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Abstract: The CHEMTAX program has been widely used to estimate community composition based
on major pigment concentrations in seawater. However, because CHEMTAX is an underdetermined
optimization algorithm, underdetermined bias has remained an unsolved problem since its develop-
ment in 1996. The risk of producing biased results increases when analyzing the picophytoplankton
community; therefore, this study tested a new method for avoiding biased CHEMTAX results using
the picophytoplankton community around the East Sea (Japan Sea). This method involves building
a linear model between pigment concentration data and community composition data based on
DNA sequencing to predict the pigment range for each operational taxonomic unit, based on the
95% prediction interval. Finally, the range data are transformed into an initial ratio and ratio limits
for CHEMTAX analysis. Three combinations of initial ratios and ratio limits were tested to deter-
mine whether the modeled initial ratio and ratio limit could prevent underdetermined bias in the
CHEMTAX estimates; these combinations were the modeled initial ratio and ratio limit, the modeled
initial ratio with a default ratio limit of 500 s, and an initial ratio from previous research with the
default ratio limit. The final ratio and composition data for each combination were compared with
Bayesian compositional estimator-based final ratio and composition data, which are robust against
underdetermined bias. Only CHEMTAX analysis using the modeled initial ratio and ratio limit was
unbiased; all other combinations showed significant signs of bias. Therefore, the findings in this
study indicate that ratio limits and the initial ratio are equally important in the CHEMTAX analysis of
biased datasets. Moreover, we obtained statistically supported initial ratios and ratio limits through
linear modeling of pigment concentrations and 16s rDNA composition data.

Keywords: CHEMTAX; next-generation sequencing (NGS); underdetermined bias; linear modeling;
initial ratio; ratio limit; Bayesian compositional estimator (BCE); East Sea (Japan Sea); Ulleung Basin

1. Introduction

CHEMTAX (chemical taxonomy) is a program that allocates chlorophyll a (Chl-a)
into taxa of interest, usually at the class level [1]. It has been widely used in marine
ecosystem research (i.e., [2–4]) because the Chl-a is an indicator for phytoplankton biomass,
and CHEMTAX directly fractionates it into taxa. However, because the algorithm of
CHEMTAX is inherently underdetermined [1], the algorithm is always at risk of yielding
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biased results. Moreover, this risk increases when CHEMTAX is used to estimate Chl-a
content of picophytoplankton (PPP) because the community composition of PPP tends
to be complex; its pigment ratios are also complex. Therefore, CHEMTAX must first
identify the dominant taxa of PPP based on pigment and next-generation sequencing
(NGS) data. Moreover, high complexity in terms of pigment ratio would increase the
severity of underdetermined bias; Latasa [5] noted that the presence of a shared pigment
among multiple taxa increases the risk of bias. This problem is a major barrier to the use
of CHEMTAX; resolution or improvement of this inherent limitation is a challenge for
biological oceanographers.

PPP mainly comprise two groups of small phytoplankton (prokaryotic picophyto-
plankton [P-PPP] and eukaryotic picophytoplankton [E-PPP]) that are characterized by
small size (cell diameter ≤ 3 µm); these are the most abundant phytoplankton component
in marine environments [6,7]. PPP may comprise >50% of total phytoplankton in terms of
chlorophyll or biomass in some environments. P-PPP consists of two genera, Synechococcus
and Prochlorococcus, which exhibit differing spatial distributions worldwide. Synechococcus
is ubiquitously distributed across all marine environments. In contrast, Prochlorococcus
is mainly observed between 40◦ S and 40◦ N [8,9]. E-PPP are responsible for 20% of
the ocean’s primary production and carbon biomass [10,11]. CHEMTAX-based research
concerning E-PPP has the following limiting factors; small size (≤3 µm), morphological
simplicity, high diversity, and marker pigment overlap among taxa. Particularly, little is
known regarding the composition and distribution of E-PPP communities at large spatial
and temporal scales [12].

The East Sea (also known as the Japan Sea; hereafter, the East Sea) is a typical mid-
latitude, semi-enclosed marginal sea in the northwestern Pacific Ocean surrounded by
Korea, Japan, and Russia. The East Sea is connected to the Sea of Okhotsk in the north by
the Soya and Tatar Straits, to the Pacific Ocean in the east by the Tsugaru Strait, and to the
South Sea in the south by the Korea Strait. A well-defined sub-polar front at approximately
37–40◦ N is observed in the East Sea mainly because of seawater circulation through these
four straits [13]. The front separates a warm water mass from the East Korea Warm Current
and a cold water mass from the North Korea Cold Current, which branches off of the Liman
Current. The Ulleung Basin is a major feature located in the southwestern region of the East
Sea. This basin covers a large area of approximately 100 km in the north–south direction
and 150 km in the east–west direction. The Ulleung Basin is a marine system containing
Ulleungdo and Dokdo, and seasonal sub-polar fronts are sometimes present. A recent study
revealed that the Ulleung Basin has environmental characteristics of a biological hotspot,
with high primary phytoplankton productivity [14,15]. Additionally, some studies have
shown that the primary production and chlorophyll contributions of PPP are essential to
ecosystem changes [16,17], and the Ulleung Basin frequently undergoes ecosystem changes
in response to climate change [18–21].

