
l =
√

n + m in Section 4.1 (l, n and m are the number of nodes in the implicit layer, input
layer and output layer, respectively, and a is a constant, which is generally taken in the
range of [1,10]). To find the optimal number of nodes in the hidden layer, the study is
evaluated by the magnitude of the mean square error under the same data samples and
experimental conditions. After training, it is found that the model means square error is
minimized when the number of nodes in the hidden layer was 11. As a result, the number
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of nodes in the hidden layer is set to 11, the number of neurons in the output layer is
set to 1, the Sigmoid function is chosen as the activation function, and the smoothing
factor k controlling the smoothness of the ω curves is set to 0.7, and the smoothing factor
m controlling the smoothness of the c1 and c2 curves is set to 2. In addition, to ensure
the accuracy of the prediction, Section 4.1 needs to generate 700 training set samples and
300 test set samples at a random ratio of 7:3 when pre-processing the data.

Table 7. Model parameter setting.

Model Parameter Setting

PSO

population size 100
Maximum number of iterations 500

Dimension 10
Maximum inertia weight 0.9
Minimum inertia weight 0.4
Particle velocity interval [−1, 1]

ELM Nodes in the implicit layer determined by the formula
l =
√

n + m in Section 4.1

PCA
input node 7

Output node 1
Nodes in the implicit layer [4, 13]

4.3. Analysis of Prediction Results

Combining principal component analysis, improved particle swarm optimization, and
extreme learning machine algorithm, a prediction model of container ship berth operation
time based on PCA-IPSO-ELM is established. The data samples after dimensionality
reduction by principal component analysis are selected, and the training and prediction of
the PCA-IPSO-ELM model are carried out by the MATLAB software. Figure 6 shows the
predicted and true values of the hybrid PCA-IPSO-ELM model, and Figure 7 shows the
absolute error of the model prediction.
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In Figure 6, the black dotted line indicates the expected output value, and the blue
solid line indicates the predicted output of the model. The predicted trend is consistent
with the actual container ship’s berth operation, and the fitting degree of the model is
good. At the same time, it can be seen from Figure 7 that the absolute prediction error
of the PCA-IPSO-ELM model is generally in a low floating range. It can be inferred that
this model has good prediction performance in predicting the berth operation time of
container ships.
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In order to further verify the effectiveness of the PCA-IPSO-ELM prediction model,
the standard BP neural network model, ELM model, GA-BP neural network model, and
the IPSO-ELM model are selected as comparison experiments. Among them, the excitation
function of the hidden layer of the BP neural network is Sigmoid, the excitation function of
the output layer is Purelin, the number of neurons in the hidden layer is 10, the maximum
number of training is 500, the accuracy requirement is set to 0.0001, the learning rate is
0.01, the weights and thresholds of the network are initialized to a value between them,
the chromosome coding length in GA is 168, the population size is set to 60, the evolution
algebra is 30, and the crossover probability is 0. The BP, ELM, GA-BP, and IPSO-ELM
models are programmed using the MATLAB platform to complete the training process of
the models, and the test set is predicted and analyzed.

The prediction results of the PCA-IPSO-ELM model proposed in this paper are com-
pared with the other four models, and it is finds that the single BP neural network model
has the worst prediction effect and the biggest error. Compared with the standard BP
neural network, the GA-BP model improves the prediction accuracy, but the iteration speed
is slow and the solution process takes a long time. The PCA-IPSO-ELM model proposed
in this paper has the best fitting effect, and the absolute error of prediction is mainly con-
centrated in the interval, while the IPSO-ELM model is second only to PCA-IPSO-ELMEL
model. The prediction results of the above five groups of models are BP < ELM < GA-BP
< IPSO-ELM < PCA-IPSO-ELM. To further analyze the comprehensive performance of
the prediction models, the training is repeated 30 times, and the average absolute error,
root mean square error, determination coefficient and running time are used to predict the
BP, ELM, IPSO-ELM, GA-BP and PCA-IPSO-ELM models. The prediction results of the
IPSO-ELM model are analyzed, and the results are shown in Table 8. The absolute error
comparison of the five models is shown in Figure 8.

Table 8. Prediction model performance analysis.

Models MAE RMSE R2 Running Time (s)

BP 1.3508 1.4913 87.31% 932.697

ELM 1.0929 1.2761 90.55% 458.072

GA-BP 0.5672 0.6884 95.06% 615.406

IPSO-ELM 0.3581 0.4759 97.79% 228.593

PCA-IPSO-ELM 0.3196 0.4080 98.62% 201.787
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From the comparison results of the prediction data of the five models, we can conclude
that:

(1) The average absolute error and root mean square error of the PCA-IPSO-ELM
model are 0.3196 and 0.4080, respectively, which are lower than 1.3508 and 1.4913 of BP
model, 1.0929 and 1.2761 of ELM model, 0.5672 and 0.6884 of GA-BP model, and 0.3581
and 0.4759 of IPSO-ELM model. The coefficient of determination of the PCA-IPSO-ELM
model is 98.62%, which is higher than 87.31% for the BP model, 90.55% for the ELM model,
95.06% for the GA-BP model, and 97.79% for the IPSO-ELM model.

(2) According to the analysis of the running time of the different models, the running
time of the ELM model is 458.072 s, while that of BP model is 932.697 s, which is about
twice that of BP. On this basis, the PCA-IPSO-ELM model has a running time of 201.787 s,
which is also faster than the GA-BP model with 615.406 s and the IPSO-ELM model with
228.593 s, requiring the shortest running time.

By analyzing the performance of the five prediction models, the PCA-IPSO-ELM model
has the smallest prediction error, the best fitting degree, and the shortest running time. It
can be concluded that compared with the single BP neural network model, the performance
of ELM model is improved, but the prediction accuracy and fit of the two models are still
insufficient. Compared with the GA-BP model and other three models, the PCA-IPSO-ELM
model avoids the influence of redundant data, and effectively overcomes the shortcomings
of common prediction models, such as slow response, premature convergence to local
optimum and excessive memory consumption.

5. Conclusions

The projected berthing time of container ships is an important basis for making berth
plans. An accurate prediction can effectively improve the utilization of berthing resources,
thus improving the operational efficiency and service level of ports, and achieving a win-
win situation for the port, shipping companies and cargo companies. It has important
practical significance for the actual production and operation of ports. With the goal of
improving the comprehensiveness of the prediction model, a hybrid prediction model
based on principal component analysis and improved particle swarm optimization (PCA-
IPSO-ELM) is proposed for optimizing extreme learning machines by studying the variables
affecting the berthing time of container ships under uncertain conditions. Moreover, the
variables affecting the operation time of container ships at berth are analyzed and the port
operation data of Tianjin Port Container Ship Company are pre-processed by dimensionality
reduction preprocessing. Standard Particle Swarm Optimization (PSO) suffers from the
problems of easily falling into local optimum prematurely, relatively unbalanced global and
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local search capabilities, and slow convergence during the optimization process. Aiming at
the above problems, this paper proposes an improved PSO algorithm based on the dynamic
adjustment of nonlinear parameters. The verification results show that the improved
particle swarm optimization algorithm is superior to the basic particle swarm optimization
algorithm and linear decreasing weight particle swarm optimization algorithm in the
aspects of optimal value, mean value, and standard deviation. Based on the research of
the improved particle swarm optimization algorithm, the extreme learning machine is
optimized by using the improved algorithm. Additionally, the best combination of weights
and threshold is selected to improve the prediction performance of the model.

Finally, taking Tianjin Port Container Line as an example, we compare the prediction
results of the traditional BP, ELM, GA-BP, and IPSO-ELM models. We can know that the
average absolute error, root mean square error and running time of the PCA-IPSO-ELM
prediction model are 0.3196 h, 0.4080 h and 201.787 s, respectively, all of which are lower
than the corresponding indexes of other models; and the coefficient of determination of
our model is 98.62%, which is higher than other models. The experiment verifies that the
PCA-IPSO-ELM-based container ship at berth operation time prediction model proposed in
this study has good prediction performance and can provides a decision basis for optimal
allocation of container port resources. There is room for further study and improvement.
In this paper, principal component analysis is used to reduce the dimensionality of the
original index data, and further research is needed to find a better data processing method
than PCA to make full use of data information resources.
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