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Abstract: Shipping, as an important part of the global supply chain, has always been quite sensitive
to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity.
Understanding the driving factors of fatality and injury outcomes of maritime accidents can help
to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List
Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE)
and selects two of the areas to conduct a comparative study on factors contributing to fatality and
injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic
analysis. The results show that collision and ship age significantly impact the number of fatalities and
injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of
accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports
and whether the accident causes a total loss have more significant impacts on the fatality and injury
outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can
potentially support the reduction of fatalities and injuries in maritime accident and help to manage
maritime risk.

Keywords: maritime accident; zero-inflated negative binomial (ZINB); kernel density estimation
(KDE); fatalities and injuries

1. Introduction

As a primary mode of transportation in international trade, shipping undertakes
approximately 80% of global trade transportation(UNCTAD) [1], playing an essential role in
global supply chains [2]. International trade development has accelerated the development
of the shipping industry. However, the heavy maritime traffic has also caused frequent
maritime accidents, causing fatalities and injuries, environmental problems, and economic
losses, undermining the sustainable development of the supply chain. For example, the
Bahamian-flagged ro-ro ship MV Baltic Ace collided with the Cyprus-registered container
ship Corvus J on 5 December 2012, in the North Sea and eventually sank, causing 11 deaths.
The Panamanian-flagged tanker Sanchi and the Hong Kong cargo ship Changfeng Crystal
collided in January 2018 in the East China Sea, which eventually caused the Sanchi to
explode and catch fire, leaving 3 people dead and 29 on board missing. In addition, a
large amount of oil caught fire in the surrounding sea, seriously polluting the ecological
environment. According to the Lloyd’s List Intelligence Casualty Statistics, 1720 casualties
were caused in maritime accidents worldwide from 2005 to 2020, accounting for 3.41%
of all accidents. Fatality and injury are important metrics indicating the severity of a
maritime accident. With the ship upsizing trend in recent years, the amount of cargo
and passengers carried by a single ship also grows, and a single accident may lead to
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catastrophic consequences, creating challenges to maritime safety management. Maritime
safety further affects maritime logistics in the global supply chain. Based on the above
considerations, it is necessary to analyze the influencing factors of fatality and injury
outcomes of maritime accidents and formulate proper preventive measures to reduce
accident-caused fatalities and injuries and improve maritime logistics safety.

The characteristics and contributing factors of fatalities and injuries in maritime acci-
dents for different ship types and different sea areas have been studied in the past decades.
Using the negative binomial (NB) regression method, Yip [3] studied the characteristics of
ship accidents in Hong Kong waters from 2001 to 2005. Based on the negative binomial
and Poisson regression methods, Talley et al. [4] studied the determinants of the number of
injuries, deaths, and missing passengers of passenger ships investigated by the U.S. Coast
Guard from 1991 to 2001. Taking the fishing boat accident data in the northeastern United
States from 2001 to 2008 as a research sample and based on the ordered probability model,
Jin [5] explored the factors that affect the accident’s severity and found that foundered and
ship stability affect the degree of fatalities and injuries. Uğurlu et al. [6] used the Bayesian
network to construct a model for fishing vessels of 7 m or above in total length from 2008
to 2018 to explore the significant correlation between accident categories and vessel length,
vessel age, fatalities and injuries, and vessel losses. Based on the accident data of British
fishing vessels from 1948 to 2008, Roberts et al. [7] explored the influencing factors and
trends of accident fatalities and injuries and ship losses. With passenger ship accidents in
the northeastern United States from 2001 to 2008 as the input, Yip et al. [8] built NB and
Poisson regression models to identify the determinants of the number of injuries, deaths,
and missing passengers. Considering a large number of zero-injury observations in mar-
itime accident data, Weng, et al. [9] used the zero-inflated negative binomial (ZINB) model
to study the accidents causing deaths and missing persons in the South China Sea and
analyze the influencing factors of the number of deaths and missing persons in accidents
in the waters. Hao et al. [10] selected more than 1500 ship accidents on the trunk routes
of the Yangtze River from 2008 to 2014 as objects and used the ZINB model to explore the
factors that contribute to the number of deaths and missing persons in accidents in this
water area and degree of influence of these factors, as well as the reasons behind these
influencing factors. Wang et al. [11] performed ZINB regression analysis of the accident
data over the past 26 years and explored the degrees of influence of the eight factors con-
tributing to tanker crew fatalities and injuries. Weng et al. [12] combined the maximum
likelihood regression tree and the ZINB model and used the number of deaths and missing
persons at different times in different waters as the dependent variables to analyze the
causes of fatalities and missing persons in accidents and their corresponding marginal
effects. Wang et al. [13] and Weng and Li [14] used association rules to explore the relevant
factors that affect the number of fatalities in marine vessel accidents. Wang et al. [15] used
a zero-inflated ordered probability model and identified two states, namely injury-free
and injury-prone, in a maritime accident, and explored the factors affecting the severity of
accident injury. Most of the above literature targeted specific vessel types, such as fishing
vessels [5–7] and passenger ships [8], or specific sea waters [3,5,9,10]. Studies that target
all vessel types and across different accident-prone sea areas can horizontally compare the
differences in the influencing factors of fatalities and injuries, thereby supporting safety
management decisions in different sea areas. However, such studies are relatively rare.
In terms of quantitative analysis methods, the literature usually adopts association rule
mining [13,14,16], Bayesian network [16–21], logit model [22–25], NB regression model [3,4],
and ZINB regression model [9,10,12]. Specifically, the ZINB method is suitable where a
large number of zero values exist in dependent variables and is more suitable for handling
overdispersed data [26].

