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Abstract: Tubular turbine is a type of turbine with low-head. Due to the fact that the runner of
a tubular turbine is of axial-flow type, there will be a certain width of blade tip between the blade
and the chamber. In order to explore the influence of tip clearance width on the flow inside the
turbine, taking the model tubular turbine as the research object, six different tip clearance widths were
compared and analyzed. The research shows that the increase in blade tip clearance width affects
the performance of the turbine, reduces the minimum pressure at blade tip and causes cavitation in
advance. Larger tip clearance width significantly increases pressure pulsation intensity inside the
turbine, especially in the vaneless region between the runner and guide vane and the area of the
runner tip. However, the increase in tip clearance width can greatly reduce the axial force for about
100 N and radial excitation force for about 50% of rotating parts. Therefore, during the design and
processing of tubular turbines, the blade tip clearance width should be carefully selected to ensure
safe and stable operation of the unit.

Keywords: tubular turbine; tip clearance; tip leakage flow; pressure pulsation; runner force

1. Introduction

Tubular turbines are used for low-head hydropower stations. It has a large size and
suits large flow rate and low rotational speeds [1–3]. Therefore, the tubular turbine is
currently adopted as the turbine type for marine energy utilization. Due to the fact that
bladed turbomachinery is reversible, the tubular turbine can operate in different modes. It
can generate electricity at rising and falling tides in turbine modes. The pump modes are
also feasible for energy storage. The highest efficiency condition is the turbine mode when
a reservoir’s water level is higher than seawater levels. Water flows through upstream
passage, guide vane, runner and downstream passage. High efficiency and good stability
are required [4–6].

The runner of a tubular turbine is of the axial-flow type, and the runner blade is in
cantilever form. Therefore, there are always two problems. One is stress and structural
strength of runner blade: When the tubular turbine is operating, the runner blade suffers
alternate forces. It will cause s variation in stress on the blade and may cause fatigue
failure [7–10]. With the development of the finite element method, numerical simulation
analysis has gradually replaced experiments and has become the main means for studying
the dynamic stress of turbo machinery. In recent years, researchers have not performed
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much research on the dynamic stress analysis of blades of tubular turbine, but have
conducted research on similar cantilever blade rotating machinery [11–14]. Pan et al. [15]
conducted numerical simulation calculation and analysis on the operation of the blades of
axial flow pumps under different rotating speed conditions and found that the cantilever
blade root is prone to fracture, and the deformation of the blade tip is large and can easily
occur, which is not conducive to the safe and stable operations of the unit. Another problem
includes unstable tip leakage flow. The tip clearance width between the runner blade and
runner chamber is small. There will be high speed vortical tip leakage flow. It will cause
cavitation due to local low pressure. It will also cause flow field pulsation and induce the
pulsation of turbine performance [16]. For the flow loss and flow field state caused by a tip
leakage vortex, early research mainly focused on the hydrofoil. Due to spatial limitations of
clearance flow fields, hydrofoils are simplified models of the blade. The study of hydrofoil
tip clearance flow field can provide a theoretical basis for the design of turbo machinery
blade tip clearance [17–20]. Dreyer and Decaix et al. [21,22] analyzed the tip leakage vortex
(TLV) structure and strength of hydrofoil flow field with different tip clearance widths by
using an experimental method and numerical simulation, respectively. The research shows
that the larger the leakage vortex strength, the lower the vortex center pressure, and the tip
leakage vortex has an obvious impact on the surrounding flow field structure. Therefore,
the tip clearance width corresponding to the maximum vortex strength of hydrofoil tip flow
field is obtained. It provides a reference for the design of blade tip clearance width of the
unit. According to the relevant research results of hydrofoil, researchers have conducted
in-depth research on blade-tip clearance and tip leakage vortex (TLV) of a tubular turbine
unit [23–25]. It was found that tip clearance flow field is affected by many factors [26–28],
such as blade geometry, internal flow characteristics, operating conditions and so on.
Similarly, because the tip clearance position is special and the space is narrow, it is very
difficult to test. Therefore, the application of numerical simulation technology in the study
of tip leakage vortex (TLV) can effectively make up for the difficulties and shortcomings
of the experiment. Li et al. [29] analyzed the physical characteristics of the leakage flow
of the tip clearance of the tubular turbine by means of numerical simulation. The results
show that the tip clearance width is directly proportional to the axial velocity, momentum
and flow of the tip leakage vortex and inversely proportional to turbulent flow energy.
Therefore, the blade-tip clearance of the tubular turbine should be reduced as much as
possible in order to reduce the strength of the leakage vortex.

Due to the difficulties in manufacturing and installation, the runner-tip clearance
width of tubular turbine is very crucial [30–35]. Starting from conventional thinking,
a relatively small gap is conducive for reducing loss and improving efficiency. However,
it causes local low pressure, which is undesirable for anti-cavitation. It will also increase
the risk of collisions between the runner and chamber if installation eccentricity is high.
On the contrary, a relatively large tip clearance can cause a drop in efficiency and power.
This is because the blade working area is smaller. Flow can become out of control, which is
a potential risk in inducing strongly pulsating flows.

Currently, research mainly focuses on the mechanism of tip leakage vortex, and its
applications in engineering and the impact of practical engineering have not been clearly
explained. In order to have produce improved operation performance, stability and security
of the tubular turbine in the turbine mode, it is necessary to evaluate the influence of runner
tip leakage widths. In this study, the influence of different blade tip clearance widths on
the internal flow of tubular turbine is analyzed in detail. In order to reduce financial costs,
computational fluid dynamics (CFD) can be used in evaluating runner torque, flow rate,
forces on runner and the surrounding turbulent flow field. This study is based on both
CFD simulations and model experiments, and the influence of the runner tip leakage width
in the high efficiency turbine mode is in-depth discussed; the visualization of internal
flow characteristics of a tubular turbine is realized, which has a clear guiding significance
for engineering.
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2. Research Object

This study takes a model turbine of tubular turbine as the research object and analyzes
the influence of different blade tip clearance widths (hTC) on internal flow characteristics
of the turbine. Figure 1 is the flow passage of tubular turbine studied in this paper.
Figure 1a,b, respectively, show the three-dimensional flow passage and radial flow passage
of the turbine. Coordinate Z represents the axial direction, and coordinate R represents the
radial direction. Water enters the flow passage through the inlet and flows through two
parts, guide vane (number of blades is 16) and runner (number of blades is 4), and finally
flows out of the outlet flow passage. Figure 1c shows the tip clearance position between
the runner and the chamber concerned in this study.
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Figure 1. Passage and blade tip clearance of tubular turbine. (a) represents the three-dimensional
flow passage of the turbine. (b) represents the radial flow passage of the turbine. (c) represents the
tip position between the runner and the chamber.

The main parameters of the tubular turbine are shown in Table 1, including rated
rotation speed nr, rated head Hr, rated power Pr and rated efficiency hr, where the specific
speed ns is a dimensionless number, and the expression is described as follows.

ns =
nr
√

Pr

H5/4
r

(1)

Table 1. Main parameters of model tubular turbine.

Main Parameters Value Unit

Rated Rotation Speed nr 1043 (r/min)
Rated Flow Rate Qr 1.07 (m3/s)

Rated Shaft Power Pr 58.53 (kW)
Rated Head Hr 6 (m)

Rated Efficiency ηr 91.85% (-)
Runner Diameter D 0.4 (m)

Tip Clearance Width hTC 1 (mm)
Unit Rotation Speed n11 2.733 (-)

Unit Flow Rate q11 170.33 (-)
Specific Speed of Runner ns 854.63 (-)
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Unit flow rate q11 and unit rotation speed n11 are introduced to ensure the accuracy of
the model turbine. The expressions are respectively expressed as follows:

q11 =
Qr

D2
√

Hr
(2)

n11 =
nrD√

Hr
(3)

where nr represents the design rotation speed, r/min, Pr represents the design shaft power,
kW, Hr represents the design head, m, and D represents the runner diameter of the turbine, m.

3. Computational Domain Discretization and CFD Settings

In this study, the ANSYS platform commonly used in the numerical simulation of
hydraulic machinery in fluid engineering is used to carry out the numerical simulation.

3.1. Grid Division and Validation

Before numerical simulation, firstly, the fluid domain of turbine is discretized. A hexahedral
structure grid is adopted in the inlet section, guide vane section and outlet section. Due to
the need to consider the clearance at the blade tip of the runner, the fluid domain is much
more complex; thus, a tetrahedral unstructured grid is used to mesh the runner. Local
densification shall be carried out at a location with small area and large curvature, and
densification shall be set for the blade-tip clearance of the blade.

Due to the fact that the number and quality of grids are important reasons affecting
the solution time and accuracy of CFD simulation, too many grids will consume too
many computing resources and too few grids cannot meet the requirements of solution
accuracy. Therefore, the grid convergence index (GCI) method [36,37] recommended by the
American Society of Mechanical Engineers (ASME) was used to analyze grid convergence.
Three different grid schemes of coarse, medium and fine are obtained by using different
encryption strategies. The number of grid nodes is shown in Table 2. The efficiency η of
turbine under rated working condition is selected as the key variable for error evaluation,
and the safety factor is Fs = 1.33. Finally, GCI values between coarse grid and medium
grid and between medium grid and fine grid are obtained (see Table 2 for specific results).
Figure 2 shows efficiency η value predicted by the three grid schemes and the η value
obtained by Richardson extrapolation in which the grid refinement factor of fine grid is
set as 1.0. Combined with the results in Figure 2 and Table 2, it can be observed that the
above grid schemes can meet the convergence requirements in internal flow analysis and
calculation of the tubular turbine. Therefore, in order to better simulate the internal flow
of tubular turbines, the medium grid scheme with 3,740,402 grid nodes is selected. The
specific grid division results are shown in Figure 3.

Table 2. The number of grid nodes and error evaluation results of GCI method.

Grid Schemes Nodes Grid Refinement Factor Fine-Grid Convergence Index

Coarse Grid
Medium Grid

Fine Grid

1,449,192
3,470,402
7,696,901

1.338 1.127%

1.304 0.255%
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3.2. Setup of Numerical Simulation

For both steady and unsteady numerical simulation settings, the Shear Stress Transfer
(SST) k-ω model was used as the turbulence model. The fluid material is set as water at
25 ◦C, and the reference pressure is set to 1 atm. For boundary conditions, the settings are
as follows: The inlet of the calculation domain is set as total pressure, the outlet is set as
static pressure and the pressure is set as 0 Pa. All solid wall boundaries are set as non-slip
walls. The calculation domains are connected by an interface, a multi-reference frame
model (MRF) is adopted and the dynamic–static interface is set between rotating parts and
fixed parts. In steady calculation, the maximum iteration steps are set to 2000, and the
convergence residual is set to 10−5 to ensure the accuracy of the steady calculation results.

In the unsteady calculation setting, a total of 20 rotation periods were simulated, each
rotation period is set to 360 timesteps, the maximum iteration number of each time step is
set to 20 and the convergence residual is also set to 10−5.

3.3. Experimental-Numerical Verification

The CFD numerical simulation results of tubular turbine under rated working condi-
tion are compared with the experimental results, which is a model test on a hydraulic test
rig shown in Figure 4a. The photo of the experiment is shown in Figure 4b, which mainly
shows the pipeline part of the test rig. The comprehensive efficiency test accuracy of the
model test carried out on the test-rig is ±0.25%. Table 3 lists the name and accuracy of the
experimental equipment.
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Table 3. Device name and precision of test rig.

Tested Parameters Device Name Precision

Flow Rate Electromagnetic Flowmeter ±0.18%

Rotation Speed Rotary Encoder ±0.02%

Shaft Power Torque Meter ±0.05%

Pressure Pressure Sensor ±0.1%

The head, flowrate, torque and efficiency are four main parameters of the tested
turbine. Head H is measured by pressure difference sensors installed at the inlet and
outlet of turbine. Flowrate Q is measured based on the electromagnetic flowmeter. Torque
M is measured by torque meter for calculating shaft power P by P = M·rω where rω is
the rotational angular speed. Efficiency η can be calculated by η = P/ρgQH. For a better
comparison, experimental results ΦE are recognized by 1.0. Numerical simulation results
ΦN are the ratio between them and the experimental results RNE, which can be expressed
as RNE = ΦN/ΦE.

The comparison results are shown in Table 4. It can be observed from the table that
the relative error between the results obtained by the grid division scheme and numerical
simulation setting scheme adopted in this study and the experiment is small. Simulation
accuracy can meet the engineering requirements, which provides a reliable calculation
scheme for subsequent analysis.

Table 4. Comparison of experimental results and CFD results.

Parameters Experimental Value CFD Value Error

Flow Rate (m3/s) 1.07 1.02 4.91%

Shaft Power (kW) 58.53 55.38 5.38%

Efficiency (%) 91.85 92.13 0.3%

4. