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Abstract: As the energy supply component of hydraulic transmission systems, the plunger pump is
widely used in the field of ship and ocean engineering. Thus, its fault diagnosis is of great importance.
The multi-model fault diagnosis method based on the Kalman filter is slow in detection and isolation
in the process of slowly varying fault diagnosis, and it may be diagnosed as a false failure. In this
article, to improve the performance of the multi-model fault diagnosis method, we combine the
method and support vector machine and propose a new method by fusing the conditional probability
of the multi-model with the posterior probability of the support vector machine. The experimental
results on a marine plunger pump illustrate the effectiveness of the proposed method. With the
appropriate weight coefficient, the detection speed and isolation speed of the joint multi-model
method are improved after the combination of the support vector machine, and the new method has
better robustness.

Keywords: improved multi-model; probabilistic fusion; fault diagnosis; slow-growing faults

1. Introduction

In recent years, fault diagnosis of marine equipment has attracted many researchers.
Fault diagnosis methods can be classified into model-based methods, signal-based meth-
ods, knowledge-based methods, hybrid methods, and active fault diagnosis methods [1].
Xu et al. [2] proposed a model-based fault detection and isolation scheme for the ship rud-
der servo system. This algorithm has the potential to perform fault diagnosis autonomously,
so it can save time and human resources in sea travel. The experiment shows that four of
the six faults can be isolated. The numerical simulation further shows that if the spool dis-
placement sensor is added, all faults can be isolated. Zhong et al. [3] proposed an intelligent
fault fusion diagnosis method for marine diesel engines. The combination of D-S evidence
theory and GA-SVM algorithm can solve the problem that the diagnosis model based on
single sensor data is vulnerable to environmental noise and has low diagnosis accuracy. In
addition, this information fusion method can also reduce the risk of overfitting of GA-SVM
algorithm and improve its generalization ability. The author claims that the accuracy of
the fault diagnosis model based on information fusion can reach 94.17%. Nguyen et al. [4]
proposed a new method to process MDIR data of vibration signals. The proposed MB-DNN
has a higher classification accuracy and strong noise resistance, which can be used for the
early detection of bearing faults. Hoang et al. [5] improved the performance of the motor
bearing fault diagnosis method based on the motor current signal by using deep learning
and information fusion. Compared with the traditional motor bearing fault diagnosis
method based on vibration signal sum, this method has the advantages of simple signal
acquisition and lower cost, but poor performance. Maamouri et al. [6] designed a hybrid
model-based and signal-based method for fault diagnosis of sensorless speed-controlled
induction motor drive (IM) and IGBT open circuit switch. Through various experiments, it
is proved that this diagnosis method is efficient, simple, and independent of the transient
state and parameters of the motor.

J. Mar. Sci. Eng. 2022, 10, 1968. https://doi.org/10.3390/jmse10121968 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10121968
https://doi.org/10.3390/jmse10121968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse10121968
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10121968?type=check_update&version=3


J. Mar. Sci. Eng. 2022, 10, 1968 2 of 16

In many cases, researchers often cannot obtain sufficient data about the research
object. Therefore, model-based fault diagnosis is necessary. Marine equipment operates
in harsh environments, such as those with shock vibrations, high temperatures, and high
pressures, which hide the risks of many kinds of failures. The ability to quickly detect and
isolate faults is critical to ensuring the stable operation of machinery and equipment, and
a multi-model (MM) fault diagnosis method can realize that objective [7]. Under normal
circumstances, the state transitions of a system follow certain physical principles, but when
a fault occurs, the system state transition process also changes. For all possible situations,
MM establishes corresponding state models, and the residuals obtained after filtering with
each model are used as the basis for fault diagnosis. A smaller model residual illustrates
a closer relationship between the model corresponding to the current situation and the
situation itself.