The advantageous features of PPP in aquatic environments [22] suggest that PPP
would increase in aquatic communities with global warming and related climate changes [23].
CHEMTAX-based studies have been conducted in the East Sea using phytoplankton pig-
ment data along a north–south longitudinal observation line [2] and from the Ulleung
Basin [24,25]. These CHEMTAX-based studies did not use size-fractionated phytoplankton
pigment data, and the results provided only partial information regarding the distributional
characteristics of E-PPP. Thus, although CHEMTAX is useful, CHEMTAX-based studies
of E-PPP in the East Sea have been inadequate and limited. Advanced research based
on modern technological approaches is urgently needed to improve the applicability of
CHEMTAX to this region.

The underdetermined bias of CHEMTAX remains an unresolved problem. CHEM-
TAX analysis may not always be limited by underdetermined bias, as demonstrated by
Latasa [5]; using an artificially produced dataset and eight intentionally distorted initial ra-
tios, that study tested whether the CHEMTAX final ratios converged at the true ratio. After
10 successive runs, using the final ratio from the previous run as the initial ratio for the next
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run, all eight pigment ratios tended to converge around the true value. Although the overall
pigment ratios tended to converge, minor pigments shared among multiple taxa did not
converge at a specific point; instead, a biased pattern was observed with decreased accuracy
for taxa with shared pigments. In the same context, it is challenging to constrain CHEM-
TAX analysis to the pico-size class because the pico-sized phytoplankton community often
contains a non-negligible portion of Chl-a from small Ochrophyta, such as Pelagophyceae
and Chryophyceae. Because these taxa share some pigments (e.g., fucoxanthin and 19′-
butanoyloxyfucoxanthin) with Bacillariophyceae and Prymnesiophyceae, the probability
of bias increases, as noted by Latasa [5]; thus, the CHEMTAX results become unreliable.

To address the above challenges, Van den Meersche et al. [26] developed the Bayesian
compositional estimator (BCE) as a new optimization algorithm to overcome the under-
determined bias of CHEMTAX. BCE is a statistically advanced algorithm and the first
algorithm designed to overcome the underdetermined bias of CHEMTAX. Nonetheless,
the limitations of BCE have hindered its adoption in research fields other than CHEMTAX-
related research; one of these limitations is the acquisition of different results for each run of
the algorithm, even when using the same data and settings, because part of the algorithm
depends on a random walk [27].

Community composition analysis using next-generation sequencing (NGS) techniques
can represent the PPP community at the operational taxonomic unit (OTU) level [28]. This
representation is challenging for CHEMTAX because the NGS approach quantitatively
targets specific DNA sequences for each OTU (usually a gene representing the small subunit
of ribosomal RNA) to analyze such communities (e.g., [29]). However, the number of target
sequence copies present in a cell may vary among OTUs or ecotypes, and biases arising
from the polymerase chain reaction process may distort community structures [30]. There-
fore, quantitative analysis based on the NGS technique presumably involves some bias.
Furthermore, NGS quantifies the number or ratio of targeted sequences, which is another
disadvantage compared with CHEMTAX, which directly quantifies the concentration or
ratio of Chl-a.

This study aims to improve CHEMTAX analysis by removing the bias associated with
the underdetermined CHEMTAX algorithm through the adoption of NGS data. In this
study, we assess whether the NGS results and pigment concentration data are linearly cor-
related, then predict the possible range of pigment ratios using a linear model. Statistically
reasonable initial ratio and ratio limit matrices can be produced based on the range. The
CHEMTAX results are validated by comparison with BCE results to confirm avoidance of
the underdetermined bias. Finally, we suggest an appropriate method for analyzing PPP
communities using CHEMTAX in the East Sea area, and we demonstrate the importance of
using appropriate ratio limits for CHEMTAX analysis.

2. Methods
2.1. Survey Area

Sampling for this study was conducted using RV Eardo from February 2018 to April
2020. The research cruises occurred in February, April, June, August, and October to reflect
the area’s seasonal changes. Samples were collected from 6 regular stations (47, 50, 45, 30,
16, and 20) representing the Ulleung Basin, and 0 to 3 (A, B, and C) additional stations for
comparison during each cruise (Figure 1). Detailed information concerning the surveyed
stations is provided in Table 1.

2.2. Sample Collection

At each station, seawater was collected from the surface and sub-surface chlorophyll
maximum (SCM) layer using a rosette sampler equipped on the conductivity–temperature–
depth recorder (SBE 911, Sea-bird Scientific, Bellevue, WA, USA). The SCM layer was
identified from fluorescence data acquired using the conductivity–temperature–depth
recorder. The collected seawater was pre-filtered through a 3-µm polycarbonate membrane
filter (GVS Filter Technology, Bologna, Italy); only particles smaller than 3 µm were retained.
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Next, samples for determination of pigment concentration were collected by filtering 2 L of
the pre-filtered seawater through GF/F filters (Whatman plc, Buckinghamshire, UK), and
samples for DNA sequence analysis were collected by filtering 1 L of pre-filtered seawater
into a 0.2-µm Supor polyethersulfone membrane filter (Pall Corporation, Port Washington,
NY, USA). Then, 1 mL of sodium chloride–Tris–ethylenediaminetetraacetic acid buffer was
injected into each DNA sample prior to storage. Samples were stored in liquid nitrogen
during the cruises and during transport to the laboratory, then stored in a freezer (−80 ◦C).
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Table 1. Research stations and sampling depths (m) surveyed during each cruise. Surface water and
SCM-layer water were sampled.

