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Abstract: Many studies have shown that the linear elastic fracture mechanics (LEFM) method based
on the stress intensity factor range (∆K) has limitations that cannot be ignored. Due to neglecting the
influence of plastic deformation near the crack tip, LEFM shows apparent deviations in evaluating
the fracture behaviour. Therefore, in this study, the crack tip opening displacement range (∆CTOD)
is chosen as an alternative to ∆K and based on the elastic–plastic fracture mechanics (EPFM) to
develop a new fracture behaviour assessment approach for marine structures. Firstly, a ∆CTOD
model based on the HRR (Hutchinson, Rice, and Rosengren) solution is proposed considering the
crack closure effect. Secondly, a series of compact tension (CT) specimen crack growth experiments
under constant amplitude loading is carried out. According to the experimental results, the prediction
accuracy of the HRR model and traditional Irwin and Dugdale models is compared and analysed. The
rationality of ∆CTOD as an alternative to ∆K is verified. The results show that ∆CTOD can describe
the crack propagation behaviour well. The proposed HRR model shows better accuracy and a more
comprehensive application range than the traditional models, which has a guiding significance for
studying fracture behaviour for marine structural applications.

Keywords: HRR solution; elastic–plastic fracture mechanics; ∆CTOD; crack closure effect; fatigue
crack propagation

1. Introduction

Fatigue failure is considered one of the most severe problems in marine structures
during their service life [1]. The extensive use of high-strength steel has increased marine
structures’ overall deformation and stress levels, resulting in more severe fatigue dam-
age [2,3]. Therefore, it is essential to study the fracture behaviour of high-strength steel
materials using the fracture mechanics method to design and reliability assessment of
marine structures.

Marine structure design and residual fatigue strength assessment are mainly based
on the linear elastic fracture mechanics (LEFM) method. Paris’ law [4] established the
relationship between the crack propagation rate (da/dN) and stress intensity factor range
∆K, which significantly contributed to the advance in the understanding of the fracture of
different materials and structural components [5]:

da/dN = C(∆K)m (1)

where C and m are material constants obtained from experiments. Ebler [6,7] observed
experimentally that the crack closure occurs in the specimen even under tensile load. Since
then, many scholars [8–10] have extensively studied the crack closure effect and concluded
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that the main driving force controlling the crack propagation should be the effective stress
intensity factor amplitude ∆Keff, which is defined as:

∆Ke f f= Kmax − Kpo= U∆K (2)

where Kmax and Keff are the maximum and the opening stress intensity factor, respectively,
and U is the crack closure coefficient to character crack closure effect.

However, after decades of application, it has been found that there are apparent
limitations of the LEFM. Although the effect of the crack tip plastic zone can be neglected
for small-scale yielding, the use of fracture parameter ∆K leads to significant deviations
in the predicted crack propagation rate when large-scale plastic deformation occurs at
the crack tip. For this reason, two fracture parameters, J-integral and crack tip opening
displacement (CTOD), were introduced to replace the stress intensity factor K.

Rice [11] and Cherepanov [12] proposed a concept of the path-independent J-integral,
and Hutchinson [13], Rice, and Rosengren [14] established the HRR singular field theory.
The HRR solution describes the elastic–plastic stress–strain distribution at the crack tip
of the power-law hardening materials, and the J-integral characterizes the strength of the
HRR singular field. Some studies focused on the HRR field characterized by J-integral.
Shih et al. [15,16] calculated the angular distribution function of the HRR solution through
the finite element method (FEM) and summarized it into a table, which greatly facilitated
the use of the HRR solution. Homayoun et al. [17] calculated the stress–strain field at the
mode I crack tip using the HRR solution, linear elastic FEM, and elastic–plastic FEM. The
HRR solution results were closer to those of the elastic–plastic FEM solution, indicating
that the HRR solution is suitable for solving the elastic–plastic fracture problem.

Zou et al. [18] analyzed the axial and radial stress distributions near the crack tip
through FEM, which was in good agreement with the HRR solution, indicating that the HRR
solution can reflect the stress–strain distribution at the crack tip accurately. However, since
the J-integral is path-independent only when the assumption of total plastic deformation is
satisfied, the HRR solution only applies to monotonic loading processes [19].