The fault diagnosis method by MM is commonly used in slow-grow fault diagnosis,
and researchers have applied this method to many fields. To simultaneously diagnose
the gas path and sensor faults, Yang et al. [8] proposed an MM method based on the
chi-square test to effectively overcome the problem of misdiagnosis or missed diagnosis
caused by fault coupling. The simulation results show that the proposed method has 97%
and 94% accuracy in the detection and isolation of sensor fault and gas path fault under a
single coupling fault. Zhao et al. [9] proposed an MM method for aeroengine sensor fault
diagnosis and estimation. By designing corresponding aeroengine Kalman filter banks
and using a hierarchical architecture approach, sensor fault diagnosis can be effectively
realized. He et al. [10] proposed a fault diagnosis method for complex chemical process
based on MM fusion. The simulation results on the Tennessee Eastman Process dataset and
Fluidized Catalytic Cracker fractionation unit dataset show that this method has significant
advantages over traditional diagnostic methods in terms of diagnostic precision and recall.
Niu et al. [11] studied the problem of fault diagnosis of launch vehicle actuators by using
an MM method. The simulation results show that the method can quickly and accurately
find rocket fault samples. Sidhu et al. built a state model for a lithium battery [12], and
diagnosed overcharge and over-discharge faults based on the conditional probabilities
calculated by the filtering residuals. The experiment proved the effectiveness of the MM,
but the conditional probability calculated during the diagnosis process fluctuated to a
certain extent, which affects the evaluation effect. Pratama et al. applied an MM to fault
diagnosis for a differential drive robot [13], and the MM could accurately evaluate the states
of the left and right rotors of the robot. Naderi et al. established a set of state models to
diagnose the failures of a gas turbine [14], such as turbine efficiency drops and compressor
efficiency drops, evaluated the current state by the corresponding conditional probability,
and proved that the selected unscented Kalman (UKF) had faster detection and isolation
speeds than extended Kalman (EKF).

In recent years, many scholars have improved the MM method. To mitigate the
problem that the number of state models that need to be established increases exponentially
when the number of failures increases, Gao et al. believed that multiple faults occurred
one after another and had a buffer time [15]; thus, he proposed a satellite-like hierarchical
structure, and the filter bank corresponding to the fault model was activated after a fault was
isolated. Sadeghzadeh et al. used graph theory to decouple a robot navigation system into
multiple subsystems and established state models for each subsystem [16]. Experiments
showed that this method not only reduces the number of models but also effectively isolates
sensor faults, such as inertial sensors and camera sensors. To improve the problem that the
diagnosis effect may be reduced due to insufficient state model accuracy, Zhu et al. used a
kernel function instead of a state transition function to establish the state model [17], and
this method can detect typical actuator faults in real time. Yang et al. used a strong tracking
EKF for filtering to ensure that the filtering residual obeyed a Gaussian distribution [18],
improving the robustness of the MM by reducing the speed of fault detection and isolation.
Zhao et al. presented a method for estimating the severity of faults [19]; experiments
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showed that as the degree of fault severity decreased, the required detection and isolation
speeds also increased.

During the evolution processes of slowly changing faults, early fault diagnosis plays
an important role in ensuring the stable operation of mechanical equipment, so it is of great
significance to improve the detection and isolation speeds of MM fault diagnosis methods.
However, few of the above methods improve the speed of MM diagnosing faults. In the
early stage of fault evolution, due to the insignificant fluctuations of parameters or the
characteristics of other faults, the speed and robustness of MM designed for fault diagnosis
are reduced. Therefore, this article uses a support vector machine (SVM) to improve the
performance of the MM method by fusing the posterior probability of the SVM and the
conditional probability of the MM, thereby improving the detection and isolation speeds of
the MM and enhancing its robustness. Finally, experiments with a marine plunger pump
are carried out to verify the algorithm.

2. SVM-MM Algorithm Framework

An MM calculates a conditional probability based on the residual of the state model,
which takes measurement data as input. The conditional probability can be regarded as the
occurrence probability of the state corresponding to the model. However, due to the state
fluctuations of the system in the fault evolution stage, and the corresponding residuals
are insignificant, the value of conditional probability increases delay, which affects the
diagnosis speed of the MM. In this article, by exploiting the sensitivity of an SVM to data,
the posterior probability of the SVM’s classification result is fused with the conditional
probability of an MM, and fault diagnosis is performed according to the fused probability.