Station Latitude Longitude February
2018

August
2018

June
2019

October
2019

April
2020

St. 47 37.451 131.013 0, 35 0, 40 0, 30 0, 20 0, 20
St. 45 37.391 131.240 0, 20 0, 30 0, 35 0, 24 0, 30
St. 50 37.331 131.422 0, 20 0, 35 0, 50 0, 50 0, 20
St. 30 37.284 131.640 0, 20 0, 35 0, 40 0, 40 0, 20
St. 16 37.226 131.897 0, 25 0, 16 0, 30 0, 30 0, 20
St. 20 37.134 132.060 0, 15 0, 46 0, 45 0, 40 0, 20
St. A 37.000 131.000 0, 20 0, 36 0, 20 0, 15
St. B 36.020 130.015 0, 18 0, 36 0, 30 0, 20
St. C 35.000 129.250 0, 52 0, 40
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2.3. Determination of Pigment Concentrations Using HPLC

Pigment samples were freeze-dried before extraction to maximize the extraction effi-
ciency. Then, they were extracted by soaking in 4 mL of aqueous acetone solution (5:95 v:v),
wrapped with aluminum foil to prevent exposure to light, and stored in a refrigerator (4 ◦C)
for 24 h. The extracts were filtered through 0.2-µm polytetrafluoroethylene syringe filters
(Hyundai Micro, Seoul, Korea) to ensure that no contaminants were injected into the HPLC
system. Then, 1-mL aliquots of extract were pipetted into brown amber vials, and 400 µL
of HPLC-grade water were added for water packing.

The HPLC system (LC-2030c 3D, Shimadzu Corporation, Kyoto, Japan) was used to
separate and quantify pigment concentrations as described by Zapata et al. [31]. For sepa-
ration, reverse-phase chromatography was conducted using a C8 column (150 × 4.6 mm,
3.5 µm particle size, 100 Å pore size, Waters Corporation, Milford, MA, USA), whereas
quantification was performed with the 440-nm chromatogram measured by a photodiode-
array detector. Wavelengths from 370 to 800 nm were also measured to confirm the purity
of each peak.

The factors for converting peak area to pigment concentrations were obtained prior
to analysis (at least once per year) using a calibration curve determined from standard
pigments (DHI LAB, Hørsholm, Denmark). Furthermore, to facilitate peak identifica-
tion, a mixture of standard pigments was run as the first and last sample daily during
HPLC operation.

2.4. Community Composition Analysis of Eukaryotes Using NGS

Cell lysis was executed in accordance with the protocol established by
Somerville et al. [32]. Lysozyme, sodium dodecyl sulfate, and proteinase K were added to
dissolve microbial cells. DNA extraction was conducted using phenol–chloroform–isoamyl
alcohol (25:24:1, v:v:v) and chloroform–isoamyl alcohol (24:1) extraction procedures [33].
DNA purification was then conducted using spin columns (Biofact, Daejeon, Korea) with
AW1 and AW2 washing buffer solutions (Qiagen, Hilden, Germany) [34].

To amplify the target sequence (the V3–V4 region of 16S rDNA), polymerase chain
reaction was conducted as described by Choi et al. [29] using the primers PLA491F and
PLA907R. The products were purified using AMPure XP beads (Beckman Coulter, Brea,
CA, USA), subjected to polymerase chain reaction [35], and purified again. Then, the prod-
ucts were sequenced on the Illumina MiSeq 2 × 300 bp paired-end platform at ChunLab
(Seoul, Korea). The resulting nucleotide sequences were analyzed using Mothur software
v.1.39.5 [29,36,37].

2.5. Linear Modeling between Pigment Concentrations and Community Composition Data

Pigment concentration data and NGS data have essential differences that must be
resolved before regression is performed. First, the pigment concentration data include
pigments from both eukaryotic and prokaryotic phytoplankton, whereas the NGS data only
contain information regarding eukaryotic phytoplankton. Second, pigment concentrations
are absolute values, whereas NGS data are percentages. Therefore, pretreatment of pigment
data is needed prior to regression.

Pretreatment was conducted as follows. First, zeaxanthin and divinyl Chl-a originate
only from the cyanobacteria; therefore, the removal of their concentrations resolves some
mismatches (Figure 2a). Second, Chl-a is present in both eukaryotic and prokaryotic cells.
To eliminate Chl-a from prokaryotic cells, BCE analysis was conducted prior to regression
analysis. Cyanobacterial Chl-a was calculated with the constrained least squares method
using the best-fitting pigment ratios obtained in the BCE run. In this procedure, the bce
package [38] and lsei package [39] of R [40] were used for calculation. The BCE output was
not directly used to represent cyanobacterial Chl-a because of the low reproducibility of
BCE (discussed in greater depth in the Discussion).
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Figure 2. Diagram of pigment ratio modeling. To construct a linear model that related pigment
concentrations to DNA sequence composition data, preprocessing was conducted to eliminate
pigments from Cyanobacteria (a) and normalize to Chl-a (b). Then, the linear model was constructed
(c) using the non-negative least squares method [41], and the range for each pigment ratio was
determined from 95% prediction intervals (d).

