Ship Air Pollution Estimation by AIS Data: Case Port of Klaipeda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Emissions Evaluation Model
2.2.1. Estimation Model
2.2.2. Data Processing
3. Results
3.1. Emissions from Different Types of Ships
3.2. Ship Exhaust Emissions and Energy Use in Port
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AE | auxiliary engine |
AIS | automatic identification system |
BC | black carbon |
CO2 | carbon dioxide |
EEA | European Environment Agency |
EMEP/EEA | European Environment Agency co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe |
LF | load factor |
ME | main engine |
NMVOC | non-methane volatile organic compounds |
NOx | nitrogen oxides |
PM | particulate matter |
SFOC | specific fuel oil consumption |
SOx | sulfur oxides |
TSP | total suspended particles |
References
- Mamoudou, I.; Zhang, F.; Chen, Q.; Wang, P.; Chen, Y. Characteristics of PM2.5 from ship emissions and their impacts on the ambient air: A case study in Yangshan Harbor, Shanghai. Sci. Total Environ. 2018, 640–641, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Dinoi, A.; Giovanelli, G.; Masieri, S.; Contini, D. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmos. Environ. 2016, 139, 1–10. [Google Scholar] [CrossRef]
- Wen, J.; Wang, X.; Zhang, Y.; Zhu, H.; Chen, Q.; Tian, Y.; Shi, X.; Shi, G.; Feng, Y. PM2.5 source profiles and relative heavy metal risk of ship emissions: Source samples from diverse ships, engines, and navigation processes. Atmos. Environ. 2018, 191, 55–63. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Y.; Sun, P.; Xing, H.; Duan, S.; Qu, H.; Zou, Y. Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China. Atmosphere 2021, 12, 1108. [Google Scholar] [CrossRef]
- Kim, Y.; Moon, N.; Chung, Y.; Seo, J. Impact of IMO Sulfur Regulations on Air Quality in Busan, Republic of Korea. Atmosphere 2022, 13, 1631. [Google Scholar] [CrossRef]
- Gibson, M.D.; Kundu, S.; Satish, M. Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos. Pollut. Res. 2013, 4, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Zhang, Y.; Yu, F.; Chen, J.; Sun, J.; Wang, S.; Zou, Z.; Zhou, J.; Yu, Q.; Ma, W.; et al. Simulating the impacts of ship emissions on coastal air quality: Importance of a high-resolution emission inventory relative to cruise- and land-based observations. Sci. Total Environ. 2020, 728, 138454. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wang, T.; Sun, L.; Yang, Z.; Lin, Y.; Chen, Y.; Mao, H. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines under different operating conditions. Chemosphere 2019, 225, 43–52. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Cheng, J.; Zheng, C.; Li, M.; Xu, H.; Wang, R.; Chen, D.; Wang, X.; Fu, X.; et al. Comparative Analysis, Use Recommendations, and Application Cases of Methods for Develop Ship Emission Inventories. Atmosphere 2022, 13, 1224. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F.; Quaranta, F.; Mocerino, L. Assessment of the impact of ship emissions on air quality based on a complete annual emission inventory using AIS data for the port of Naples. Ocean Eng. 2021, 232, 109166. [Google Scholar] [CrossRef]
- Firląg, S.; Rogulski, M.; Badyda, A. The Influence of Marine Traffic on Particulate Matter (PM) Levels in the Region of Danish Straits, North and Baltic Seas. Sustainability 2018, 10, 4231. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO): Health Risks of Air Pollution in Europe—HRAPIE Project, Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; WHO Regional Office for Europe: Copenhagen, Denmark, 2013.
