Heavy Metal Contamination and Ecological Risk Assessment in the Sediment Cores of the Wetlands in Southern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Storage
2.3. Digestion Procedure
2.4. Analysis of Metals
2.5. Data Processing and Statistical Analysis
2.5.1. The Enrichment Factor (EF)
2.5.2. The Geoaccumulation Index (Igeo)
2.5.3. The Ecological Risk Index (R¡)
3. Results and Discussion
4. Discussion
4.1. Environmental Risk Assessment of Heavy Metals in Sediment Cores
4.2. The Ecological Risk Index (Ri)
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-F.; Shi, Q.-Y.; Qu, J.-Y.; He, M.-X.; Li, Q. A pollution risk assessment and source analysis of heavy metals in sediments: A case study of Lake Gehu, China. Chin. J. Anal. Chem. 2022, 50, 100077. [Google Scholar] [CrossRef]
- Chettri, U.; Chakrabarty, T.K.; Joshi, S.R. Pollution index assessment of surface water and sediment quality with reference to heavy metals in Teesta River in Eastern Himalayan range, India. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100742. [Google Scholar] [CrossRef]
- Yang, J.; Xu, H.; Wang, X. Impact of tourism activities on the distribution and pollution of soil heavy metals in natural scenic spots on the northern slope of Tianshan Mountain. PLoS ONE 2022, 17, e0267829. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Lu, S.; Wu, J.; Guo, X.; Wu, F.; Li, X.; He, Q.; Fu, Z.; Xu, L. Heavy metal distribution in Tiaoxi River’s sediment. Environ. Sci. Pollut. Res. 2018, 25, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Maestre, R.; Johnson-Restrepo, B.; Olivero-Verbel, J. Heavy metals in sediments and fish in the Caribbean coast of Colombia: Assessing the environmental risk. Int. J. Environ. Res. 2018, 12, 289–301. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Witkowska, D.; Slowik, J.; Chilicka, K. Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Bakulskia, K.M.; Seob, Y.A.; Hickmana, R.C.; Brandta, D.; Vadaria, H.S.; Hu, H.; KyunPark, S. Heavy Metals Exposure and Alzheimer’s Disease and Related Dementias. J. Alzheimer’s Dis. 2020, 76, 1215–1242. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Framework for Metals Risk Assessment; EPA-120/R-07/001; U.S. Environmental Protection Agency, Office of the Science Advisor: Washington, DC, USA, 2007; pp. 1–172.
- Kobkeatthawin, T.; Sirivithayapakorn, S.; Nitiratsuwan, T.; Muenhor, D.; Loh, P.-S.; Pradit, S. Accumulation of trace metal in sediment and soft tissue of Strombus canarium in a tropical remote island of Thailand. J. Mar. Sci. Eng. 2021, 9, 991. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, C.; Zhao, X.; Dong, J.; Zheng, B. Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environ. Sci. Eur. 2020, 32, 23. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Liu, C.; Tan, X.; You, X.; Dai, C.; Liu, S.; Li, J.; Li, N. Heavy metal transport driven by seawater-freshwater interface dynamics: The role of colloid mobilization and aquifer pore structure change. Water Res. 2022, 217, 118370. [Google Scholar] [CrossRef]
- Beier, T.; Opp, C.; Hahn, J.; Zitzer, N. Sink and source functions for metal(loid)s in sediments and soils of two water reservoirs of the Ore Mountains, Saxony, Germany. Appl. Sci. 2022, 12, 6354. [Google Scholar] [CrossRef]