The pigment concentrations of eukaryotic phytoplankton were then normalized to
Chl-a to obtain ratio data (Figure 2b). Finally, multiple linear regression analysis with no
intercept was conducted using the pigment ratio data as the dependent variable and NGS
OTU data as independent variables (Figure 2c,d). The stat package of R version 4.1.4 [40]
was used to perform this analysis. Statistical indices were then assessed to determine
whether the linear model was valid. Because an excessive number of variables in a linear
model can reduce regression validity, only OTUs with a mean ratio >1% or maximum ratio
>5% were included.

Because few negative coefficients were obtained from multiple linear regression due
to multicollinearity, the non-negative least squares (NNLS) method, which constrains nega-
tive coefficients obtained from multiple linear regression, was used to eliminate negative
coefficients [41]. The following formula was used for NNLS:

Pigment
Chlorophyll a

= a×OTUa + b×OTUb + · · ·+ n×OTUn (1)

Based on the NNLS results, the situation in which one OTU comprises 100% of the
species composition was used to calculate the pigment ratio for the CHEMTAX ratio matrix.
For example, the modeled pigment ratio for OTUa would be:

Pigment
Chlorophyll a

= a× 100 + b× 0 + · · ·+ n× 0 = 100a (2)

Because it is not possible for one OTU to actually contribute 100% of the community,
this approach generates extrapolation error, which causes the best-fitting coefficients to
become unreliable. As a reliable alternative, 95% prediction intervals were used [42].
Negative values produced for an interval’s lower boundary were replaced with zeroes
because the actual pigment ratio could never be negative.

The pigment ratio ranges obtained from the model were converted into ranges of
pigment ratios for CHEMTAX, using a weighted average for each boundary. When the
ranges of all elements of the pigment ratio for CHEMTAX were determined, the initial ratio
and ratio limit were calculated as follows:

Initial Ratio =
√
(lower boundary) ∗ (higher boundary) (3)
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RLM =
higher boundary

initial ratio
× 100− 100 (4)

2.6. CHEMTAX Analysis

The data used for CHEMTAX analysis were divided into clusters according to cruise
to reflect seasonal differences. Data from the surface and SCM layer were not separated
because no significant differences were detected in the linear modeling, except in August
2018; therefore, only data from August 2018 were divided into two clusters according to
depth. Consequently, the data were divided into six clusters and analyzed separately to
generate different final ratios.

The clusters used three different combinations of initial ratios and ratio limits: (1) linear
modeling-based initial ratios and ratio limits, (2) a linear modeling-based initial ratio with
a default ratio limit of 500, and (3) an initial ratio determined from previous research [27]
(Table 2) with the default ratio limit. In total, six clusters based on these three combinations
were tested, producing 18 final ratios. Note that linear modeling between pigment data
and eukaryotic DNA sequence composition data could not be used to predict the pigment
ratio associated with Cyanobacteria. Finally, the initial ratios of combinations (1) and (2)
and ratio limits of combination (1) for zeaxanthin and divinyl Chl-a were determined from
the 95% prediction intervals of BCE.

Table 2. Initial ratio matrix which was built based on previous work. The matrix was made by
reconstructing the pigment ratio statistics data from Roy et al. [27] to best fit the present study. The
Chrysophyceae * was included in June 2019 and August 2018 (Surface) clusters, Pelagophyceae ** was
included in October 2019 cluster, and Prochlorococcus *** was Included in August 2018 (Surface),
August 2018 (SCM), and October 2019. Other taxa are included in all clusters).

Class/Pigment Peridinin ButFuco Fuco HexFuco Prasino Viola Allo Zea Chl-b DV
Chl-a Chl-a

Mamiellophyceae 0 0 0 0 0.248 0.054 0 0.059 0.764 0 1
Chlorophytina 0 0 0 0 0 0.081 0 0.011 0.686 0 1

Bacillariophyceae 0 0 0.776 0 0 0 0 0 0 0 1
Chrysophyceae * 0 0 0.15 0 0 0.07 0 0 0 0 1
Pelagophyceae ** 0 0.847 0.365 0 0 0 0 0 0 0 1
Cryptophyceae 0 0 0 0 0 0 0.277 0 0 0 1

Prymnesiophyceae 0 0.1335 0.309 0.675 0 0 0 0 0 0 1
Dinophyceae 0.838 0 0 0 0 0 0 0 0 0 1
Synechococcus 0 0 0 0 0 0 0 0.868 0 0 1

Prochlorococcus *** 0 0 0 0 0 0 0 0.389 0 1 0

Abbreviations: ButFuco = 19′-Butanoyloxyfucoxanthin; Fuco = Fucoxanthin; HexFuco = 19′-
Hexanolyoxyfucoxanthin; Prasino = Prasinoxanthin; Viola = Violaxanthin; Allo = Alloxanthin; Zea = Zeaxanthin;
Chl-b = Chlorophyll b; DV Chl-a = Divinyl Chlorophyll a; Chl-a = Chlorophyll a. Same abbreviation used in
Tables S1–S5.

The CHEMTAX settings were established as reported by Latasa [5]: iteration limit of
5000, epsilon limit of 0.0001, initial step size of 25, step ratio of 2, cutoff step of 30,000, and
bounded relative weighting. Identical settings were used for all 18 CHEMTAX runs.

2.7. Bayesian Compositional Estimator (BCE)

The BCE package [38] in R was used to manipulate the final ratio estimates for the
6 clusters. In this paper, the BCE input ratio was used as the initial ratio and the best-fit
ratio was used as the final ratio to avoid terminology-related confusion; however, these
terms do not exactly align with the terms used by Van den Meersche et al. [26]. The initial
ratios presented in Table 2 were used for BCE, and 100,000 iterations were conducted
for each estimation run. The values of jmpA and jmpX, basic settings of BCE analysis,
were finely adjusted to obtain acceptance rates of 30–80% and minimize the impact of
autocorrelation. The final settings applied and resulting acceptance rates are listed in
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Table 3. The outputlengths parameter was set to 100, and other setting values used the
default values of the BCE1 function in the BCE package.

Table 3. Final settings used for BCE analysis and the resulting acceptance rates.

Cluster jmpA jmpX Iteration Acceptance

February 2018 0.035 0.035 100,000 76.04%
August 2018 (Surface) 0.025 0.025 100,000 69.35%

August 2018 (SCM) 0.025 0.025 100,000 72.50%
June 2019 0.030 0.030 100,000 80.00%

October 2019 0.039 0.039 100,000 66.65%
April 2020 0.031 0.031 100,000 74.21%

3. Results
3.1. Statistical Indices and the Validity of Linear Modeling

The p-values for regression analysis were <0.001 for all pigments analyzed, supporting
the validity of linear modeling. Adjusted R2 values were >0.85 for most pigments. How-
ever, the adjusted R2 values for peridinin and alloxanthin were low: 0.1233 and 0.1830,
respectively. These low R2 values suggest that peridinin and alloxanthin are more strongly
influenced by environmental factors, whereas other pigments are mainly influenced by
species composition. The p-values and adjusted R2 values are presented in Table 4.

Table 4. p-values and adjusted R2 values of multiple linear regression models.

Pigment Adjusted R2 p-Value

Peridinin 0.1233 0.0009
ButFuco 0.8925 <0.0001

Fuco 0.9031 <0.0001
Prasino 0.8538 <0.0001

Viola 0.8685 <0.0001
HexFuco 0.8547 <0.0001

Allo 0.1830 <0.0001
Chl-b 0.6765 <0.0001

3.2. The 95% Prediction Intervals for Pigment Ratios and the Initial Ratio and Ratio Limit
Matrices (RLM) Constructed to Cover the Weighted Average of Lower and Upper Boundaries

The pigment ratio ranges determined by the 95% prediction intervals of NNLS are
presented in Table 5. The lower and upper boundaries of the CHEMTAX pigment ratio
were determined from the weighted averages of OTU pigment ratio boundaries. Then,
CHEMTAX initial ratios and RLMs were determined to cover the whole ranges. The initial
ratio and RLM for the February 2018 cluster are shown in Table 6, and the initial ratio and
RLM combinations for other clusters are presented in Tables S1–S5 in the supplementary
material. CHEMTAX analysis was conducted based on the values presented in those tables.

3.3. Final Ratios Obtained Using Three Different Combinations of Initial Ratios and Ratio Limits

As described in the Methods, three combinations of initial ratio and ratio limit values
were used; the NGS model-based initial ratio and ratio limit, the NGS model-based initial
ratio with the default ratio limit, and an initial ratio from previous research [27] (Table 2)
with the default ratio limit. Linear regression analyses between CHEMTAX and BCE, final
ratios were used to determine which combinations exhibited bias.

Among the CHEMTAX final ratios tested, the use of a model-based initial ratio and
ratio limit produced a result similar to the BCE final ratio (R2 = 0.982), indicating the
greatest resistance to bias (Figure 3). In contrast, the use of a model-based initial ratio with
the default ratio limit produced a low R2 of 0.326, indicating some degree of bias. Finally,
the use of the initial ratio from previous research [27] with the default ratio limit led to
severe bias.
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Table 5. NNLS-based 95% prediction intervals for pigment ratios.

CHEMTAX Taxon Nearest Species for
Each OTU Peridinin ButFuco Fuco Prasino Viola HexFuco Allo Chl-b

Mamiellophyceae

Ostreococcus sp. - - - 0.044–0.069 0.016–0.025 - - 0.163–0.382
Micromonas sp. - - - 0.023–0.185 0–0.042 - - 0–1.367

Micromonas pusilla - - - 0.043–0.176 0–0.029 - - 0–0.824
Bathycoccus sp. - - - 0.025–0.225 0–0.023 - - 0.433–2.302

Mamiellaceae sp. - - - 0–0.140 0–0.061 - - 0–1.004

Chlorophytina Chlorellaceae sp. - - - - 0.008–0.045 - - 0–0.658

Cryptophyceae Pyrenomonadales sp. - - - - - - 0.183–0.498 -

Dinophyceae Amphidinium testudo 0.240–0.892 - - - - - - -

Prymneisophyceae

Chrysochromulinaceae sp. - 0.068–0.498 0.154–0.730 - - 1.072–1.832 - -
Phaeocystis globosa - 0–0.206 0.233–0.831 - - 0–0.382 - -

Prymnesiophyceae sp. - 0–0.221 0–0.446 - - 0–1.005 - -
Phaeocystaceae sp. - 0.076–0.456 0.156–0.757 - - 0.530–1.523 - -
Prymnesiales sp. - 0–0.248 0–0.304 - - 0–0.720 - -

Braarudosphaeraceae sp. - 0.535–1.229 0–0.844 - - 0–1.401 - -
Emiliania huxleyi - 0–0.428 0–0.739 - - 0–1.084 - -

Chrysochromulinaceae sp. - 0–0.481 0–0.508 - - 0–2.312 - -

Bacillariophyceae Cymatosiraceae sp. - - 0.151–0.582 - - - - -

Chrysophyceae
Synurophyceae sp. - 0–0.375 0–1.016 - 0–0.102 - - -
Chrysophyceae sp. - 0.455–2.724 0–2.718 - 0.378–0.739 - - -
Chrysophyceae sp. - 0–0.524 0–0.674 - 0–0.146 - - -

Pelagophyceae Pelagophyceae sp. - 0.388–1.264 0.162–1.341 - - - - -

Abbreviations: ButFuco = 19′-Butanoyloxyfucoxanthin; Fuco = Fucoxanthin; HexFuco = 19′-Hexanolyoxyfucoxanthin; Prasino = Prasinoxanthin; Viola = Violaxanthin; Allo = Alloxanthin;
Zea = Zeaxanthin; Chl-b = Chlorophyll b; DV Chl-a = Divinyl Chlorophyll a; Chl-a = Chlorophyll a.
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Table 6. Initial ratio and ratio limit for the February 2018 cluster.

February 2018 Taxa Peridinin ButFuco Fuco HexFuco Prasino Viola Allo Zea Chl-b DV
Chl-a Chl-a

Initial ratio

Mamiellophyceae 0 0 0 0 0.062 0.012 0 0.051 0.315 0 1
Chlorophytina 0 0 0 0 0 0.019 0 0.072 0.226 0 1

Bacillariophyceae 0 0 0.296 0 0 0 0 0 0 0 1
Cryptophyceae 0 0 0 0 0 0 0.302 0 0 0 1

Prymnesiophyceae 0 0.192 0.177 0.396 0 0 0 0 0 0 1
Dinophyceae 0.463 0 0 0 0 0 0 0 0 0 1
Synechococcus 0 0 0 0 0 0 0 0.519 0 0 1

RLM

Mamiellophyceae 0 0 0 0 139 226 0 89 229 0 0.1
Chlorophytina 0 0 0 0 0 137 0 48 191 0 0.1

Bacillariophyceae 0 0 96 0 0 0 0 0 0 0 0.1
Cryptophyceae 0 0 0 0 0 0 65 0 0 0 0.1

Prymnesiophyceae 0 282 299 259 0 0 0 0 0 0 0.1
Dinophyceae 93 0 0 0 0 0 0 0 0 0 0.1
Synechococcus 0 0 0 0 0 0 0 6 0 0 0.1

Abbreviations: ButFuco = 19′-Butanoyloxyfucoxanthin; Fuco = Fucoxanthin; HexFuco = 19′-Hexanolyoxyfucoxanthin; Prasino = Prasinoxanthin; Viola = Violaxanthin; Allo = Alloxanthin;
Zea = Zeaxanthin; Chl-b = Chlorophyll b; DV Chl-a = Divinyl Chlorophyll a; Chl-a = Chlorophyll a.
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3.4. Taxonomic Composition Based on Final Ratios

In this study, we investigated how the bias of CHEMTAX distorts community compo-
sition data. The BCE final ratio was converted into composition data using the constrained
least squares method [39] (i.e., the tool CHEMTAX uses to convert the final ratio into
composition data), and the results were compared with the output from CHEMTAX. The
BCE best-fit results were not used to obtain composition data for reasons that are explained
in the Discussion.

The CHEMTAX composition data obtained using the model-based initial ratio and
ratio limit produced the highest R2 of 0.989, indicating that these data were most similar to
BCE final ratio-based composition data (Figure 4). When the default ratio limit was used,
the R2 value was reduced to 0.755, revealing a bias of decreased values for more abundant
taxa and increased values for less abundant taxa. This finding indicates that the selection of
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appropriate initial ratio and ratio limit values is essential for CHEMTAX analysis. Finally,
CHEMTAX analysis based on previous research [27] produced highly biased data.
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4. Discussion
4.1. Preventing Biased Output from CHEMTAX Estimation

In summary, CHEMTAX uses an underdetermined optimization algorithm and is
therefore easily biased, resulting in unreliable composition data. Because restricting the
coefficient variation range to have only one global minimum in root mean square (RMS)
can prevent the result from having underdetermined bias, Mackey et al. included settings
to restrict the variation range, which are the initial ratio and RLM [1]. They recommended
that the initial ratio be close to the actual pigment ratio, but RLM does not seem to be as



J. Mar. Sci. Eng. 2022, 10, 1967 13 of 18

important as the initial ratio, and they suggested the default RLM, which is a matrix with
500s for all elements.

However, our investigation found that the elements in the default RLM are too big
to prevent the CHEMTAX analysis from giving biased results when analyzing the pi-
cophytoplankton community in the East Sea. If the dataset contains apparent global
minimum in RMS even when using the default RLM, simply running CHEMTAX sev-
eral times successively would improve the accuracy of CHEMTAX analysis, as suggested
by Latasa [5]; however, no suggestions have been made for analysis in the absence of
prominent global minima.

Accordingly, this study aimed to establish linear models between pigment ratios
and 16S rDNA sequence composition, determine the statistically supported initial ratio
and multiple linear regression value using 95% prediction intervals, and then conduct a
CHEMTAX run. The resulting CHEMTAX final ratios were compared with the BCE final
ratio, which is free of bias, to determine whether the CHEMTAX runs could successfully
avoid underdetermined bias.

As noted in the Results, CHEMTAX with finely adjusted RLM values showed strong
agreement with BCE, whereas the CHEMTAX with default RLM values showed poor
agreement with BCE. These findings confirm that linear modeling between pigment ratios
and 16S rDNA sequence composition data using the NNLS method, and 95% prediction
intervals can effectively determine initial ratios and RLM values that prevent bias in CHEM-
TAX analysis. Furthermore, these results indicate that BCE is an effective optimization
algorithm for the acquisition of bias-free final ratios.

4.2. The Application of BCE Alone for Chemotaxonomic Analysis Is Not Yet Recommended

In this study, the BCE algorithm was used as an indicator to determine whether range-
limited CHEMTAX analysis successfully mitigated bias. If BCE is free of underdetermined
bias, complete replacement of CHEMTAX with BCE would be recommended. BCE is a
good optimization algorithm that allows researchers to omit the challenging process of
selecting rational values for the initial ratio and RLM. However, the BCE algorithm has
some critical issues that are difficult to address for now.

The most important issue with the BCE method is reproducibility. At a particular step
of BCE optimization, known as the sampling step, the algorithm depends on random prob-
ability. Thus, different results are obtained from each run when BCE analysis is repeated
multiple times with the same data and settings. Figure 5 show the results of correlation
analysis between two BCE runs with the data and settings used in this study. In terms of
both final ratio and composition, the two BCE analysis runs produced differing results.

In terms of the final ratio, the two BCE runs clearly differed but showed some degree
of consistency, with an R2 value of 0.911 and a formula near the 1:1 line (Figure 5a). Even
tiny errors in the final ratio affected the composition results; however, considering the error
in biased CHEMTAX results, BCE appears to be a reliable analysis method for determining
the final ratio.

In contrast, the BCE best-fit results for composition data showed no correlation be-
tween the two runs, with an R2 of 0.016, indicating that the BCE composition results are
unreliable. The reproducibility problem is more extensive for composition results than for
the final ratio because BCE estimates composition data independently of the final ratio [26].

From the perspective of the basic framework of chemotaxonomy, in which community
composition is estimated from chemical marker concentrations, a rational approach would
be to first determine the final ratio, and then calculate community composition from the
final ratio. CHEMTAX and most other methods determine community composition in
this manner, including methods based on the inverse simultaneous equation [43], multiple
linear regression [44,45], and Excel Solver [46]. All of these methods determine the pigment
ratio first, and then calculate community composition.
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However, BCE avoids this general approach. The pigmentation of phytoplankton
varies according to light intensity and wavelength, nutritive conditions, detailed species
composition, and many other variables (e.g., [27,47–49]). Thus, each sample has a different
pigment ratio, but conventional approaches (including CHEMTAX) use one pigment
ratio for all samples. This simplification inevitably produces errors [1,26,27]. In contrast,
BCE allows the pigment ratio and composition data to be independently estimated using
Bayesian statistics.

This strategy of independent estimation causes the reproducibility problem inherent
to BCE, resulting in composition data with high uncertainty (Figure 5b). Because in the
optimization procedures in pigment ratio, the elements that BCE optimizes are the number
of taxon-pigment combinations in the pigment ratio table: 14 in the February 2018 cluster
in this research (see Table 6), for example. This number does not increase when the sample
number increase. On the other hand, the number of elements for composition data BCE
optimize are equivalent to the sample numbers times the targeted taxa number. For
example, say we have seven taxonomic groups in the pigment ratio table and ten samples;
the BCE need to optimize 70 elements for composition data. When we increase the sample
number to 20, it becomes 140 elements.

Since the BCE algorithm is designed to test which pigment ratio matrices and compo-
sition data matrices are best fitting among the randomly produced matrices (the matrices’
numbers are equivalent to iteration numbers), increasing the number of elements would
result in decreasing probability that the BCE algorithm can find the best-fitting results from
the limited iteration numbers. This is why the pigment ratio appears to be stable, while the
composition data fluctuate every run: the increasing number of elements would harm the
accuracy of composition data. Therefore, even when BCE optimization produces a bias-free
final ratio, the composition data may be unreliable. Accordingly, we obtained composition
data based on the BCE final ratio when investigating how the biased final ratio affects
composition data, as shown in Figure 5 and in the Results.

Fortunately, a few methods exist to reduce the reproducibility problem that affects
BCE composition data. First, confidence intervals are a good alternative to the best-fit
values for composition data. Van den Meersche et al. [26] optimized BCE to produce a
range of results using confidence intervals rather than exact values for each parameter.

Second, using valid prior information and fine-tuning the covariance matrix could
significantly improve the accuracy of BCE estimation. Although the BCE sampling step
relies on a random walk, the function is not entirely random; the starting point and standard
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deviation can be fixed to restrict the variance of the random function. By manipulating
specific settings, the users can improve BCE estimation. However, the BCE algorithm is
more computationally intense than CHEMTAX and thus requires greater effort. Further
intensification of the analytical method could increase the difficulty of analysis and cause
the results to become more subjective, thereby making CHEMTAX users reluctant to apply
the BCE algorithm. Thus, use of the BCE algorithm to make ecological inferences is
challenging, although BCE is a more statistically advanced algorithm than CHEMTAX.

Despite these weaknesses, BCE could be a powerful tool for improving chemotax-
onomic analysis, if it is used properly. The BCE algorithm has potential for future im-
provement; for example, the current Metropolis–Hastings sampling method could be
replaced with a more advanced method, such as Gibbs sampling. Furthermore, CHEMTAX
and BCE are complementary methods. Therefore, it is possible to determine whether a
CHEMTAX final ratio is biased via comparison with the BCE final ratio; it is also possible
to constrain the CHEMTAX pigment range using the BCE confidence intervals applied
in this study. In conclusion, complementary use of BCE and CHEMTAX will improve
chemotaxonomic estimation.

4.3. Advantages and Disadvantages of Chemotaxonomic Quantification Methods

CHEMTAX and BCE have advantages and disadvantages. We performed linear
modeling of pigment ratio and 16S rDNA composition data to analyze the advantages of
both methods and confirmed a linear relationship between 16S rDNA composition data
and pigment concentrations (Table 7). These results provide new insight into the statistical
support for initial ratios and ratio limit matrices (RLM).

Table 7. Advantages and disadvantages of chemotaxonomic quantification methods.

Advantages Normal CHEMTAX Bayesian Compositional
Estimator

NGS Data Supported
CHEMTAX

Robust to bias No Yes Yes

Reproducibility on final ratio Yes No, but the deviation is
acceptable Yes

Reproducibility on composition Yes No Yes
Evidence for taxa selection No No Yes

Evidence for clustering No No Yes

However, the least-squares method applied in this study is known to be vulnerable
to multicollinearity. Accordingly, there may be some degree of bias in the coefficients
determined using this method. We used prediction intervals rather than coefficients to
mitigate bias caused by multicollinearity; however, this method does not perfectly eliminate
bias. Nonetheless, our comparison of BCE’s best-fit ratio and the linear model-supported
CHEMTAX final ratio confirmed that it is an accurate analysis.

Another weakness could come from DNA copy number variability: It is well known
that DNA copy numbers vary among individuals’ genomes [50], possibly producing bias for
using it quantitatively. However, the present study targeted plastidic 16s rDNA, which has
less variability than nuclear 18S rDNA [51]. In addition, this research focused on small cell-
sized phytoplankton, which reduced the interspecific DNA copy number variation [52,53].
Most importantly, the statistical indices presented in Table 4 show that the copy number
variation rarely impacts the results in our investigation.

Alternatively, DNA composition data could provide critical clues for determining
which taxonomic groups should be included in CHEMTAX analysis. Beta diversity data
based on DNA composition data could represent practical evidence of prior clustering,
which diminishes the error derived from using the same final ratios.

In conclusion, we propose that adopting 16S rDNA composition data into CHEMTAX
analysis could significantly improve the performance (Table 7) and avoid the underdeter-
mined bias of CHEMTAX, and eliminate the reproducibility problem of BCE. Furthermore,
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the proposed method provides critical evidence for taxon selection and prior clustering,
which could also improve the accuracy of CHEMTAX analysis.

5. Conclusions

We verified that the combination with the modeled initial ratio and RLM successfully
avoids underdetermined bias while the CHEMTAX results with the default RLM suffer
from bias (Figures 3 and 4). Although this research tested only the picophytoplankton
community in the East Sea, CHEMTAX analysis for other phytoplankton communities
may have a high probability of being biased; therefore, we strongly recommend that it is
necessary to confirm if the CHEMTAX analysis successfully avoids bias before applying to
general phytoplankton group, at least, apply a narrow RLM other than the default RLM.
The linear model explained in this study is a great way to narrow the RLM, but BCE is a
good alternative. However, caution is needed when using the direct composition data from
the BCE analysis; i.e., the reproducibility needs to be checked.

To produce reproducible composition data from the BCE analysis, our suggestions are
as follows; minimizing the sample size for each run by; sub-clustering the samples that
have similar pigment ratios; using the information from the prior distribution data; fine-
tuning the covariance matrix; using bigger iteration steps; and, using advanced sampling
techniques other than the Metropolis-Hastings. Unfortunately, these suggestions are often
difficult for ecologists to adopt because they require much greater statistical understanding
than the CHEMTAX analysis. Albeit, from the present study, our work showed that to ad-
vance the CHEMTAX with enhanced BCE algorithm is essential to marine ecosystem study
and would provide an improved methodological option for biological oceanographers.
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