In recent years, some studies have analyzed the overall characteristics of global mar-
itime accidents and their influencing factors. For example, Huang, et al. [27] used Geo-
graphic Information System (GIS) to analyze the spatial distribution of maritime accidents
from 2002 to 2011. Zhang et al. [28] used the Kernel Density Estimation (KDE) and k-means
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clustering methods to study the spatial distribution of global maritime accidents from
2003 to 2018. Wang et al. [29] adopted density analysis and clustering analysis to probe
into the spatial distribution of maritime accidents from two aspects: accident frequency
and accident severity. These studies provide important references for the identification of
accident-prone areas. The hotspots with high accident densities identified in these studies
include part of the sea areas around the United Kingdom, the Mediterranean, east Asia,
etc. In particular, as the busiest shipping area in the world, the English Channel links to
the southern part of the North Sea by the Strait of Dover at its northeastern end and serves
500 ships daily. The Mediterranean Sea connects to the Atlantic by the Strait of Gibraltar
and links to the red sea by the Suez Canal. The Mediterranean Sea has a number of major
routes in the world. Therefore, it is essential to understand the characteristics and risk of
maritime accidents in the above areas. Many scholars have investigated maritime accidents
in the North Sea and the English Channel. Based on ship state information provided by
the automatic identification system, van Westrenen and Ellerbroek [30] analyzed the traffic
and calculated situations of near-miss collisions on the North Sea. Roberts, Jaremin and
Marlow [7] investigated the circumstances and characteristics of fishing vessel accidents
from 1948 to 2008 and found that most fatalities from collisions occurred in the English
Channel and North Sea. MacDuff [31] assessed the probability of collisions between large
ships and offshore structures in the North Sea and discussed the problem of safe navigation
of the English Channel and the North Sea by the methods of probability analysis. Maritime
accidents that occurred in the Mediterranean Sea have also been investigated by many
scholars. Soussi et al. [32] constructed a Lagrangian-based maritime and coastal risk model
to assess the risk of oil spill accidents in the Mediterranean littoral. Otay and Özkan [33]
developed a physics-based mathematical model to simulate the random transit maritime
traffic through the Strait of Istanbul, and estimate the probability distribution of vessel
casualties. The above studies mainly focused on the exploration of circumstances related to
the occurrence or risk of maritime accidents in the English Channel and the Mediterranean
Sea. Very few of them have particularly explored and compared factors contributing to
fatality and injury outcomes of maritime accidents in these areas.

Based on the Lloyd’s List Intelligence data, this work selects the global maritime
accident data from 2005 to 2020 to analyze their characteristics and filter the influencing
factors of maritime accident fatalities and injuries. With the help of GIS, the paper uses
KDE to analyze the spatial characteristics of global maritime accidents. It selects accident-
prone sea areas and combines the filtered maritime accident fatality and injury factors for
zero-inflated negative binomial and elastic analysis. This way, the influencing factors of
fatalities and injuries in the selected sea areas are compared and analyzed to help propose
preventive measures. This study addressed three questions: (1) What areas are prone to
maritime accidents worldwide? (2) What factors affect fatalities and injuries in accident-
prone sea areas? (3) What are the differences in the influencing factors of fatalities and
injuries in different sea areas? How should we take measures to avoid accident fatalities and
injuries? The paper aims to analyze the influencing factors of fatality and injury outcomes
of maritime accidents and formulate proper preventive measures to provide references
for the formulation of safety precautions in accident-prone maritime areas and to improve
maritime safety.

2. Data Sources

This article selects the maritime accident data in the global sea areas from January
2005 to December 2020 from the shipping accident database managed by Lloyd’s List
Intelligence Company as research objects. Each piece of data in the objects includes the
ship’s name, the ship’s IMO code, flag state, gross tonnage, accident time, accident sea
area, accident cause, vessel type, number of injuries, number of missing, number of deaths,
degree of hull damage, and the latitude and longitude of the accident site. In addition,
by referring to the Flag of Convenience (FOC) list of the International Transport Workers’
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Federation (ITF) [34], this article divides the flag states of the involved ships into FOC and
non-FOC to facilitate subsequent statistical analysis.

Figure 1 shows the distribution of maritime accidents involving deaths, missing and
injuries. The proportions of accidents involving deaths, missing persons, and injuries
stood at 1.82% (Figure 1a), 0.8% (Figure 1b), and 1.44% (Figure 1c), respectively, and the
proportion of accidents without fatalities and injuries reached 96.59% (Figure 1d). This
shows that the zero values of the number of fatalities and injuries are inflated.
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Figure 1. Distribution of maritime accidents involving (a) deaths, (b) missing, (c) injuries and
(d) deaths, missing and injuries.

Since the number of fatalities and injuries in a maritime accident can directly reflect the
severity of the accident, the dependent variable used in this work was the total number of
fatalities and injuries (i.e., deaths, missing and injuries) in the maritime accident. In addition,
based on knowledge obtained from the investigation of the relevant literature (Table 1),
flag, vessel type, loss type, pollution indicator, serious indicator, ship age, whether in port
and cause of fatality and injury (machinery damage, collision, grounding, fire/explosion,
contact, foundered and hull damage) were set as potential independent variables (Table 2).