The concept of CTOD was proposed by Wells [20] based on the number of tests, which
has clear physical significance and can be directly measured during the tests. One of the
basic mechanisms for fatigue crack propagation is based on the crack-tip blunting under
maximum load and the re-sharpening of the crack-tip under minimum load [21–24]. An-
tunes et al. [23] used numerical methods to calculate CTOD for two aluminium alloy middle
tension (MT) specimens, Krzysztof [25] presented fatigue crack propagation rate and CTOD
for high-strength steel under tensile loading, and Vasco-Olmo and James [26] proposed a
method to measure and analyze CTOD from experimental data. These studies indicate that
CTOD can be a viable alternative to ∆K for characterizing fatigue crack expansion.

There are two main numerical models commonly used to estimate CTOD. One is
the Irwin model, which is derived based on the modified plastic zone size as proposed
in [27] for the linear elastic fracture problem, and therefore it is only applicable to the case
of small-scale yielding. The other is the Dugdale model [28], which treats the crack-tip
plastic zone as a flat ribbon and uses the superposition principle to transform the complex
elastic–plastic problem into two simple linear-elastic problems, thus achieving the solution
of CTOD for the large-scale yielding condition.

However, the accuracy and applicability of the Dugdale model are questionable
because it ignores the effect of material hardening and incorrectly assumes the shape of the
plastic zone at the crack tip [29,30].

The HRR solution can accurately describe the elastic–plastic stress–strain field of
the crack tip, but it is unsuitable for cyclic loading. CTOD can characterize the crack
propagation behaviour under cyclic loading, but there is no accurate numerical solution.
Therefore, the following work is carried out to characterize the crack propagation behaviour
under cyclic loading. Firstly, the plastic zone size of the crack tip is deduced based on the
HRR solution, which characterizes the crack tip’s elastic–plastic stress and strain field. The
∆CTOD numerical model (HRR model) is further proposed considering the crack closure
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effect. Section 3 introduces the CT specimen size, experimental device, and measurement
method. According to the established loading conditions, a series of crack propagation
experiments of CT specimens made of Ni-Cr-Mo-V high-strength steel used in naval ship
construction are carried out. Section 4 compares the accuracy and applicability of the Irwin,
Dugdale, and HRR models proposed in this study analyses them based on the experimental
results. All the conclusions of this study are summarized lastly.

2. Numerical Methods

Fracture mechanics [31] defines the J-integral of the two-dimensional (2D) planar crack
as follows:

J =
∫
Γ

[Wdy − T i
∂ui
∂x

ds] (3)

where Γ is the integration contour pointing from the lower crack surface to the upper crack
surface; W is the strain energy density; σij, εij, and ui are the stress, strain, and displacement
fields near the crack tip, respectively; Ti is the tension vector on the crack body bounded by
Γ; and ds is the differential element along the contour Γ:

W = σjiε ji (4)

Since the above-defined equation is inconvenient to use in engineering, the J-integral
was divided into the elastic component Je and plastic component Jp:

J = Je + Jp (5)

For the CT specimen, the relationship between Je and the stress intensity factor (SIF) is
defined as:

Je =
K2

E
(6)

while the SIF can be determined by [32]:

K =
P

B
√

W
(2 + β)

(1 − β)3/2 (0 .886 + 4.64β − 13.32β2+14.72β3 − 5.6β4
)

(7)

where P is the far-field load, B and W are the thickness and width, respectively, of the CT
specimen, and β = a/W is the shape factor of the CT specimen. a is the crack length of the
CT specimen.

The J-integral plastic component JP of the CT specimen can be calculated employing
engineering estimation as:

Jp= ασysεysch1(a/W, n)(P/P 0
)n+1 (8)

where α and n are the hardening coefficient and index of the material, respectively, and σys
and εys are the material’s yield stress and strain, respectively. c is the remaining ligament
length of the CT specimen, h1(a/W, n) is a function related to a/W and n only, and the values
can be found in reference [33]. P0 is the ultimate load per unit thickness of the specimen
and is given by:

P0= 1.071

{
[(

2a
c
)2+2(

2a
c
)+2]

1/2
− [(

2a
c
)+1]

}
cσys (9)

A plastic zone’s presence leads to crack tip blunting [34]. To estimate the crack’s plastic
zone size, a numerical model of CTOD is established.
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In the LEFM, the longitudinal stress σy, which is perpendicular to the crack propaga-
tion direction, can be calculated as [35]:

σy =
KI√
2πr

(10)

where KI is the SIF of the mode I crack and r is the distance along the extended line of the
crack from the crack tip. To explain the phenomenon of small-scale yielding near the crack
tip in LEFM, Irwin [27] proposed that the plastic zone size can be determined by assuming
σy = σys. Therefore, the plastic zone size rp of mode I crack is as follows:

rp =
σ2a
2σ2

ys
=

K2
I

2πσ2
ys

(11)

Dugdale regarded the plastic zone size of the crack tip as a narrow strip and assumed
that the upper and lower surfaces of the plastic zone carry the compressive stresses equal
to yield stress σys uniformly.

According to the condition that there is no stress singularity near the crack tip (KI = 0),
Kσ caused by the far-field stress σ should be offset by Kρ caused by the compressive stress
σys acting on the crack surface:

Kσ= −Kρ (12)

The equations of Kσ and Kρ can be taken into account to obtain the following:

σ
√

π(a + ρ)= 2σys

√
a + ρ

π
arccos

a
a + ρ

(13)

The plastic zone size of the crack tip can be deduced based on Dugdale’s method:

rp =
π2σ2a
8σ2

ys
(14)

Based on the HRR solution, the elastic–plastic stress field of the mode I crack can be
calculated as follows:

σij(r, θ) = σys(
EJ

ασ2
ys Inr

)
1/n+1

σ̃ij(θ, n) (15)

where r and θ are the polar coordinates at the crack tip. In is an integration constant related
to hardening index n only, σ̃ij(θ, n) do n and θ determine the angular momentum function.
The values of In and σ̃ij(θ, n) can be found in reference [15].

When θ = 0◦, the σy can be estimated as:

σy = σθθ = σys(
EJ

ασ2
ys Inr

)
1/n+1

σ̃θθ(θ, n) (16)

When σy = σys, the plastic zone size of the crack tip is defined as:

rp =
EJ[σ̃θθ(θ, n)]n+1

ασ2
ys In

(17)

For the crack body, the relationship between CTOD and rp is as follows [36]:

CTOD =
4σ

E

√
2arp+(r p)

2 (18)
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Considering the crack closure effect, the crack tip opening displacement range ∆CTOD
can be calculated as:

∆CTOD = CTODmax−CTODmin =
4∆σe f f

E

√
2arp+(r p)

2 (19)

where ∆CTOD is the crack tip opening displacement range; CTODmax and CTODmin are
the maximum and minimum opening displacement, respectively; and ∆σeff is the effective
far-field stress range, which is defined as:

∆σe f f= U∆σ = U(σ max−σmin

)
(20)

where ∆σ, σmax„ and σmin are the far-field stress range and maximum and minimum far-
field stress, respectively; U is the coefficient reflecting the crack closure effect, which is
defined as:

U =
σmax−σop

σmax−σmin
=

Pmax−Pop

Pmax−Pmin
(21)

where Pmax and Pmin are the maximum and minimum far-field loading, respectively; σop
and Pop represent the stress and loading associated with the crack opening.

Based on the formula of plastic zone sizes, three numerical models of ∆CTOD can be
calculated as follows:

∆CTOD =
4U2∆K2

πEσys
=

4aU2∆σ2

Eσys
(Irwin model) (22)

∆CTOD =
2U2∆K2

Eσys
=

2πaU2∆σ2

Eσys
(Dugdale model) (23)

∆CTOD =
4U∆σ∆J[σ̃θθ(θ, n)]n+1

ασ2
ys In

√√√√1 +
2αασ2

ys In

E∆J[σ̃θθ(θ, n)]n+1 (HRR model) (24)

It should be noted that both the Irwin and Dugdale models neglect (r p)
2 in the

estimation of ∆CTOD due to the assumption that the plastic zone size rp is much smaller
than the crack length a.

3. Experimental Analysis
3.1. Specimen Characteristics

CT specimens were prepared to verify the above CTOD numerical models, and a series
of crack propagation experiments were performed according to ASTM E647 [32]. It should
be noted that in the investigation, CT specimens are designed and manufactured according
to the plane stress state to characterize the crack propagation behaviour of the hull deck and
shell plates. The plane strain state has not been discussed. All specimens were machined
from the same steel plate with an original plate thickness of 12 mm. The machining process
of CT specimens was controlled in the L-T direction to ensure different specimens had
similar fatigue performance. The machined notch of the CT specimen was made via
electrical discharge machining (EDM), while the 4 mm pre-cracks were cut by 0.02 mm
molybdenum wire. The degree of finish at the surface of the CT specimen was polished to
0.8 µm by an electric sander, which ensures that the surface texture was perpendicular to
the crack propagation direction for crack observation easier. The configuration of the CT
specimen is shown in Figure 1.
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The material used for the CT specimen is Ni-Cr-Mo-V high-strength steel. To determine
the parameters of the Ramberg–Osgood model is used in the HRR solution:

ε =
σ

E
+αεys

(
σ

σys

)n
(25)

Uniaxial tensile tests of the Ni-Cr-Mo-V high-strength steel were carried out at room
temperature to obtain the mechanical properties, as shown in Table 1.

Table 1. Material mechanical properties of Ni-Cr-Mo-V high-strength steel at room temperature.

Mechanical Property Unit Value

Density (ρ) kg/m3 7850
Modulus of elasticity (E) GPa 219

Poisson’s ratio (ν) - 0.35
Yield strength (σys) MPa 635

Ultimate strength (σu) MPa 680
Hardening coefficient (α) - 0.11

Hardening index (n) - 4.237

3.2. Test Setup

All CT specimens were tested on the MTS322 fatigue test machine with a load capacity
of 200 kN at room temperature. The fracture mechanics clevis grip was used for specimen
clamping and fixing. The crack propagation experiments of CT specimens were carried out
under sine wave load control conditions. A loading frequency that is too high may distort
the applied load, so the loading frequency was set to 10 Hz in this experiment to achieve a
loading accuracy of 0.01 kN.

Loading conditions under different load amplitudes and load ratios were set to verify
the applicability of different numerical models, as shown in Table 2.

Table 2. Crack propagation experiment loading conditions of CT specimens.

Specimen Pa
1* (kN) R 2* Pm

3* (kN)

CT01 2.70 0.1 3.30
CT02 3.60 0.1 4.40
CT03 4.50 0.1 5.50
CT04 3.60 −0.1 2.95
CT05 3.60 0.3 6.69
CT06 3.60 0.7 20.40

1* load amplitude, 2* load ratio, 3* mean load.
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The CT specimens were observed for crack length and CTOD using a CCD microscope
camera combined with the digital image correlation (DIC) analysis software VIC-2D. The
CCD camera was positioned perpendicular to the surface of the CT specimen, and the
magnification was adjusted to provide clear optical images of the crack propagation area in
real time. Before the experiment, all CT specimens were sprayed with a speckle pattern and
calibrated with a transparent scale to facilitate subsequent image processing. In addition, a
high-sensitivity strain gauge was attached to the back of the CT specimen to measure back
strain for estimating crack opening force Pop. The general arrangement of the test setup is
shown in Figure 2, and the detail of the CT specimen is shown in Figure 3.
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The experiment measured the CTOD and back strain in approximately 2 mm crack
increments. To obtain sufficient images for DIC analysis, the loading frequency was
decreased to 0.1 Hz, and the sampling frequency was set to 50 Hz, which enabled 500 images
to be captured within one load cycle. The time history data of the loading force was recorded
by the software system of the MTS test machine, and the sampling frequency was set to
500 Hz.

3.3. Digital Image Correlation

The principle of the DIC technique is to match the maximum correlation between a
subset of sample images at different deformation stages and to obtain the displacement
and strain fields of the specimen by estimating the correlation changes of the grayscale
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information of the specimen surface images [37,38]. DIC is a non-contact full-field mea-
surement technique able to obtain the total (elastic plus plastic) strain on the surface of
the specimen. Therefore, the elastic and plastic components can all be measured using
DIC [23,39]. The DIC technique is applied to measure the crack length and ∆CTOD, as
shown in Figure 4, where the “Inspect line” parallel to the crack propagation direction and
the “Virtual extensometer” perpendicular to the crack propagation direction are added in
the image analysis area.
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Figure 4. Crack length and ∆CTOD measurement via the DIC technique.

The “Inspect line” length corresponds to the crack length of the specimen, and the
displacement deformation of the “Virtual extensometer” corresponds to the CTOD of the
specimen. Therefore, the ∆CTOD can be calculated as:

∆CTOD =Lmax − Lmin (26)

where Lmax and Lmin are the maximum and minimum lengths of the “Virtual extensometer”
in a loading cycle.

Additionally, to ensure the validity of measured results, three virtual extensometers
(E1, E2, E3) with different ranges are added to investigate the effect of the extensometer
range. As can be seen from Figure 5, there are slight differences in the measurement results
of different extensometers, but such differences can be ignored when the extensometer
range is small enough. In this study, measurement results of the E3 extensometer are taken
as the final experimental data.
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4. Results and Discussion
4.1. Crack Clouse Coefficient U

Based on the strain-loading force (ε-P) curve obtained from the experiment, the crack
opening force Pop was determined using the compliance offset method in ASTM E647. The
compliance offset value should be set at 1%, 2%, and 4%, and the specific value depends on
the data dispersion of the compliance offset curve measured in the experiment.

As shown in Figure 6, a unique corresponding crack opening force can be obtained by
setting the compliance offset value as 4%. The calculated Pop for each loading condition is
shown in Figure 7.
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From Figure 7, Pop shows a decreasing trend as the crack length increases, indicating
that the closure effect decreases with the crack length increase, but the degree of decrease
is fragile. The study presented in [40] also points out that Pop generally decreases with
increasing the crack length near the threshold, while in the sound propagation stage, the
decreasing trend of Pop will slow down until stable.

In addition, the crack closure coefficient U for all loading conditions was calculated
based on the crack opening force data obtained from the experiment and summarized in
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Table 3. From Table 3, the crack closure coefficient increases significantly with the increase
in load ratio (CT02, CT04, CT05, CT06) but is hardly affected by the load amplitude (CT01,
CT02, CT03), so it can be assumed that the crack closure coefficient U is only related to the
load ratio R and the U-R fitted rule is obtained accordingly:

U = 0.57R3 − 0.93R2+0.53R + 0.83 (−0.1 ≤ R ≤ 0.7) (27)

Table 3. The crack opening force and crack closure coefficient under different loading conditions.

Specimen Pa (kN) R Pop (kN) U

CT01 2.70 0.1 1.26 0.878
CT02 3.60 0.1 1.65 0.882
CT03 4.50 0.1 2.13 0.874
CT04 3.60 −0.1 1.05 0.764
CT05 3.60 0.3 3.71 0.914
CT06 3.60 0.7 17.20 0.945

4.2. da/dN-∆CTOD Curve

The crack lengths and ∆CTOD of the CT specimens under all loading conditions were
measured using the DIC technique, and the da/dN-∆CTOD curves shown in Figure 8 were
plotted in combination with loading cycles recorded by the fatigue test machine. As shown
in Figure 8, the crack propagation rate shows a linear correlation with ∆CTOD similar to
Paris’ law in the double logarithmic coordinate system, which indicates that ∆CTOD can
be used to describe the crack propagation rate instead of ∆K. The fitted crack propagation
rate model was obtained as follows:

da/dN = 8.135 × 10−3(∆CTOD)0.839 (28)
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4.3. Comparison

The a-∆CTOD curves obtained from the numerical models and crack propagation
experiments under all loading conditions are summarized in Figure 9. With the increase in
crack length, the trend of ∆CTOD experimental value is almost the same as the numerical
prediction curve. It only slows down at the early and late stages of crack propagation.
There are two main reasons for this phenomenon. EDM machined the notch and pre-crack
of the CT specimen, and residual compressive stresses inevitably affected the vicinity of
the pre-crack. Therefore, in the early stage of the crack propagation, residual compressive
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stresses increase the difficulty of the crack opening, leading to minor ∆CTOD experimental
results than numerically predicted results. This phenomenon disappears gradually with
the increase in loading cycles. The higher the applied load, the faster it disappears, as
verified by the experimental results of CT01, CT02, and CT03 specimens in Figure 9.
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Figure 9. Numerical and experimental a-da/dN curve under all loading conditions.

The CT specimen is loaded and fixed through the pin connection. With the continuous
action of applied load, the contact position between the specimen and the pin will be
deformed. The deformation will weaken the restraint effect of the pin on the CT specimen,
resulting in more minor experimental results. This phenomenon occurs earlier when
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the applied load is higher, verified by the experimental results of CT02, CT05, and CT06
specimens in Figure 9.

For the above reasons, the first and last experimental data points for all loading
conditions were excluded when comparing the prediction accuracy of the three numerical
models. To evaluate the prediction ability of three numerical models, two error rating
indicators, Ea and Emax, are calculated and summarized in Table 4. Ea and Emax are the
mean and maximum absolute error of predicted results compared to experimental data,
respectively, which are calculated as follows:

Ea =
1
n

n

∑
i=1

∣∣∣∣( tmi−tei
tei

)× 100%
∣∣∣∣ (29)

Emax= max
{∣∣∣∣( tmi−tei

tei
)× 100%

∣∣∣∣} (i = 1, 2, · · · , n) (30)

where tmi is the prediction result of the model, and tei is the experimental result.

Table 4. Error statistics of numerical model prediction results.

Model Error Index CT01 CT02 CT03 CT04 CT05 CT06

Irwin
Ea 28.55% 28.47% 29.35% 28.01% 30.31% 29.77%

Emax 32.50% 30.58% 30.59% 29.25% 31.47% 31.66%

Dugdale Ea 12.24% 12.37% 10.98% 13.08% 9.47% 10.32%
Emax 17.04% 16.85% 13.46% 15.00% 11.03% 15.37%

HRR
Ea 3.05% 2.58% 1.59% 2.42% 1.14% 2.34%

Emax 5.77% 5.82% 4.85% 3.98% 2.31% 5.40%

According to Figure 9 and Table 4, the a-∆CTOD prediction curve of the Irwin model
lies below the experimental data overall, the mean error of the Irwin model is more than
25%, and the maximum error reaches about 30%. On the contrary, the a-∆CTOD prediction
curve of the Dugdale model lies above the experimental data overall, the mean error
of the Dugdale model stays within 15%, and the maximum error is less than 20%. In
addition, it can be seen that the Dugdale model has good accuracy at the early stage of
crack propagation. Still, the accuracy decreases gradually with increased crack length or
applied load. While the a-∆CTOD prediction curve of the HRR model agrees well with the
experimental data, the mean error of the HRR model is kept within 4%, and the maximum
error is around 6%.

The reasons for the above phenomenon can be explained by the fact that the Irwin
model is based on small-scale yielding, which assumes that the plastic zone size is much
smaller than the crack size. This assumption causes the prediction accuracy of the Irwin
model to decrease as the crack length or applied load increases, as verified by the error
data for CT02, CT04, CT05, and CT06 in Table 4.

The Dugdale model ignores the effect of material hardening parameters, and the
hardening effect of material will lead to plastic energy dissipation during crack propaga-
tion [41,42]. The increase in the crack length or applied load leads to an increase in the
plastic zone size of the crack tip, which intensifies the plastic energy dissipation and thus
leads to a more significant prediction error of the Dugdale model.

The HRR model was established based on J-integral. It considers the material hard-
ening effect, concluding that the HRR model can accurately describe the crack tip elastic–
plastic stress–strain field. Its predictions are more accurate than the Irwin and Dugdale
models at the significant loadings.

5. Conclusions

A newly developed model based on the HRR considering the elastic–plastic stress–
strain field at the crack tip of mode I crack and crack closure effect applies to ∆CTOD under
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constant amplitude loading. A series of crack propagation experiments on CT specimens
made of Ni-Cr-Mo-V high-strength steel was conducted to verify the applicability of
∆CTOD to describe the crack propagation behaviour. Additionally, the accuracy of the
HRR model proposed in this study was compared to the traditional methods (Irwin and
Dugdale models) based on the experimental results.

Several conclusions are drawn from the present study.

• According to the crack opening force results from experiments, the crack closure
coefficient U is almost independent of the load amplitude Pa and only related to the
loading ratio R. Based on this phenomenon, the equation for U was provided.

• In the double logarithmic coordinate system, there is a linear correlation between the
crack propagation rate da/dN and ∆CTOD that is like Paris’ law, which indicates that
∆CTOD is a feasible alternative to ∆K.

• The Irwin model assumes small-scale yielding, which considers the plastic zone size
much smaller than the crack size, thus tends to underestimate the value of ∆CTOD
with a significant error and is not recommended for the prediction of ∆CTOD in
elastic–plastic fracture problems.

• The Dugdale model has good predictability when the crack length or applied load is
small. However, since the Dugdale model ignores the effect of material hardening, it
tends to overestimate ∆CTOD and the error increases with the crack length or applied
load. Therefore, the applicability range should be verified using the Dugdale model
for ∆CTOD prediction.

• Since the material hardening effect is considered, the HRR model is more accurate in
describing the elastic–plastic stress–strain field at the crack tip of the CT specimen
than the Irwin and Dugdale models. Thus, the ∆CTOD is better-predicted. Therefore,
the HRR model proposed in the present study is recommended for predicting ∆CTOD
in elastic–plastic fracture mechanics problems.
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