The difference between SVM-MM and the traditional multiple models lies in the
calculation process of conditional probability. SVM-MM enhances MM’s ability to evaluate
the current state by fusing the posterior probability of SVM. First, determine the potential
operating state of the machine, and establish corresponding state models to form filter
banks. Then, the currently measured data is used as the filter input, and the residual is
calculated according to Equation (34). The conditional probability of MM is calculated by
using the residual of each state model through Equation (5). The residual of the normal
state model is used as the SVM input so that it can classify the current state and calculate the
corresponding posterior probability according to Equation (11). Then, a new conditional
probability is formed by fusing the posterior probability of SVM and the conditional proba-
bility of MM according to Equation (12). Finally, fault diagnosis and isolation are realized
through Equation (13) according to the updated conditional probability and threshold, as
shown in Figure 1.
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2.1. State Model

The dynamic characteristics of a mechanical system can be comprehensively and
accurately described by using the parameter set xk with the smallest number of parameters
at any time, and xk is called the state variable of the system. The relationship between this
state variable and the state variable at the previous moment can be described as:

xk = f (xk−1, uk−1) + wk (1)

where f is the system state transition equation; u is the control input variable, which is the
set of parameters that affect the state of the system; w is the system noise, including the
error of the system state transition equation; k− 1 represents the time when t = k− 1.

The output variable y of the system is generally selected as the set of parameters that
can be observed by the system, and the relationship between it and state variable x at time
k can be described as:

yk = g(xk, uk) + vk (2)

where g is the measurement conversion equation; vk is the measurement noise, such as that
from the sensor error; k represents the time when t = k.

The state model of the system can be described as a combination of Equations (1) and (2).

2.2. Conditional Probability of the MM

Suppose that the number of possible operating states for the mechanical system
Si(i = 0, 1, . . . m− 1) is m, and regard the mechanical system as a first-order Markov Chain;
then, the time k is only related to the previous time k− 1. Then, the running state of the
plunger pump can be represented by Markov chain, as shown in Figure 2. Combining the
data measured at time k and the previous time, the conditional probability of being in state
Sj at this time can be described as:

pj,k = p
(
Sj|Jk

)
(3)

where pj,k is the conditional probability of being in state Sj at time k; Sj is the jth state with
1 ≤ j ≤ m; Jk is the set of historical measurement data at time k with Jk = (y0, y1, y2, . . . yk).

According to the residuals and covariances of the outputs of each model, the condi-
tional probability density corresponding to each state at time k can be described as:

f (yk|Si, Jk ) =
exp
(
− 1

2 eT
i,kP−1

zz,i,kei,k

)
(2π)

n
2
∣∣Pzz,i,k

∣∣ 1
2

(4)

where f (yk|Si, Jk ) is the conditional probability density of being in state Sj; ei,k and Pzz,i,k are
the residuals and covariances of the output variables, respectively (refer to the Appendix A
for the specific solution steps); and n is the dimensionality of the measurement data.

Combining Equations (3) and (4). according to Bayes’ theorem, the conditional proba-
bility corresponding to each state at time k is rewritten as:

pMM
i,k =

f (yk|Si, Jk )pi,k−1

∑m−1
j=0 f

(
yk
∣∣Sj, Jk

)
pj,k−1

(5)

where pMM
i,k is the conditional probability of being in state Sj at time k calculated by an MM.

Considering that the mechanical system may undergo state transitions during operation, to
ensure that the MM can be responded to in time, a minimum value is set for each probability
(minpMM = 0.01).
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The filtering residuals of each state model can be obtained from the set of state models
established in advance with the currently measured data as input and then the conditional
probability can be calculated according to Equation (5), which reflects the probability of the
corresponding state. Because of the characteristics of the Bayesian theorem, the occurrence
probability of these states is only related to the previous time, and at the same time, the
sum of conditional probabilities of all models in the state model group is 1.

2.3. Posterior Probability of the SVM

The principle of the SVM is to find a hyperplane in the set space formed by multiple
sets of data:

h(a) = w · ϕ(a) + c =
n

∑
i=1

wi · ϕ(a) + c = 0 (6)

where w is the weight vector, h and ϕ are hyperplane functions and sample functions,
respectively; a denotes the sample data, and c is the threshold.

The goal is to satisfy the following optimization problem:

min
1
2

wTw + C
n

∑
i=1

ξis.t.bi(w · ϕ(ai) + c) ≥ 1− ξi, ξ > 0 (7)

where C is the penalty function; ξ is the slack variable; b is the predictor for the sample.
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Refer to Lagrange dual functions, the optimization problem can be described as:
max

n
∑

i=1
αi − 1

2

n
∑

i=1

n
∑

j=1
αiαjbibjκ

(
ai, aj

)
s.t.

n
∑

i=1
αibi = 0, αi ≥ 0, i = 1, 2 . . . n

(8)

where α is the Lagrange coefficient and κ is the kernel function, which is selected as the
Gaussian kernel function in this article.

Let α∗ be the solution of Equation (8); then, the solutions of the threshold c∗ and
weight vector w∗ can be described as:

c∗ = yl −
n
∑

i=1
α∗i yiκ(ai, al)

w∗ =
n
∑

i=1
α∗i yiκ(ai, al)

(9)

Substituting Equation (9) into Equation (8), the discriminant classification function of
the SVM can be described as:

h(a) = sgn

[
n

∑
i=1

α∗i yiκ(ai, al) + c∗
]

(10)

During the process of fault diagnosis, the actual measurement data includes noise and
outliers; the Kalman filter can reduce the influence of noise; and the characteristics of faults
can be represented by the residuals from the normal state model, thus the residuals can be
regarded as sample data with denoising and feature extraction. In this article, we use the
residuals from the normal state model to train SVM, the posterior probability that the SVM
classifies the current state as Si can be described as [19]:

pSVM
i,k = p(b = i |a ) = 1

1 + exp(Aih(a) + Bi)
(11)

where pSVM
i,k is the posterior probability of classifying the input as being in state Sj at time k

calculated by the SVM; a and b are the input and output of the SVM, respectively; A and B
are the coefficients yielded by fitting and training.

2.4. Probabilistic Fusion

The information from different sources can be integrated by probabilistic fusion,
and the fused probability has the completeness and consistency of mathematics more
confidently [20]. In this article, the probability distribution of pMM and pSVM are the
same, so we can fusion the two probabilistic by referring to Bayesian melding, as shown
in Figure 3.

The common fusion methods are linear and logarithmic, we choose linear fusion [21]:

pSVM−MM
i,k = αp pMM

i,k +
(
1− αp

)
pSVM

i,k (12)

where αp is the weight factor for the conditional probabilities calculated by the MM. Due
to this probability is related to historical measurement data, it has a certain robustness to
abnormal inputs, while the posterior probability calculated by the SVM is only related to
the current moment, so it should have a larger weight.
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2.5. State Assessment

According to the conditional probability obtained after fusion, the current state can be
evaluated in combination with the threshold:

Si,k = arg
∣∣pi,k > pthreshold, i ∈ [0, m− 1]

∣∣ (13)

where Si,k means that the system is in state Si at time k; pthreshold is a threshold. If the
calculated probability exceeds the threshold, the corresponding state is considered to exist,
and if the probability is lower than the threshold, the corresponding state is considered to
not exist. The correction effect of SVM is inversely proportional to the threshold value. If
the value is too small, the instability of SVM will be improved. If the value is too large, the
correction effect is not obvious. In this article, pthreshold = 0.95.

3. Research Object

The plunger pump is the energy supply component of the hydraulic system of offshore
equipment, which is widely used in many fields, such as offshore power plants, offshore oil
and gas platforms, offshore buoys, and underwater vehicles. Therefore, this paper takes the
piston pump as the research object to verify the effectiveness of the fault diagnosis method.

3.1. The Plunger Pump Mechanism Model

Currently, machinery and equipment are complex and highly nonlinear systems, and
the types of possible failures vary. To verify the effectiveness of the method proposed in this
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article, the selected research object is a swash plate axial piston pump. The plunger pump
works in a location with large temperature changes and severe vibrations and shocks. Its
main parameters are shown in Table 1, and the structural principles are shown in Figure 4.
The plunger pump stroke is related to the distribution circle radius of the plunger R and
the inclination of the swash plate γ:

S = 2Rtanγ (14)

Table 1. Parameters of the Plunger Pump.

Parameter Value

rotation speed 5000 r/min
outlet pressure rating 16 MPa

oil return pressure 0.3~0.55 MPa
inlet pressure 0.25~0.3 MPa
egress traffic 7 L/min

return oil flow <0.4 L/min
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A single plunger completes two actions (oil absorption and oil discharging) every time
it goes back and forth, and the plunger pump completes one plunger’s oil absorption and
oil discharge pair after one revolution. Therefore, the average displacement of the pump
q is related to the number of plungers z and the plunger pump speed N:

q = zNV =
πd2

2
zNRtanγ (15)

where V is the maximum volume change of a single plunger cavity and d is the plunger diameter.
The torque Mi produced by a single plunger on the motor shaft can be described as:

Mi = FiRtanγsin[θ + (i− 1)α] (16)

where θ is the angle between the centre of a plunger and the vertical plane; α is the angle
between two adjacent piston pumps with α = 2π/z; Fi is the axial pressure.

Then, the relationship between the motor torque Mθ and θ can be described as:

Mθ =
z

∑
i=1

Mi =
z

∑
i=1

FiRtanγsin[θ + (z− 1)α] (17)



J. Mar. Sci. Eng. 2022, 10, 1968 9 of 16

In this pump, z is an odd number, and considering the oil suction and discharge stages
of the plunger, the above formula is rewritten as:

Mβ =


πd2(po−pi)Rtanγcos(θ−α/4)

8sin(α/4) , 0 ≤ θ ≤ α
2

πd2(po−pi)Rtanγcos(θ−3α/4)
8sin(α/4) , α

2 ≤ θ ≤ α
(18)

where pi and po are inlet pressure and oil discharge pressure, respectively.
Integrating this formula and calculating its average value, the average torque M can

be described as:

M =
πd2(po − pi)Rtanγ

2α
(19)

3.2. Fault Simulation and State Model Establishment

The plunger pump rotates the swash plate by a motor, thereby driving the piston
to reciprocate and realize the function of the oil suction pump. Many potential faults
can occur, such as improper assembly or motor displacement faults leading to pump
shaft tilt, which changes the inclination of the swash plate γ; oil corrosion faults causing
pipeline leakage, which reduces the oil discharge pressure po; poor plunger lubrication
faults causing sticking, which reduces the number of the effective number of plungers z;
reductions in the spring force caused by fatigue, which reduces the stroke of the piston
S. In this article, the above types of faults are simulated and used as the data source for
experimental verification. The specific scheme is shown in Table 2. Simulated faults vary
linearly with time steps, including three stages: normal, fault evolution, and fault. This
article simulates the occurrence of various slowly changing faults from Table 2. First, the
plunger pump model runs 100 steps under normal conditions; then, fault evolution is
performed to change the value within 200 steps, and finally, the model runs 100 steps in the
fault state, for a total of 400 steps.

Table 2. Fault Simulation Scheme.

Fault Type Symbol Parameter Change

shaft displacement S1 swash plate inclination γ− 2
pipeline leakage S2 discharge pressure po − 2
piston sticking S3 number of plungers z− 1

spring breakage S4 piston stroke S− 0.02

According to the mechanism model of the plunger pump and the fault simulation scheme,
the corresponding state model is established. Equations (1) and (2) can be rewritten as:

xk = xk−1 (20)

yk = g(x) =

{
q = πd2(z+∆z)N2R(tan(γ+∆γ)+∆S)

4
po =

2α
πd2Rtan(γ+∆γ)

+ pi + ∆po
(21)

where: yk = (N, M, pi, po, q), xk = (N, M, pi).

4. Simulation Results

The purpose of this article is to improve the speed of detection and isolation for an
MM. Therefore, in the process of fault diagnosis, the time consumption of fault detection
and isolation can be used as a reference for evaluating the improvement effect of the
new method [8]:

εd = ∆tdetection/∆ttransition (22)

εi = ∆tisolation/∆ttransition (23)
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where ∆tdetection is the time from when a failure begins to occur until the algorithm detects
that the system is not in a normal state; ∆tisolation is the time from when the fault begins to
occur until the algorithm correctly isolates the fault; ∆ttransition is the time from when the
fault evolves to a steady state; εd and εi are performance indicators that reflect the speed of
fault detection or isolation achieved by the method.

4.1. Single Fault

This article simulates the occurrence of various slowly changing faults from Table 2.
First, the plunger pump model runs 100 steps under normal conditions; then, fault evolution
is performed to change the value within 200 steps, and finally, the model runs 100 steps in
the fault state, for a total of 400 steps. Since the data is generated by mathematical model
simulation, in order to simulate the real measurement, we randomly add 1% Gaussian
noise to the data to simulate the sensor measurement. The indicators of detection and
isolation that diagnose a single fault are shown in Table 3.

Table 3. Single-Failure Diagnosis Performance Indicators.

Fault Type Method εd εi

MM 0.545 0.625
S1 SVM-MM1 0.345 0.585

SVM-MM2 0.010 0.565

MM 0.790 1.14
S2 SVM-MM1 0.265 0.790

SVM-MM2 0.220 0.635

MM 0.565 0.645
S3 SVM-MM1 0.420 0.610

SVM-MM2 0.010 /

MM 0.430 1.135
S4 SVM-MM1 0.325 1.025

SVM-MM2 0.009 0.995

It can be seen from Table 3 that the detection and isolation speeds achieved for the four
types of faults are improved by fusing the MM with the posterior probability of the SVM,
and the speeds are greatly improved with the reduction of the weight coefficient. During
the process of diagnosing fault S1, as shown in Figure 5a, for all steps < 209, the conditional
probability pMM

0 is not lower than the threshold, which illustrates that the plunger pump is
in the normal operation state before step 209, and after step 209, the occurrence of a fault is
detected by the MM. At the same time, the pMM

1 calculated by the MM in step 225 exceeds
0.95, and fault S1 is isolated. Due to the correction effect of the fusion probability, in the
SVM-MM method, the conditional probability of S0 (pSVM−MM

0 ) in step 169 is lower than
0.95, and the fault is detected 40 steps ahead of the point at which it is detected by the MM,
and fault S1 is isolated in step 217. The speeds of detection and isolation are 36.70% and
6.4% higher than those of the MM, and the speed improvements obtained with αp = 0.95
are even higher (98.17% and 9.6% higher in terms of detection and isolation). During
the processes of diagnosing faults S2 and S3 (Figure 5b,c), the SVM-MM also has faster
detection and isolation speeds, and the degree of improvement depends on the value of the
weight factor. However, with a weight factor that is too low, the influence of the posterior
probability of the SVM increases. As shown in Figure 5c, although the detection speed with
αp = 0.95 is faster than that achieved with αp = 0.98, when αP = 0.95 the fluctuation of the
case near the threshold of 0.95 affects the evaluation results for the current state. Due to
the posterior probability of SVM not being large, the conditional probability after fusion
is low and fluctuates. Therefore, the value of the weight for the conditional probabilities
directly affects the diagnosis results. The larger the value is, the more the detection and
isolation speeds are improved, but the influence of uncertainty of the SVM is larger. The
values should be selected based on the performance of the SVM on the training data.
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In fault S4 (Figure 5d) the conditional probability of fault S3 calculated by the MM
in steps 199 to 297 exceeds the threshold of 0.95, resulting in a false alarm phenomenon;
the SVM-MM produces error responses between steps 194 to 264 and 192 to 257, but the
false alarm duration is reduced compared with that of the MM, which indicates that the
SVM-MM has better robustness.

4.2. Multiple Faults

Multiple faults are also concerns in the field of MM diagnosis. In this article, multiple
faults have an occurrence sequence. After the first fault is isolated, the state model group
is updated to make it capable of diagnosing subsequent faults. As shown in Figure 6,
assuming that the occurrence of fault S1 is detected, the state model sets are updated to S1,
S12, S13 and S14, and S1 is regarded as a normal state model. Its filter residual is used as the
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input of SVM1 to classify and calculate the posterior probability, where SVM1 is the SVM
trained after removing the samples of fault S1.
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Figure 6. SVM-MM framework for multiple-fault diagnosis.

We choose S1 and S2, S3 and S4 as the types of simulation of multiple-fault. The
multiple-fault simulation process in this article makes the plunger pump run for 100 steps
under normal conditions, evolve to the first fault within 200 steps, then run for 100 steps
under the first fault condition, evolve to the second fault within 200 steps, and finally run
for 100 steps with both faults present, for a total of 700 steps. Simulated faults vary linearly
with time steps. The MM and SVM-MM methods are used for diagnosis, and αp = 0.98 is
selected according to the analysis results in the previous section. The indicators of detection
and isolation are shown in Table 4. The diagnosis results are shown in Figures 7 and 8.

It can be seen from Table 4 that the SVM-MM can diagnose multiple faults by updating
model sets and the SVM. In Figure 7, the SVM-MM detects the occurrence of the second
fault 102 steps earlier than the MM and isolates the fault 55 steps earlier, improving the
detection and isolation speeds for the second fault by 67.11% and 25.94%, respectively. In
Figure 8, the SVM-MM improves the detection and isolation speeds by 20.00% and 4.67%
over those of the MM, respectively, indicating that the SVM-MM combined with the SVM
posterior probability can also improve the fault diagnosis speed during the process of
diagnosing multiple faults.

Table 4. Multiple-Fault Diagnosis Performance Indicators.

Fault Type Method
First Fault Second Fault

εd εi εd εi

S1 + S2
MM 0.545 0.620 0.760 1.060

SVM-MM 0.380 0.580 0.250 0.785

S3 + S4
MM 0.560 0.645 0.475 0.535

SVM-MM 0.425 0.610 0.380 0.510
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5. Conclusions

To mitigate the problem that MM has low detection and isolation speeds and unsta-
ble performance during fault evolutions, this article proposes a joint diagnosis method
involving an MM and an SVM. The new method integrates the conditional probability of
the MM and the posterior probability of the SVM and corrects the conditional probability
by evaluating the current operating status of the SVM. By establishing the mechanism
model of the plunger pump, several faults, including input load fluctuations, wear, and
corrosion are diagnosed. Experiments show that during the process of diagnosing single
and multiple fault types, the SVM-MM has faster detection and isolation speeds than the
MM. Additionally, the value of the weight factor is discussed. The larger the value is, the
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faster the speed, but the influence of the SVM uncertainty is greater. The SVM-MM is also
robust to the influences of SVM misclassifications and parameter fluctuations caused by
fault evolutions. With the constructed potential fault state model group, the SVM-MM can
detect and isolate slowly changing faults for mechanical equipment. For unknown fault
diagnosis cases, the method updates the conditional probability in combination with the
posterior probability of the SVM, preventing all probabilities from exceeding the threshold
so that the model can indicate that the system is currently in a new unknown state, thereby
enabling the diagnosis of unknown faults.
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Appendix A

The steps for achieving the UKF are as follows.
(1) Initialize the mean weights of the state variables ωm and the error covariance

weights ωc:

ωm =
λ

n + λ
(A1){

ωc,0 = λ
n+λ + 1− α2 + β

ωc,k =
1

2(n+λ)
, k 6= 0 (A2)

where ωm and ωc are, respectively, the weight of the mean value of the state variable and
the weight of the error covariance of the state variable; λ = α2(ndim + κ)− ndim represents
the distance between sigma point and mean value; β represents prior knowledge of mean
distribution; κ similar to α, is a secondary scaling parameter; ndim represents the dimensions
of the sampling data;