- Xu, L.; Jiao, L.; Hong, Z.; Zhang, Y.; Du, W.; Wu, X.; Chen, Y.; Deng, J.; Hong, Y.; Chen, J. Source identification of PM2.5 at a port and an adjacent urban site in a coastal city of China: Impact of ship emissions and port activities. Sci. Total Environ. 2018, 634, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Gagic, R.; Skuric, M.; Djukanovic, G.; Nikolic, D. Establishing Correlation between Cruise Ship Activities and Ambient PM Concentrations in the Kotor Bay Area Using a Low-Cost Sensor Network. Atmosphere 2022, 13, 1819. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Pikelnaya, O.; Polidori, A.; Ban-Weiss, G.; Sioutas, C. Impact of particulate matter (PM) emissions from ships, locomotives, and freeways in the communities near the ports of Los Angeles (POLA) and Long Beach (POLB) on the air quality in the Los Angeles county. Atmos. Environ. 2018, 195, 159–169. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Z.; Malekian, R.; Li, Z. Estimation of Vessel Emissions Inventory in Qingdao Port Based on Big data Analysis. Symmetry 2018, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, F.; Roche, C.; Cazier, F.; Beaugard, C.; Courcot, D. Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. J. Environ. Sci. 2018, 71, 56–66. [Google Scholar] [CrossRef]
- Alver, F.; Saraç, B.A.; Alver Şahin, Ü. Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmos. Pollut. Res. 2018, 9, 822–828. [Google Scholar] [CrossRef]
- Lonati, G.; Cernuschi, S.; Sidi, S. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Sci. Total Environ. 2010, 409, 192–200. [Google Scholar] [CrossRef]
- El-Taybany, A.; Moustafa, M.M.; Mansour, M.; Tawfik, A.A. Quantification of the exhaust emissions from seagoing ships in Suez Canal waterway. Alex. Eng. J. 2019, 58, 19–25. [Google Scholar] [CrossRef]
- Bacalja, B.; Krčum, M.; Slišković, M. A line ship emissions while manoeuvring and hotelling—A case study of port split. J. Mar. Sci. Eng. 2020, 8, 953. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Q.; Jia, P.; Kuang, H. An operational-mode-based method for estimating ship emissions in port waters. Transp. Res. Part Transp. Environ. 2021, 101, 103080. [Google Scholar] [CrossRef]
- Schwarzkopf, D.A.; Petrik, R.; Matthias, V.; Quante, M.; Majamäki, E.; Jalkanen, J.-P. A ship emission modeling system with scenario capabilities. Atmos. Environ. X 2021, 12, 100132. [Google Scholar] [CrossRef]
- Shi, K.; Weng, J.; Li, G. Exploring the effectiveness of ECA policies in reducing pollutant emissions from merchant ships in Shanghai port waters. Mar. Pollut. Bull. 2020, 155, 111164. [Google Scholar] [CrossRef]
- Weng, J.; Shi, K.; Gan, X.; Li, G.; Huang, Z. Ship emission estimation with high spatial-temporal resolution in the Yangtze River estuary using AIS data. J. Clean. Prod. 2020, 248, 119297. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Zhang, Y.; Lv, Z.; Wang, Y.; Wu, L.; Feng, X.; Mao, H. An AIS-based emission inventory and the impact on air quality in Tianjin port based on localized emission factors. Sci. Total Environ. 2021, 783, 146869. [Google Scholar] [CrossRef]
- You, Y.; Lee, J.C. Activity-based evaluation of ship pollutant emissions considering ship maneuver according to transportation plan. Int. J. Nav. Archit. Ocean Eng. 2022, 14, 100427. [Google Scholar] [CrossRef]
- Hong, H.; Jeon, H.; Youn, C.; Kim, H. Incorporation of Shipping Activity Data in Recurrent Neural Networks and Long Short-Term Memory Models to Improve Air Quality Predictions around Busan Port. Atmosphere 2021, 12, 1172. [Google Scholar] [CrossRef]
- Garbatov, Y.; Georgiev, P. Air Pollution and Economic Impact from Ships Operating in the Port of Varna. Atmosphere 2022, 13, 1526. [Google Scholar] [CrossRef]
- Fuentes García, G.; Sosa Echeverría, R.; Baldasano Recio, J.M.; Kahl, J.D.W.; Granados Hernández, E.; Alarcón Jímenez, A.L.; Antonio Durán, R.E. Atmospheric Emissions in Ports Due to Maritime Traffic in Mexico. J. Mar. Sci. Eng. 2021, 9, 1186. [Google Scholar] [CrossRef]
- Goldsworthy, L.; Goldsworthy, B. Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data—An Australian case study. Environ. Model. Softw. 2015, 63, 45–60. [Google Scholar] [CrossRef]
- Ng, S.K.W.; Loh, C.; Lin, C.; Booth, V.; Chan, J.W.M.; Yip, A.C.K.; Li, Y.; Lau, A.K.H. Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta. Atmos. Environ. 2013, 76, 102–112. [Google Scholar] [CrossRef]
- Qiao, B.; He, W.; Tian, Y.; Liu, Y.; Cai, O.; Li, Y. Ship emission reduction effect evaluation of air pollution control countermeasures. Transp. Res. Procedia 2017, 25, 3606–3618. [Google Scholar] [CrossRef]
- Abrutytė, E.; Žukauskaitė, A.; Mickevičienė, R.; Zabukas, V.; Paulauskienė, T. Evaluation of NOx emission and dispersion from marine ships in Klaipeda sea port. J. Environ. Eng. Landsc. Manag. 2014, 22, 264–273. [Google Scholar] [CrossRef]
- Report. Klaipėdos Miesto Savivaldybė. Klaipėdos Miesto Savivaldybės Aplinkos oro Kokybės Valdymo Programa 2020–2023 m. Vilnius. UAB “Estonian, Latvian & Lithuanian Environment”. 2020. Available online: https://www.klaipeda.lt/data/public/uploads/2020/09/klaipeda-okvp-elle20200911.pdf (accessed on 15 August 2022).
- Madjidian, J.; Björk, S.; Nilsson, A.; Halén, T. Clean Baltic Sea Shipping CLEANSHIP. 2013, 1. Available online: https://www.researchgate.net/profile/Josefin-Madjidian/publication/291338320_Clean_Baltic_Sea_Shipping/links/56a0adf508aee4d26ad71907/Clean-Baltic-Sea-Shipping.pdf (accessed on 15 August 2022).
- Xiao, G.; Wang, T.; Chen, X.; Zhou, L. Evaluation of Ship Pollutant Emissions in the Ports of Los Angeles and Long Beach. J. Mar. Sci. Eng. 2022, 10, 1206. [Google Scholar] [CrossRef]
- Rapalis, P.; Daukšys, V. Oro taršos iš įvairių laivų tipų pasiskirstymas Klaipėdos uoste ir taršos mažinimo galimybių apžvalga. Technol. Mokslo Darb. Vakarų Liet. Konf. Medžiaga 2012, 8, 75–79. [Google Scholar]
- Smailys, V.; Rapalis, P.; Strazdauskien, R. Air Pollution by NOx from Ships Passing Klaipeda Port Channel. Transp. Means 2013, 2013, 97–100. [Google Scholar]
- Gan, L.; Che, W.; Zhou, M.; Zhou, C.; Zheng, Y.; Zhang, L.; Rangel-Buitrago, N.; Song, L. Ship exhaust emission estimation and analysis using Automatic Identification System data: The west area of Shenzhen port, China, as a case study. Ocean Coast. Manag. 2022, 226, 106245. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Lv, Z.; Zhang, Y.; Yang, Z.; Fu, F.; Lv, J.; Wu, L.; Mao, H. Efficiency of DECA on ship emission and urban air quality: A case study of China port. J. Clean. Prod. 2022, 362, 132556. [Google Scholar] [CrossRef]
- Paulauskas, V.; Filina-Dawidowicz, L.; Paulauskas, D. The Method to Decrease Emissions from Ships in Port Areas. Sustainability 2020, 12, 4374. [Google Scholar] [CrossRef]
- Huang, L.; Wen, Y.; Zhang, Y.; Zhou, C.; Zhang, F.; Yang, T. Dynamic calculation of ship exhaust emissions based on real-time AIS data. Transp. Res. Part Transp. Environ. 2020, 80, 102277. [Google Scholar] [CrossRef]
- Jugović, A.; Sirotić, M.; Poletan Jugović, T. Identification of Pivotal Factors Influencing the Establishment of Green Port Governance Models: A Bibliometric Analysis, Content Analysis, and DPSIR Framework. J. Mar. Sci. Eng. 2022, 10, 1701. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Li, K.X. Green port marketing for sustainable growth and development. Transp. Policy 2019, 84, 73–81. [Google Scholar] [CrossRef]
- Report. VĮ Klaipėdos Valstybinio Jūrų uosto Direkcija. Klaipėdos Valstybinio Jūrų uosto Žaliojo uosto Koncepcija. Vilnius. VĮ Klaipėdos Valstybinio Jūrų uosto Direkcija. 2022. Available online: https://governance.lt/vvi/klaipedos-valstybinio-juru-uosto-direkcija/ (accessed on 15 August 2022).
- Xiao, Z.; Lam, J.S.L. A systems framework for the sustainable development of a Port City: A case study of Singapore’s policies. Res. Transp. Bus. Manag. 2017, 22, 255–262. [Google Scholar] [CrossRef]
- Twrdy, E.; Zanne, M. Improvement of the sustainability of ports logistics by the development of innovative green infrastructure solutions. Transp. Res. Procedia 2020, 45, 539–546. [Google Scholar] [CrossRef]
- Klaipėdos Uosto Planas. Available online: http://www.uostas.info/images/stories/pages/uostas/uostoplanas/Klaipedos_uosto_planas_2018.pdf (accessed on 24 November 2022).