Table 1. Literature of independent variables.

Independent Variable Related Literature

Accident type

Weng, Ge and Han [9], Uğurlu, Yıldız, Boran, Uğurlu and
Wang [6], Chen, et al. [35], Hao, Ya-dong and Yong [10], H.

Wang, Liu, Wang, Huang, Cao and Wang [15], Yip [3], Weng
and Yang [24], Wang, et al. [36], Chen, et al. [37], Wang and
Yang [38], Li, et al. [39], Li, et al. [40], Chen, et al. [41], Chen,
Bian, Wan, Wang, Zheng and Cheng [23], J. Wang, et al. [42],

Fu, et al. [43]
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Table 1. Cont.

Independent Variable Related Literature

Accident location

Hao, Ya-dong and Yong [10], Wang, Liu, Wang, Huang, Cao
and Wang [15], Yip [3], Weng and Yang [24], Wang, Liu, Wang,
Graham and Wang [36], Wang, Liu, Wang, Huang, Cao and

Wang [15], Wang and Yang [38], Zhang, et al. [44]

Vessel type
Weng, Ge and Han [9], Weng and Yang [24], Wang, Liu, Wang,
Graham and Wang [36], Wang and Yang [38], Zhang, Teixeira,

Soares and Yan [44]

Ship age
Uğurlu, Yıldız, Boran, Uğurlu and Wang [6], Wang, Liu,

Wang, Graham and Wang [36], Wang, Liu, Wang, Huang, Cao
and Wang [15], Wang and Yang [38], Zhang, et al. [45]

Flag Wang, Liu, Wang, Huang, Cao and Wang [15], Knapp, et al.
[46], Balmat, et al. [47]

Table 2. Model variable description.

Variable Type Variable Name Variable Value Assignment

Dependent variable Total Preserving the original value;

Independent variable

Flag Flag of convenience—1; Non-flag of
convenience—0;

Vessel type Passenger liner—1; Other—0;
Loss type Total loss—1; Other—0;

Pollution indicator Pollution caused—1; No pollution
caused—0;

Serious indicator Serious—1; Not serious—0
Ship age [0, 10)—1; [10, +∞)—0;

Whether in port Accident happening in port—1;
Accident happening outside port—0;

Machinery damage Mechanical failure/fault—1;
Other—0;

Collision Collision—1; Other—0;
Grounding Grounding—1; Other—0;

Fire/explosion Fire/explosion—1; Other—0;

Contact Contact-caused damage—1;
Other—0;

Foundered Foundered—1; Other—0;
Hull damage Hull damage—1; Other—0;

3. Methodology
3.1. Framework

The logic of model construction is shown in Figure 2. First, the paper analyzes the
spatial distribution of the global maritime accident data through KDE to identify the
accident-prone sea areas in the global maritime sector and select the areas for study. Then,
it builds a statistical model based on the characteristics of the maritime accident fatalities
and injuries in the areas for study and determined through the goodness of fit test that
the ZINB model was the optimal model. Next, according to the model results, the article
analyzed the factors driving the fatalities and injuries in the two areas. Finally, the driving
factors of fatalities and injuries of the two areas were compared and analyzed according to
the elastic analysis theory.
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3.2. Kernel Density Estimation (KDE)

The KDE method can identify the sea areas with concentrated accidents to intuitively
analyze the spatial agglomeration of accidents, which is conducive to a comprehensive
analysis of accident characteristics. Therefore, this research adopts the kernel density theory
to identify accident-prone maritime areas worldwide.

KDE reveals the frequency of accident locations in the geographic space. The denser
the locations, the higher the frequency of accidents in the area, and vice versa. The kernel
model of KDE is a non-parametric one, which reduces the interference by other potential
factors by converting discrete data into a continuous distribution function to analyze the
changing characteristics of variables. Its kernel density function is shown as Formula (1).

f̂h(x) =
1

nh

n

∑
i=1

K
(

xi − x
h

)
, x ∈ R (1)

where f̂h(x) is denoted as the estimation of the density function fh(x); K is denoted as the
kernel function; x is denoted the sample observation value, x is denoted as the sample
mean, and h is denoted the bandwidth.

The result of KDE is subject to the collective impact of the kernel function, the band-
width, and the cell size [48]. Commonly used kernel functions include the Gaussian kernel
function and the boxcar kernel function. The Gaussian kernel function that conforms to
the normal distribution is generally selected as the KDE function in the present work.
Bandwidth affects the smoothness of the density surface [49], while the cell size primarily
affects the coarseness of the generated surface [50]. With reference to the parameter settings
in the related study [27,28,51,52], combined with the data samples of this study, this paper
selects parameters with a bandwidth of 5 degrees and a cell size of 0.5 degrees.
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3.3. Zero-Inflated Negative Binomial (ZINB) Model

This study ad tops the ZINB model to quantitatively analyze various factors’ influence
on maritime accident fatalities and injuries. The ZINB model was improved and extended
from the NB model. The NB distribution is regarded a continuous mixed Poisson distri-
bution [53], and the probability distribution function of the Poisson regression model is
shown in Formula (2).

P(YI = yi|xi) =
e−λi λ

yi
i

Γ(1 + yi)
, yi = 0, 1, 2, . . . ; i = 1, 2, . . . , N (2)

Suppose λi = exp(x′i β), and we can obtain the Poisson regression model, where
xi = (xi1, xi2, . . . , xip) is the covariate vector of p× 1, that is, the various factors influenc-
ing the maritime accident fatalities and injuries Yi, such as flag and vessel type, while
β = (β1, β2, . . . , βp) is the p× 1 parameter vector, and p is the number of covariants.

The probability distribution function expression of the NB regression model is shown
in Formula (3). In the negative binomial distribution, the variance is greater than the mean.

P(Yi = yi|xi) =

(
yi + θ−1 − 1

yi

)(
θ−1

θ−1+µi

)θ−1( µi
θ−1+µi

)yi
,

yi = 0, 1, 2, . . . , i = 1, 2, . . . , N

(3)

Suppose µi = exp(x′i βi), and we can obtain the NB regression model, where
xi = (xi1, xi2, . . . , xip) is the covariate vector of p × 1, that is, the various factors influ-
encing the maritime accident fatalities and injuries Yi, such as flag and vessel type, while
β = (β1, β2, . . . , βp) is the p× 1 parameter vector, p is the number of covariants, and θ is
the overdispersion parameter.

The ZINB model is suitable when there are many zero values in the sample data, and
the variance is greater than the mean (that is, overdispersion). The probability distribution
function is a mixed distribution, including the zero-valued and non-zero-valued parts [53].
Suppose ϕ represents the proportion of zero values. If 0 ≤ ϕ ≤ 1, the greater the ϕ value,
the more severe the zero inflation. If ϕ = 0, the model is a common negative binomial
regression model. The probability distribution function of the zero-inflated negative
binomial model is shown in Formula (4).

P(Yi = yi|xi) =


ϕ + (1− ϕ)( k

k+µi
)

k
, y = 0

(1− ϕ) Γ(y+k)
Γ(y+1)Γ(k)

(
k

k+µi

)k( µi
k+µi

)yi
, y > 0

(4)

Suppose µi = exp(x′i βi), and we can obtain the ZINB model. Where, xi = (xi1, xi2, . . . , xip)
is the covariate vector of p× 1, that is, the various factors influencing the maritime accident
fatalities and injuries Yi, such as flag and vessel type. β = (β1, β2, . . . , βp) is the p× 1 pa-
rameter vector, p is the number of covariates, and k is the reciprocal of the overdispersion
parameter θ.

This paper also uses the zero-inflated Poisson regression model, and its probability
distribution function is shown in Formula (5).

P(Yi = yi|xi) =

 ϕ + (1− ϕ)e−λ, yi = 0

(1− ϕ) λyi e−λ

yi!
, yi > 0

(5)

Suppose µi = exp(x′i βi), and we can obtain the Zero-inflated Poisson (ZIP) regression
model, where, xi = (xi1, xi2, . . . , xip) is the covariate vector of p× 1, that is, the various fac-
tors influencing the maritime accident fatalities and injuries Yi, such as flag and vessel type,
while β = (β1, β2, . . . , βp) is the p× 1 parameter vector, and p is the number of covariants.
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The same sample data generally have multiple applicable models, but not all the
applicable models are the best regression model. For this reason, it is necessary to perform
a goodness-of-fit test to obtain the best regression model. Frequently-used model selection
criteria include the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC). The specific meanings of the two criteria are shown in Formulas (6) and (7).

AIC = −2`+ 2q (6)

BIC = −2`+ q ln n (7)

q represents the number of parameters contained, ` is the log-likelihood function, and
n is the number of sample data observations. The AIC and BIC criteria reflect the model loss
information, so the smaller the information loss, the better the fitting effect of the model.

3.4. Elastic Analysis

Elastic analysis is a quantitative index to measure the degree of influence of indepen-
dent variable changes on dependent variables that originated in the field of mechanics.
Elastic analysis can accurately identify the contribution of various factors to the number of
fatalities and injuries so as to intuitively identify key factors and provide a quantitative
basis for decision-makers to formulate preventive measures. Elastic analysis in this study
is expressed as Formula (8).

Ei =
∂µi
∂xi
· xi
µi

(8)

where Ei represents the elasticity coefficient of the i-th factor, xi represents the i-th in-

fluencing factor. µi = exp(x′i βi), and βi is the coefficient of the xi factor in the selected
regression model.

4. Results and Discussion
4.1. Identification of Accident-Prone Areas

The density of global maritime accidents is shown in Figure 3a. The kernel density
values are divided into five categories. Two red areas appeared (that is, the areas with
the highest accident density), namely (1) the English Channel and the North Sea, and (2)
the Black Sea and the eastern Mediterranean Sea. The orange areas represent sea areas
with high accident density, such as parts of the western coast of the United States, the
eastern coasts of Canada and the United States, and the waters near the Strait of Malacca.
The spatial distribution shows that significant differences exist in the number of maritime
accidents in different sea areas. This paper selects two sea areas with high levels of accident
densities and similar sizes of data samples to conduct a comparative analysis of factors
influencing fatality and injury outcomes of maritime accidents. The English Channel, the
Bay of Biscay, and the North Sea (Area I, Figure 3b), as well as the Black Sea and the eastern
Mediterranean Sea (Area II, Figure 3c) were selected as the areas of study. Both sea areas
are located in Europe and have a large number of ports. Area I has developed a shipping
trade with high ship traffic. The narrower English Channel, with many shoals, connects to
the open Bay of Biscay and the North Sea. Area II has a twisty coastline, with many islands
in the waters connecting the eastern Mediterranean Sea and the Black Sea areas.
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4.2. Zero-Inflated Negative Binomial Model and Elastic Analysis RESULTS and Their
Theoretical Implications

Areas I and II have 7864 and 6815 maritime accident records, respectively. Since the
data in some fields are missing, 7637 and 6778 records were left to conduct the model
fitting. To select the model with the best performance, this study uses AIC and BIC to
test the goodness of fit of Poisson regression, NB regression, ZINB regression, and ZIP
regression. The results are shown in Table 3. The smaller the AIC and BIC values, the less
the information loss, and the better the fitting performance of the model. It is observed
from Table 3 that in terms of the AIC indicator, Poisson > NB > ZIP > ZINB, while in terms
of the BIC indicator, Poisson > NB > ZIP > ZINB. To sum up, the ZINB model has the
best fit.

Table 3. Goodness of fit test results for different regression models.

Poisson Negative Binomial (NB) Zero-Inflated Negative
Binomial (ZINB)

Zero-Inflated Poisson
(ZIP)

Sea Area I Sea Area II Sea Area I Sea Area II Sea Area I Sea Area II Sea Area I Sea Area II

AIC 3457.697 4853.596 1916.581 1879.244 1801.815 1750.121 1895.740 2361.192
BIC 3561.779 4955.755 2027.602 1988.214 2016.918 1961.250 2103.903 2565.511
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The regression coefficients, standard errors, and p values obtained from the ZINB
model are shown in Table 4. The elastic analysis results of the regression coefficients are
shown in Table 5.

Table 4. Regression parameters of the zero-inflated negative binomial models.

Variable
Regression Coefficient Standard Error p-Value

Sea Area I Sea Area II Sea Area I Sea Area II Sea Area I Sea Area II

Flag 0.451 0.497 0.256 0.223 0.078 0.026
Vessel type 0.409 0.682 0.205 0.334 0.046 0.041
Loss type 2.246 6.301 0.513 1.568 <0.001 <0.001

Pollution indicator −2.500 −3.102 1.071 1.270 0.020 0.015
Serious indicator 0.728 0.944 0.251 0.350 0.004 0.007

Ship age 0.321 0.240 0.074 0.115 <0.001 0.037
Whether in port −0.914 −1.736 0.101 0.392 <0.001 <0.001

Machinery damage 0.881 2.208 0.332 0.561 0.008 <0.001
Collision 2.618 2.396 0.443 0.524 <0.001 <0.001

Grounding 2.139 1.200 0.407 0.592 <0.001 0.043
Fire/explosion 1.963 1.699 0.538 0.819 <0.001 0.038

Contact 1.629 2.020 0.443 0.598 <0.001 <0.001
Foundered 2.938 4.183 0.401 1.282 <0.001 0.001

Hull damage 0.749 1.603 1.032 0.844 0.468 0.058

Table 5. Elastic analysis results of the zero-inflated negative binomial models.

Variable
Elastic Coefficient Absolute Value of

Elasticity Coefficient

Sea Area I Sea Area II Sea Area I Sea Area II

Flag 0.131 0.180 0.131 0.180
Vessel type 0.037 0.083 0.037 0.083
Loss type 0.059 0.233 0.059 0.233

Pollution indicator −0.044 −0.101 0.044 0.101
Serious indicator 0.277 0.334 0.277 0.334

Ship age 1.008 0.973 1.008 0.973
Whether in port −0.207 −0.578 0.207 0.578

Machinery damage 0.064 0.107 0.064 0.107
Collision 1.178 1.102 1.178 1.102

Grounding 0.261 0.172 0.261 0.172
Fire/explosion 0.201 0.225 0.201 0.225

Contact 0.133 0.138 0.133 0.138
Foundered 0.049 0.070 0.049 0.070

Hull damage 0.018 0.033 0.018 0.033

At the 95% confidence level, all variables, except hull damage and flag, significantly
impact the number of fatalities and injuries in the two sea areas. Specifically, whether in
port and pollution indicator have negative impacts on the number of fatalities and injuries,
and the other indicators have positive impacts. In addition, the impact of hull damage on
the number of fatalities and injuries is significant at a 90% confidence level in Area II only.
The impact of flag on the number of fatalities and injuries is significant at a 90% confidence
level in both areas and at a 95% confidence level in Area II.

Among the 14 independent variables, the three variables of loss type, pollution in-
dicator, and serious indicator are artificially defined after the accident. Loss type and
serious indicator positively correlate with the number of fatalities and injuries, indicating
that accidents that result in total loss or are serious can cause a larger number of fatalities
and injuries. The coefficient of pollution indicator is negative, meaning that the accident
seriously pollutes the water area, and the resulting fatalities and injuries may decrease.
According to the result of the elastic analysis, when the number of accidents with pollution
increases by 1%, the number of fatalities and injuries in Areas I and II will decrease by
0.044% and 0.101%, respectively. These elasticity coefficients are relatively low probably
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because most of the ships causing pollution are oil tankers and dangerous goods carriers
with few passengers on board.

The other 11 independent variables are factors that directly impact the number of
fatalities and injuries in accidents and can reflect the cause of the accident. Flags in this
study are divided into FOC and non-FOC. The regression coefficient of flag is positive,
and the elasticity coefficients are 0.131 and 0.180, respectively, indicating that FOC ships
may cause more fatalities and injuries than non-FOC ships. This may be because that the
registration and supervision of flags of convenience are more relaxed, leading to a greater
probability of accidents and a higher number of fatalities and injuries. The regression
coefficient of vessel type is positive, and the elasticity coefficients are 0.037 and 0.083,
respectively, indicating that the more passenger ship accidents, the greater the number of
fatalities and injuries, which is consistent with the findings from Weng and Yang [24]. Ship
age represents the service life of a ship. The elasticity coefficients of Ship age are positive,
being 1.008 and 0.973, respectively, meaning that Ship age has a significant positive impact
on the number of fatalities and injuries in both sea areas. This indicates that the older the
ship, the poorer the ship’s performance, and the easier the accident is to cause fatalities and
injuries. Whether an accident occurs in a port reflects how far the accident is from the coast.
The coefficient of whether in port is negative, and the elasticity coefficients are −0.207 and
−0.578, respectively, indicating that the farther away from the port area, the more fatalities
and injuries in the accident. This is possibly because the closer the accident is to the coast,
the more timely the rescue from the shore. Meanwhile, the coastal marine environment
is relatively less harsh, which also increases the chance of survival. This conclusion is
consistent with that of Wang and Yang [38] and Weng and Yang [24].

The regression coefficients of machinery damage, collision, grounding, fire/explosion,
contact, and foundered are all positive, indicating that these types of accidents positively
impact the number of fatalities and injuries. The elasticity coefficients of machinery damage
are 0.064 and 0.107, respectively, being relatively low for the following reasons: (1) the crew
can detect hull damage or mechanical failures early with the help of equipment and hence
reserve sufficient time for reaction; (2) ships are equipped with increasingly well-rounded
emergency rescue plans, and personnel’s self-rescue abilities are constantly improved. The
regression coefficient of collision is positive, with the elasticity coefficients of 1.178 and
1.102, respectively. That is to say, when this type of accident changes by 1%, the number of
fatalities and injuries in Areas I and II will change by 1.178% and 1.102%, respectively. This
is possibly because that ship collision involves two or more ships, increasing the fatalities
and injuries exponentially. In addition, ship collision usually takes a very short period
of time, making the crews and passengers have limited time to react or escape, so the
probability of fatalities and injuries is high. The elasticity coefficients of grounding are 0.261
and 0.172, respectively, possibly because a grounding accident allows sufficient time for
crew members to react, so the impact of grounding on the number of fatalities and injuries
is modest. The elasticity coefficients of fire/explosion are 0.201 and 0.225, respectively.
Fire/explosion accidents can easily cause rescue difficulties and chaos in escape order,
increasing the chance of fatalities and injuries. This conclusion is also manifested in the
relevant literature [9,10]. In a serious fire/explosion, people on board have no other option
but to jump into the sea with the help of life-saving equipment, but the chance of survival
is very small due to the harsh sea environment. The elasticity coefficients of contact are
0.133 and 0.138, respectively. Contact refers to the failure of a ship after it hits overwater or
underwater objects. A serious accident of this type may cause foundered or capsizing, so
contact greatly impacts fatalities and injuries. The elasticity coefficients of foundered are
0.049 and 0.070. In general, foundering may result in capsize, making it difficult for the
crew and passengers to escape quickly. When this type of accident happens, the dangerous
marine environment and the lack of professional self-rescue ability of people on board may
result in a small chance of survival. Hull damage with a significant impact is seen in Area
II only, and its elasticity coefficient is the lowest, at 0.033. The reasons may be as follows:
(1) hull damage can generally be detected through personnel inspection and equipment
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monitoring; and (2) hull damage requires a development period, during which personnel
on board can intervene early to reduce the occurrence of such incidents and the resulting
fatalities and injuries.

4.3. Result Comparison between Two Accident-Prone Areas and Its Theoretical Implications

Figure 4 shows the absolute values of the elastic coefficients of the ZINB models for
the two sea areas.
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The elasticity coefficients of collision in the two sea areas are the largest, indicating
that collision is the primary factor driving fatality and injury outcomes of accidents in
both areas. Specifically, the elasticity coefficient of collision in Area I is slightly higher
than that of Area II, which may be related to the differences in the number of ships and
the geographical environments of the two sea areas. On one hand, Area I is home to the
world-famous ports of Antwerp, Rotterdam, Felixstowe, Southampton, etc. As the main
passage connecting the Bay of Biscay and the North Sea, the English Channel is narrow
and has a high volume of vessel traffic, increasing the possibility of collisions among ships
and hence the fatality and injury outcomes caused by collision. On the other hand, the
eastern Mediterranean Sea area of Area II is wider and more open, and it therefore has a
lower incidence of collision accidents; the Black Sea area of Area II has less busy shipping
routes compared to Area I; therefore, it is reasonable that collision is related to a smaller
number of fatalities and injuries in Area II.