(2) Calculate the sigma points x̃ and ỹ:
x̃0,k−1 = µk−1

x̃i,k−1 = µk−1 +
√
(ndim + λ)Pxx,k−1, i = 1, 2, . . . , ndim

x̃i,k−1 = µk−1 −
√
(ndim + λ)Pxx,k−1, i = ndim + 1, ndim + 2, . . . , 2ndim

(A3)

{
x̃k = f (x̃k−1)
ỹk = g(x̃k)

(A4)

where x̃i and Pxx respectively represent the state variables corresponding to the ith sigma
point and their error covariance; µ represents the mean value of the state variable; ỹ
represents the output variable predicted by sigma points;

(3) Predict the state variables x̂ and error covariance P̂xx:

x̂k =
2ndim

∑
i=0

ωm,ix̃i,k (A5)
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P̂xx,k =
2ndim

∑
i=0

ωc,i(x̃i,k − xk)(x̃i,k − xk)
T + Q̂k (A6)

where x̂ and P̂xx respectively represent the state variables and their error covariance
calculated from the unscented transformation; Q̂k represents the covariance of systematic
error at time k;

(4) Predict the output variables ŷ and error covariance P̂yy:

ŷk =
2ndim

∑
i=0

ωm,iỹi,k (A7)

P̂yy,k =
2ndim

∑
i=0

ωc,i

(
ỹi,k − yk

)(
ỹi,k − yk

)T
+ R̂k (A8)

where ŷ and P̂yy respectively represent the output variables and their error covariance
calculated from the unscented transformation; R̂k represents the covariance of measurement
error at time k;

(5) Calculate the Kalman gain K and residuals e:

Pxy,k =
2ndim

∑
i=0

ωc,i(x̃i,k − x̂k)
(

ỹi,k − ŷk

)
(A9)

Kk = P̂xy,kP̂−1
yy,k (A10)

ek = yk − ŷk (A11)

where P̂xy represents the error covariance of the state variable and the output variable; K
represents Kalman gain; e represents residual.

(6) Update the state variables x and error covariance Pxx:

xk = x̂k + Kkek (A12)

Pxx,k = P̂xx,k −KkP̂yy,kKk (A13)

where Pxx represents the error covariance of the updated state variable.
Through the prediction and correction process, the unscented Kalman filter can achieve

signal denoising, optimal estimation, and other functions. The effect of Kalman filtering
depends on the state transformation equation and measurement transformation equation
of the system. Therefore, different results can be obtained through different transformation
equations. The smaller the residual error calculated according to Equation (A11), the closer
the corresponding system dynamic characteristics are to the current time.
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20. Ševčíková, H.; Raftery, A.E.; Waddell, P.A. Assessing uncertainty in urban simulations using Bayesian melding. Transport. Res.
B-Meth. 2007, 41, 652–669. [CrossRef]

21. Yang, L.; He, K.; Guo, Y. A novel Bayesian melding approach for reliability estimation subjected to inconsistent priors and
heterogeneous data sets. IEEE Access 2018, 6, 38835–38850. [CrossRef]

http://doi.org/10.1016/j.ifacol.2019.06.013
http://doi.org/10.1007/s12206-019-0346-6
http://doi.org/10.1109/TIE.2014.2336599
http://doi.org/10.1007/s12555-014-0294-y
http://doi.org/10.1115/1.4004152
http://doi.org/10.1016/j.ast.2013.12.011
http://doi.org/10.1109/TSMC.2016.2598782
http://doi.org/10.1007/s12206-017-1248-0
http://doi.org/10.1016/j.trb.2006.11.001
http://doi.org/10.1109/ACCESS.2018.2853135

	Introduction 
	SVM-MM Algorithm Framework 
	State Model 
	Conditional Probability of the MM 
	Posterior Probability of the SVM 
	Probabilistic Fusion 
	State Assessment 

	Research Object 
	The Plunger Pump Mechanism Model 
	Fault Simulation and State Model Establishment 

	Simulation Results 
	Single Fault 
	Multiple Faults 

	Conclusions 
	Appendix A
	References