- Shi, C.; He, H.; Xia, Z.; Gan, H.; Xue, Q.; Cui, Z.; Chen, J. Heavy metals and Pb isotopes in a marine sediment core record environmental changes and anthropogenic activities in the Pearl River Delta over a century. Sci. Total Environ. 2022, 814, 151934. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Luo, K.; Su, Z.; Wu, Y.; Xiao, W.; Qin, M.; Lin, J.; Zhang, S.; Zhang, Y.; Jiang, Y.; et al. Imposed by urbanization on soil heavy metal content of lake wetland and evaluation of ecological risks in East Dongting Lake. Urban Clim. 2022, 42, 101117. [Google Scholar] [CrossRef]
- Dang, K.B.; Phan, T.T.H.; Nguyen, T.T.; Pham, T.P.N.; Nguyen, M.H.; Dang, V.B.; Hoang, T.T.H.; Ngo, V.L. Economic valuation of wetland ecosystem services in northeastern part of Vietnam. Knowl. Manag. Aquat. Ecosyst. 2022, 423, 12. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing ecosystem services for coastal wetland protection and restoration: Progress and challenges. Resources 2013, 2, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Nimmi, N.; Shiji, M.; Harikumar, P.S. Assessment of heavy metal contamination and ecological risk of core sediments in a coastal wetland of India. Soil Sediment Contam. 2022, 31, 886–904. [Google Scholar]
- Wang, X.; Sun, Y.; Li, S.; Wang, H. Spatial distribution and ecological risk assessment of heavy metals in soil from the Raoyanghe Wetland, China. PLoS ONE 2019, 14, e0220409. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Kaewdee, W.; Thirakhupt, K.; Tunhikorn, S. Population of waterbirds in the breeding colony at Khuan Khi Sian, Thailand’s First Ramsar Site. Nat. Hist. J. Chulalongkorn Univ. 2002, 2, 51–58. [Google Scholar]
- Kanchanasaka, B.; Tong-aree, S.; La-ong, S. Reproductive biology and food habits of some birds in Thale Noi Non-hunting Area. Wildl. J. Thail. 1986, 6, 1–36. (In Thai) [Google Scholar]
- Pradit, S.; Shazili, N.A.M.; Towatana, P.; Saengmanee, W. Trace metals, grain size and organic matter in sediment from a coastal area of Thailand and Malaysia. Aquat. Ecosyst. Health Manag. 2016, 19, 345–354. [Google Scholar] [CrossRef]
- Mingkhwan, R.; Worakhunpiset, S. Heavy Metal Contamination Near Industrial Estate Areas in Phra Nakhon Si Ayutthaya Province, Thailand and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2018, 15, 1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta, A.T.; Babel, S. Microplastics pollution with heavy metals in the aquaculture zone of the Chao Phraya River Estuary, Thailand. Mar. Pollut. Bull. 2020, 161, 111747. [Google Scholar] [CrossRef] [PubMed]
- Lheknim, V. Fishes of Thale Noi and its tributaries, South Thailand. IOP Conf. Ser. Earth Environ. Sci. 2020, 535, 012042. [Google Scholar] [CrossRef]
- Rittiboon, K.; Karntanut, W. Distribution of Resident birds in a protected tropical habitat in South Thailand. J. Issaas 2011, 17, 95–103. [Google Scholar]
- US EPA. QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged for Material Evaluations; EPA-823-B95-001; U.S. Environmental Protection Agency, Office of the Science Advisor: Washington, DC, USA, 1995; pp. 1–144.
- Li, Y.; Zhou, H.; Gao, B.; Xu, D. Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. Sci. Total Environ. 2021, 755, 142437. [Google Scholar] [CrossRef]
- Hasan, A.B.; Selim Reza, A.H.M.; Kabir, S.; Siddique, M.A.B.; Ahsan, M.A.; Akbor, M.A. Accumulation and distribution of heavy metals in soil and food crops around the ship breaking area in southern Bangladesh and associated health risk assessment. SN Appl. Sci. 2020, 2, 155. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Shazili, N.A.M.; Rashid, M.K.A.; Husain, M.L.; Nordin, A.; Ali, S. Trace metals in the surface sediments of the South China Sea, area I: Gulf of Thailand and the East Coast of Peninsular Malaysia. In Proceedings of the First Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia, Bangkok, Thailand, 24–26 November 1997; Training Department, Southeast Asian Fisheries Development Center: Bangkok, Thailand, 1999; pp. 73–85. [Google Scholar]
- Ghrefat, H.A.; Abu-Rukah, Y.; Rosen, M.A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain dam, Jordan. Environ. Monit. Assess. 2011, 178, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Ekissi, D.; Kinimo, K.C.; Kamelan, T.M.; Kouamelan, E.P. Physicochemical Characteristics and Heavy Metals Contamination Assessment in Water and Sediment in a Tropical Hydroelectric Dam of Sassandra River, Côte d’Ivoire. J. Environ. Pollut. Hum. Health 2021, 9, 27–35. [Google Scholar] [CrossRef]
- Perumal, K.; Antony, J.; Muthuramalingam, S. Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India. Environ. Sci. Eur. 2021, 33, 63. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in the sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Jiang, M.; Zeng, G.; Zhang, C.; Ma, X.; Chen, M.; Zhang, J.; Lu, L.; Yu, Q.; Hu, L.; Liu, L. Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District. PLoS ONE 2013, 8, e71176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salcedo Sánchez, E.R.; Martínez, J.M.E.; Morales, M.M.; Talavera Mendoza, O.; Alberich, M.V.E. Ecological and Health Risk Assessment of Potential Toxic Elements from a Mining Area (Water and Sediments): The San Juan-Taxco River System, Guerrero, Mexico. Water 2022, 14, 518. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk assessment index for aquatic contamination control, a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Sowunmi, K.; Titilaya, S.; Sowanmi, L. Seasonal bioavailability of heavy metal contaminants from the university of Lagos lagoon, Nigeria. Res. Sq. 2020, 1–8. [Google Scholar] [CrossRef]
- Oluyemi, U.A.; Feuyit, G.; Oyekunle, J.A.O.; Ogunfowokan, A.O. Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. Afr. J. Environ. Sci. Technol. 2008, 2, 089–096. [Google Scholar]
- Pradit, S.; Gao, Y.; Faiboon, A.; Galan De, S.; Baeyens, W.; Leemaker, M. Application of DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) techniques in the study of the mobility of sediment bound metals in the outer section of Songkhla Lake, southern Thailand. Environ. Monit. Assess. 2013, 185, 4207–4220. [Google Scholar] [CrossRef]
- US EPA. Guidance for the Pollution Classification of Great Lakes Harbor Sediments; U.S. Environmental Protection Agency: Chicago, IL, USA, 1997; pp. 1–8.
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- NOAA. Sediment Quality Guidelines Developed for the National Status and Trends Program. 1999. Available online: http://response.restoration.noaa.gov/book_shelf/121_sedi_qual_guide.pdf (accessed on 20 July 2010).
- Sompongchaiyakul, P.; Sirinawin, W. Arsenic, chromium and mercury in surface sediment of Songkhla Lake system, Thailand. Asian J. Water Environ. Pollut. 2007, 4, 17–24. [Google Scholar]
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Shrivastava, A.; Ghosh, D.; Dash, A.; Bose, S. Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Curr. Pollut. Rep. 2015, 1, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.; Sarkar, D. Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide: An incubation study. Environ. Geosci. 2004, 2, 87–97. [Google Scholar] [CrossRef]
- Armbrust, K.; Bridges, D.C. Dissipation of Monosodium Methane Arsonate (MSMA) on Peanuts. J. Agric. Food Chem. 2002, 50, 1959–1963. [Google Scholar] [CrossRef]
- Quazi, S.; Datta, R.; Sarkar, D. Effects of soil types and forms of arsenical pesticide on rice growth and development. Int. J. Environ. Sci. Technol. 2011, 8, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Kljaković-Gašpić, Z.; Bogner, D.; Ujević, I. Trace metals (Cd, Pb, Cu, Zn and Ni) in sediment of the submarine pit Dragon ear (Soline Bay, Rogoznica, Croatia). Environ. Geol. 2008, 58, 751–760. [Google Scholar] [CrossRef]
- Harikumar, P.S.; Nasir, U.P. Ecotoxicological impact assessment of heavy metals in core sediments of a tropical estuary. Ecotoxicol. Environ. Saf. 2010, 73, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Lari, B.; Egobueze, F.E.; Iwegbue, C.M.A.; Arimoro, F.O. Distribution of metals in sediment core of Orogodo river, Southern Nigeria. FTSTJ 2018, 3, 985–991. [Google Scholar]
- Gao, C.; Yu, J.; Min, X.; Cheng, A.; Hong, R.; Zhang, L. Heavy metal concentrations in sediments from Xingyun lake, southwestern China: Implications for environmental changes and human activities. Environ. Earth Sci. 2018, 77, 666. [Google Scholar] [CrossRef]
- Ruilian, Y.; Xing, Y.; Yuanhui, Z.; Gongren, H.; Xianglin, T. Heavy metal pollution in intertidal sediments from Quanzhou Bay, China. J. Environ. Sci. 2008, 20, 664–669. [Google Scholar]
- Yang, G.; Song, Z.; Sun, X.; Chen, C.; Ke, S.; Zhang, J. Heavy metals of sediment cores in Dachan Bay and their responses to human activities. Mar. Pollut. Bull. 2020, 150, 110764. [Google Scholar] [CrossRef]
- Zhuang, H.; Gao, M.; Yan, C.; Cao, Y.; Zhang, J. Vertical profiles and contamination assessments of heavy metals in sediment cores from typical intertidal zones in northern China. Mar. Pollut. Bull. 2020, 159, 111442. [Google Scholar] [CrossRef] [PubMed]
- Shahabi-Ghahfarokhi, S.; Josefsson, S.; Apler, A.; Kalbitz, K.; Åström, M.; Ketzer, M. Baltic Sea sediments record anthropogenic loads of Cd, Pb, and Zn. Environ. Sci. Pollut. Res. 2021, 28, 6162–6175. [Google Scholar] [CrossRef]
- Choi, S.C.; Wai, O.W.H.; Choi, T.W.H.; Li, X.D.; Tsang, C.W. Distribution of cadmium, chromium, copper, lead and zinc in marine sediments in Honk Kong waters. Environ. Geol. 2006, 51, 455–461. [Google Scholar] [CrossRef]