The elasticity coefficients of ship age are high in both sea areas, indicating that control-
ling ship age can significantly reduce fatalities and injuries. This conclusion is consistent
with that of Wang and Yang [38] and Weng and Yang [24]. The elasticity coefficient in Area
I is higher than that in Area II possibly because the geographical environment of Area I is
relatively poorer, and the geographical features—more narrow and shallow shoals—of the
English Channel make it easier for ships of the same age to have accidents that result in a
larger number of fatalities and injuries in Area I.
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The absolute value of the elasticity coefficient of whether in port in Area II is much
larger than that in Area I, meaning that accidents that occurred far from the port in Area II
can lead to greater fatalities and injuries compared with Area I. Total loss of a ship occurs
when a ship is unlikely to be saved or recovered, or the sum of rescue, salvage, and repair,
among other costs, reaches or exceeds the ship value before the collision or contact occurred.
The elasticity coefficient of loss type in Area II is much higher than in Area I. These results
may be explained by the following reasons: (1) The eastern Mediterranean Sea area in Area
II has a large number of ships and an open space, making it difficult to obtain shore rescue
when an accident occurs, particularly when a ship suffers a total loss; and (2) The countries
surrounding Area I may have a higher level of risk management and rescue mechanisms
for ship accidents.

The elasticity coefficient of fire/explosion in Area II is slightly higher than that in Area
I, which is related to the difference in vessel types navigating in the two sea areas. Most of
the oil exported from the Middle East to Europe and North America passes through the
eastern Mediterranean Sea in Area II, and the number of oil tankers sailing in this area is
higher than in Area I. Oil tankers are flammable and explosive compared to other ships,
so the fire and explosion accidents in Area II are more likely to cause greater fatalities and
injuries. The elasticity coefficient of grounding in Area I is significantly higher than that in
Area II, which can be attributed to the geographical differences between the two sea areas:
(1) The English Channel in Area I is narrow and has many shoals, which easily causes
ship grounding; (2) The eastern Mediterranean Sea and the Black Sea in Area II have open
spaces and suitable ocean depths. The elasticity coefficients of Hull damage and machinery
damage are small. However, attention should be paid to the hull damage and machinery
damage caused by human factors in the actual sailing process to avoid more severe marine
perils. Foundered accidents in the two sea areas had a smaller impact on the number of
fatalities and injuries, which was different from the conclusion of Weng, Ge and Han [9].
This may be due to the timeliness of shore rescue and the differences in marine governance
levels in the surrounding countries.

The elasticity coefficient of the flag in Area II is higher than that in Area I possibly
because (1) The eastern Mediterranean Sea in Area II is located on the trunk traffic routes
with a great number of ships of various types passing through it, including many FOC
ships; (2) The sea area is located in the Bay of Biscay, the English Channel, and the North
Sea, and the surrounding countries, such as Britain, France, Spain, Germany, Belgium,
the Netherlands, and Norway have all joined the Paris Memorandum of Understanding.
As the first cooperation organization for port states to supervise the region, the Paris
Memorandum of Understanding is unrivaled among regional memorandums in scale and
expertise. Therefore, the port state supervision of Area I is more stringent than that of
Area II. Even FOC ships are subject to strict port state supervision in Area I, which ensures
the better performance of FOC ships in Area I than in Area II and reduces the fatalities
and injuries.

4.4. Implication for Management

Maritime accidents threaten the safety and development of the shipping industry and
further impact the safety of the global supply chain. Therefore, the research results can help
to analyze the influencing factors of maritime accidents and propose targeted measures
to avoid maritime accidents. The results show that ship collision has the greatest impact
on fatalities and injuries. Therefore, effectively preventing ship collisions can potentially
minimize the fatalities and injuries of maritime accidents. Ship collision can be prevented
by optimizing the waterway, identifying the hidden areas of potential ship collisions,
and traffic separation schemes, among other measures. Firstly, waterway authorities
are expected to regularly manage the waterways to promptly eliminate hidden dangers
and optimize the navigation environment of ships. Secondly, relevant countries and
organizations in sea areas with high ship traffic (such as the English Channel in Area I) can
set up risk-avoiding areas to create a space for ship emergency handling to avoid chain-
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reaction accidents. Thirdly, for sea areas with dense routes, IMO should revise existing or
establish new traffic separation schemes to improve ship navigation efficiency. Fourthly,
surrounding countries and regions should establish two-way routes, recommended tracks,
etc., to improve ship traffic efficiency and reduce the probability of collision. Fifthly, for
accident-prone sea areas, relevant countries and organizations should set up precautionary
and safety areas to guide ships. Finally, when it is necessary to make a turn when the ship
is sailing at high speed and enough space for operation is available, the operation with a
smaller course change should be prioritized Zhou, et al. [54].

Most fire and explosion accidents occur when the ship is sailing and originate in the
engine room, followed by the cargo spaces. For such accidents, the fatalities and injuries
can be reduced from three aspects: prevention, supervision, and rescue Chen, et al. [55].
Firstly, the crew is expected to keep the machinery in the engine room clean, check all
the pipes and fittings regularly, and prevent fuel oil leakage and short circuit of electrical
equipment. Smoking and fire should be strictly prohibited in the cargo hold areas in real-
time, and the International Maritime Dangerous Goods Code (IMDG) should be strictly
adhered to. Secondly, the crew should ensure the normal operation of the engine room fire
alarm. For flammable and explosive cargoes, the temperature, humidity, oxygen content,
etc., of the cargo compartment should be monitored in real-time through professional
equipment. Thirdly, the crew should regularly update the fire-fighting equipment and
ensure the clearance of fire-fighting passages. In addition, they should receive regular
training to improve their fire-fighting awareness and capability.