- Liebuvienė, J.; Čižiūnienė, K. Comparative Analysis of Ports on the Eastern Baltic Sea Coast. Logistics 2021, 6, 1. [Google Scholar] [CrossRef]
- Port of Klaipeda: Port Statistics|Portofklaipeda.lt. Available online: https://portofklaipeda.lt/en/port-2/about-the-port-of-klaipeda/statistics/ (accessed on 29 August 2022).
- European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories; Publications Office, LU: Luxembourg, 2019. [Google Scholar]
- Aplinkos Apsaugos Agentūra: Oro Užterštumo Normos. Available online: https://oras.old.gamta.lt/cms/index?rubricId=260ccbe8-5401-4f3b-adb1-b4ab1b9aa2b5 (accessed on 15 August 2022).
- Zubiaga, A.; Madsen, S.; Khawaja, H.; Boiger, G. Atmospheric Contamination of Coastal Cities by the Exhaust Emissions of Docked Marine Vessels: The Case of Tromsø. Environments 2021, 8, 88. [Google Scholar] [CrossRef]
- Smailys, V.; Strazdauskiene, R.; Bereisiene, K. Evaluation of a Possibility to Identify Port Pollutants Trace in Klaipeda City Air Pollution Monitoring Stations. Environ. Res. Eng. Manag. 2009, 4, 66–75. [Google Scholar]
Ship Type | NOx, t | CO, t | NMVOC, t | TSP, t | BC, t | CO2 *, t | Energy, kWh * |
---|---|---|---|---|---|---|---|
LNG tanker | 0.57 | 0.06 | 0.02 | 0.01 | 0.0008 | 18.73 | 30,264 |
Dreger | 0.96 | 0.13 | 0.08 | 0.03 | 0.001 | 61.33 | 85,823 |
Fishing vessel | 1.97 | 0.19 | 0.08 | 0.04 | 0.002 | 108.09 | 171,889 |
Refrigerated Cargo Ship | 3.54 | 0.33 | 0.15 | 0.07 | 0.004 | 170.31 | 272,263 |
Tug | 9.66 | 1.66 | 0.85 | 0.27 | 0.019 | 372.97 | 524,570 |
General cargo | 17.42 | 1.90 | 0.92 | 0.40 | 0.023 | 898.33 | 1,375,904 |
Tanker | 17.67 | 1.63 | 0.67 | 0.35 | 0.019 | 884.38 | 1,424,448 |
Other | 20.25 | 2.26 | 1.23 | 0.48 | 0.026 | 1307.66 | 1,933,306 |
Bulk cargo | 51.38 | 4.21 | 1.81 | 0.97 | 0.054 | 2321.38 | 3,747,557 |
Container | 57.18 | 5.12 | 2.09 | 1.11 | 0.067 | 2284.59 | 3,691,608 |
Ro-Ro | 62.22 | 6.39 | 2.49 | 1.30 | 0.081 | 2374.02 | 3,836,118 |
Pollutant | Average | Max. | Min. | Average [35] | Average [36] |
---|---|---|---|---|---|
Nitrogen oxides (NOx), t/d | 5.28 | 7.64 | 2.74 | 2.59 | 5.06 |
Total suspended particles (TSP), t/d | 0.52 | 0.74 | 0.29 | - | 0.3 |
Non-methane volatile organic compounds (NMVOC), t/d | 0.22 | 0.32 | 0.12 | - | 0.311 |
Black carbon (BC), t/d | 0.064 | 0.0095 | 0.0033 | - | - |
Carbon dioxide (CO2), t/d | 235 | 341 | 125 | - | - |
Energy, kWh | 371,603 | 545,076 | 197,517 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapalis, P.; Šilas, G.; Žaglinskis, J. Ship Air Pollution Estimation by AIS Data: Case Port of Klaipeda. J. Mar. Sci. Eng. 2022, 10, 1950. https://doi.org/10.3390/jmse10121950
Rapalis P, Šilas G, Žaglinskis J. Ship Air Pollution Estimation by AIS Data: Case Port of Klaipeda. Journal of Marine Science and Engineering. 2022; 10(12):1950. https://doi.org/10.3390/jmse10121950
Chicago/Turabian StyleRapalis, Paulius, Giedrius Šilas, and Justas Žaglinskis. 2022. "Ship Air Pollution Estimation by AIS Data: Case Port of Klaipeda" Journal of Marine Science and Engineering 10, no. 12: 1950. https://doi.org/10.3390/jmse10121950
APA StyleRapalis, P., Šilas, G., & Žaglinskis, J. (2022). Ship Air Pollution Estimation by AIS Data: Case Port of Klaipeda. Journal of Marine Science and Engineering, 10(12), 1950. https://doi.org/10.3390/jmse10121950