Range of Ei Value | Level of Comprehensive Potential Ecological Risk |
---|---|
Ei < 150 | Low |
150 ≤ Ei ≤ 300 | Moderate |
300 ≤ Ei ≤ 600 | Considerable |
600 ≤ Ei | High |
Stations | Depth (cm) | Pb (Dry) | Pb (Wet) | As (Dry) | As (Wet) | Cd (Dry) | Cd (Wet) |
---|---|---|---|---|---|---|---|
1 | 0–4 | 15.71 | 5.63 | 2.93 | 1.70 | 0.46 | 0.19 |
4–8 | 13.93 | 5.31 | 3.72 | 2.04 | 0.41 | 0.42 | |
8–12 | 18.03 | 3.20 | 3.57 | 1.90 | 0.40 | 0.06 | |
12–16 | 24.32 | 7.95 | 4.89 | 1.11 | 0.49 | 0.07 | |
16–20 | 21.92 | 5.78 | 5.39 | 1.17 | 0.42 | 0.10 | |
20–24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2 | 0–4 | 18.14 | 4.85 | 4.38 | 1.50 | 0.92 | 0.20 |
4–8 | 13.94 | 7.02 | 4.95 | 3.16 | 0.61 | 0.41 | |
8–12 | 13.32 | 8.84 | 4.33 | 3.62 | 0.24 | 0.46 | |
12–16 | 15.90 | 8.26 | 6.06 | 2.23 | 0.30 | 0.36 | |
16–20 | 15.56 | 7.79 | 5.57 | 1.96 | 0.46 | 0.29 | |
20–24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
3 | 0–4 | 46.79 | 6.68 | 4.98 | 1.85 | 0.40 | 0.29 |
4–8 | 13.51 | 7.23 | 3.23 | 2.19 | 0.22 | 0.33 | |
8–12 | 17.71 | 8.86 | 4.90 | 1.70 | 0.37 | 0.63 | |
12–16 | 17.29 | 8.61 | 4.00 | 1.43 | 0.33 | 0.61 | |
16–20 | 17.10 | 8.40 | 4.54 | 2.06 | 0.37 | 0.58 | |
20–24 | 15.06 | 8.73 | 3.72 | 1.69 | 0.36 | 0.59 | |
4 | 0–4 | 6.60 | 6.23 | 1.11 | 1.56 | 0.12 | 0.31 |
4–8 | 6.98 | 5.71 | 2.58 | 1.48 | 0.26 | 0.14 | |
8–12 | 9.53 | 6.96 | 2.02 | 1.95 | 0.28 | 0.19 | |
12–16 | 8.06 | 5.82 | 2.28 | 0.99 | 0.26 | 0.12 | |
16–20 | 4.51 | 6.24 | 1.92 | 1.44 | 0.18 | 0.18 | |
20–24 | 5.93 | 5.83 | 2.08 | 1.25 | 0.17 | 0.24 | |
5 | 0–4 | 60.16 | 6.39 | 4.62 | 1.54 | 0.38 | 0.41 |
4–8 | 13.35 | 6.82 | 3.64 | 1.47 | 0.30 | 0.46 | |
8–12 | 12.75 | 6.22 | 2.70 | 2.57 | 0.27 | 0.35 | |
12–16 | 10.99 | 6.81 | 4.07 | 2.21 | 0.15 | 0.43 | |
16–20 | 13.01 | 7.49 | 3.93 | 2.06 | 0.15 | 0.35 | |
20–24 | 13.36 | 11.28 | 4.08 | 3.86 | 0.18 | 0.60 | |
6 | 0–4 | 33.60 | 9.72 | 4.36 | 2.82 | 0.12 | 0.61 |
4–8 | 13.60 | 10.45 | 2.35 | 3.44 | 0.07 | 0.64 | |
8–12 | 14.36 | 8.45 | 2.40 | 1.39 | 0.06 | 0.54 | |
12–16 | 14.01 | 12.12 | 3.41 | 3.23 | 0.08 | 0.94 | |
16–20 | 13.42 | 11.04 | 2.40 | 2.31 | 0.02 | 0.85 | |
20–24 | 14.92 | 10.30 | 2.54 | 3.29 | 0.06 | 0.82 | |
7 | 0–4 | 42.10 | 9.69 | 2.96 | 2.57 | 0.11 | 0.59 |
4–8 | 15.56 | 11.15 | 3.99 | 3.39 | 0.09 | 0.76 | |
8–12 | 15.02 | 10.02 | 3.12 | 2.61 | 0.10 | 0.92 | |
12–16 | 13.55 | 9.47 | 3.54 | 2.26 | 0.05 | 1.13 | |
16–20 | 14.07 | 3.38 | 4.75 | 2.09 | 0.05 | 1.06 | |
20–24 | 19.09 | 10.56 | 6.68 | 1.76 | 0.14 | 1.74 | |
Average | 16.35 | 7.41 | 3.54 | 2.02 | 0.25 | 0.48 | |
Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Max | 60.16 | 12.12 | 6.68 | 3.86 | 0.92 | 1.74 |
Element | U.S. EPA Toxicity Classifications | MacDonald et al., 2000 | NOAA | ||||
---|---|---|---|---|---|---|---|
Nonpolluted | Moderately Polluted | Heavily Polluted | TEC | PEC | ERL | ERM | |
Pb | <40 | 40–60 | >60 | 36 | 130 | 46.7 | 218 |
As | <3 | 3–8 | >8 | 9.8 | 33 | 8.2 | 70 |
Cd | * | * | >6 | 0.99 | 5.0 | 1.2 | 9.6 |
Values | Enrichment Factor (EF) | Geoaccumulation Index (Igeo) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | As | Cd | Pb | As | Cd | |||||||
Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | |
Mean | 0.63 | 0.38 | 2.31 | 1.73 | 0.89 | 1.71 | 0.13 | 0.08 | 0.47 | 0.35 | 0.18 | 0.35 |
S.D. | 0.43 | 0.13 | 0.96 | 0.63 | 0.74 | 0.44 | 0.08 | 0.03 | 0.19 | 0.13 | 0.15 | 0.09 |
Min | 0.24 | 0.08 | 1.08 | 0.50 | 0.05 | 0.63 | 0.05 | 0.02 | 0.22 | 0.10 | 0.01 | 0.13 |
Max | 2.07 | 0.90 | 6.10 | 3.93 | 3.03 | 2.50 | 0.41 | 0.18 | 1.23 | 0.79 | 0.62 | 0.51 |
Locations | Values | Pb (mg/kg) | As (mg/kg) | Cd (mg/kg) | Refs. |
---|---|---|---|---|---|
Khuan Khi Sian wetland, Thailand | Mean (Dry) Mean (Wet) | 16.37 7.41 | 3.54 2.02 | 0.28 0.48 | This study |
Min-Max (Dry) Min-Max (Wet) | 0.00–60.2 0.00–12.1 | 0.00–6.70 1.69–2.45 | 0.13–0.40 0.37–0.57 | ||
Soline Bay, Croatia | Min-Max | 28.5–67.3 | - | 0.06–0.12 | [55] |
Pattani Bay Thailand Setiu wetland, Thailand | Min-Max (Dry) Min-Max (Wet) Min-Max (Dry) Min-Max (Wet) | 6.90–11.70 2.40–11.48 1.07–2.34 0.63–1.56 | 2.03–5.93 6.90–11.70 0.47–1.02 1.07–2.34 | 0.00–0.01 0.01–0.02 0.00–0.00 0.00–0.00 | [26] |
Kochi Estuary, India | Min-Max | 33.4–98.9 | - | 6.05–29.4 | [56] |
Orogodo river, Southern Nigeria | Min-Max (Dry) Min-Max (Wet) | 0.8–25.7 0.6–6.5 | - | - | [57] |
Xingyun lake, China | Min-Max | 10.50–95.07 | - | 0.13–1.13 | [58] |
Mean | 25.8 | 10.7 | 0.168 | ||
Quanzhou, China | [59] | ||||
Min-Max | 34.3-100. | - | 0.28-0.89 | ||
Dachan Bay, China | Mean | 57.5 | 17.4 | 0.56 | [60] |
Min-Max | 42.7–130 | 8.94–25.2 | 0.19–1.79 | ||
Mean | 58.4 | 15.9 | 0.65 | ||
Min-Max | 33.0–70.5 | 12.9–20.1 | 0.35–1.19 | ||
Northern China | Min-Max | 10.0–43.6 | 3.2–17.0 | 0.040–0.360 | [61] |
Bothnian Bay, Baltic Sea | Mean | 40.2 | - | 0.4 | [62] |
The west Baltic | Mean | 56.6 | - | 5.5 | |
South China sea, Hongkong | Min-Max | 20.0–108.0 | - | 1.5–2.5 | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradit, S.; Noppradit, P.; Jitkaew, P.; Sengloyluan, K.; Kobkeatthawin, T.; Laerosa, A.; Sirivithayapakorn, S. Heavy Metal Contamination and Ecological Risk Assessment in the Sediment Cores of the Wetlands in Southern Thailand. J. Mar. Sci. Eng. 2022, 10, 1921. https://doi.org/10.3390/jmse10121921
Pradit S, Noppradit P, Jitkaew P, Sengloyluan K, Kobkeatthawin T, Laerosa A, Sirivithayapakorn S. Heavy Metal Contamination and Ecological Risk Assessment in the Sediment Cores of the Wetlands in Southern Thailand. Journal of Marine Science and Engineering. 2022; 10(12):1921. https://doi.org/10.3390/jmse10121921
Chicago/Turabian StylePradit, Siriporn, Prakrit Noppradit, Panisara Jitkaew, Karnda Sengloyluan, Thawanrat Kobkeatthawin, Araf Laerosa, and Sanya Sirivithayapakorn. 2022. "Heavy Metal Contamination and Ecological Risk Assessment in the Sediment Cores of the Wetlands in Southern Thailand" Journal of Marine Science and Engineering 10, no. 12: 1921. https://doi.org/10.3390/jmse10121921
APA StylePradit, S., Noppradit, P., Jitkaew, P., Sengloyluan, K., Kobkeatthawin, T., Laerosa, A., & Sirivithayapakorn, S. (2022). Heavy Metal Contamination and Ecological Risk Assessment in the Sediment Cores of the Wetlands in Southern Thailand. Journal of Marine Science and Engineering, 10(12), 1921. https://doi.org/10.3390/jmse10121921