For grounding in sea areas with many shoals, relevant authorities are expected to con-
tinuously monitor and optimize the existing deep-water routes to meet the draft demand
of large ships. Secondly, for ships with different draft conditions, corresponding recom-
mended tracks should be set to meet the sailing needs. Thirdly, the management of ship
enterprises should strengthen skillset training and quality training on their crew members
to minimize incompliant operation during the voyage and improve crew members’ safety
awareness [56]. Fourthly, before a ship sails, the route should be planned according to
the ship size [57]. For hull damage, ship loss, and machinery damage, the countries and
international organizations that have jurisdiction over the relevant waters should supervise
ships, especially passenger ships, in addition to requiring crew members to comply with
operation requirements during the sailing process to avoid such accidents. In addition,
they should continuously improve the rescue system to enable the prompt rescue of ships
in emergencies and reduce fatalities and injuries. As the second biggest influencing factor,
ship age greatly affects the fatalities and injuries in an accident. Therefore, relevant authori-
ties should strengthen the supervision of older ships and regularly check the navigational
performance, hull structure, and mechanical equipment of such ships. Ships exceeding
their service life should be forcibly banned from sailing.

For port, foundered, and flag factors, we can prevent accidents and reduce fatalities
and injuries by improving accident rescue, foundered personnel positioning, and fulfillment
of the responsibilities of the flag states. (1) The closer to the coast, the fewer fatalities
and injuries, which fully reflects the importance of rescue. Therefore, it is necessary to
strengthen the supervision over shore vessels and follow up on ships’ navigation statuses
in real-time. Meanwhile, countries worldwide should strengthen emergency rescue teams
in accident-prone areas so that ships can get rescued at sea and reduce fatalities and injuries
as much as possible when they are far away from the coast. (2) For foundered accidents,
modern technology should be employed to strengthen high-precision positioning of people
on board, enable quick ship locating and help calls for rescue in case of danger, and reduce
fatalities and injuries caused by blind spots of search [58]. As a matter of fact, the portable
Emergency Position Indicating Radio Beacons (EPIRBs) has been mandatory for ships
sailing in A3 areas: SOLAS has required that every ship engaged on voyages beyond Sea
Areas A1 and A2, but remaining within Sea Area A3 should be provided with a 406 MHz
EPIRB [59]. What’s more, Cospas-Sarsat is best known as the system that detects and
locates emergency beacons activates by aircraft, ships and people engaged in recreational
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activities in remote areas, and then sends these distress alerts to search-and-rescue (SAR)
authorities. Between January 2019 and December 2021 the Cospas-Sarsat System assisted
in rescuing at least 8675 people [60]. (3) Concerning the impact of the flag factor, the
international community should urge the flag states to fulfill their responsibilities as a
supervisor, especially the states of flags of convenience. The international legislative
framework usually does not cover small ships, so the port states should strengthen the
management and inspection of such ships. Alternatively, other means should be adopted
to inspect ships that do not fall under the legislative framework [37]. Therefore, FOC
states should constantly improve the relevant domestic legal systems, such as the ship
registration system and the ship management system, and appropriately improve the safety
standards of ships registered in domestic to reduce the fatality and injury outcomes of
maritime accidents.

For pollution caused by maritime accidents, it is possible to improve the safety per-
formance of oil tankers, improve oil tanker registration and oil pollution compensation
systems, complete the oil spill emergency response mechanisms [61], strengthen crew
skillset training and quality training [62], implement full-process monitoring over naviga-
tion and operation of oil tankers [63], and improve ship pollution tracking technology [64]
to reduce pollution accidents, avoid fatalities and injuries, and ensure the sustainability of
supply chains.

5. Conclusions

This study uses maritime accident data obtained from the Lloyd’s List Intelligence to
identify accident-prone areas through KDE. It then uses the ZINB regression and elastic
analysis to quantitatively analyze and compare the factors affecting the fatality and injury
outcomes of maritime accidents in accident-prone areas. The following conclusions are
drawn from the study.

The accident-prone areas are identified and two of them are selected, with Area I being
the English Channel, the Bay of Biscay, and the North Sea, and Area II being the Black
Sea and the eastern Mediterranean Sea. The main factors affecting the number of fatalities
and injuries in the two areas include the flag, vessel type, loss type, pollution indicator,
serious indicator, ship age, whether in port, machinery damage, collision, grounding,
fire/explosion, contact, foundered, and hull damage. Collision and ship age are the factors
that show the greatest impacts, whereas hull damage and machinery damage show the
least impacts on fatality and injury outcomes of maritime accidents. Specifically, collision
and ship age have greater impacts on fatalities and injuries in Area I, whereas whether
in port and loss type have greater impacts on the fatalities and injuries in Area II. These
differences are primarily attributed to the differences in the natural environment and the
governance level in the surrounding countries of the two sea areas. Finally, implications for
management are proposed based on the results. Insights obtained from this paper have the
potential to guide the reduction of fatalities and injuries in maritime accidents and support
maritime risk management.

There are certain limitations in the present study. First, only one source of the ac-
cident data was used, which may introduce bias when some accidents are not reported
or misreported. Second, there is a limited number of attributes contained in the accident
data, making it unable to explore the influence of human and environmental factors on
fatality and injury outcomes of maritime accidents. To overcome these limitations, in future
work, we intend to: (1) collect more sources of accident data from local, regional and global
datasets, compare their differences and establish a reliable methodology for the fusion
of data from different sources; and (2) collect human behavior and environment data to
improve the understanding of human and environmental factors affecting the number of
fatality and injury of maritime accidents. Future work may also look at factors contributing
to fatality and injury outcomes of maritime accidents in other regions of the world.
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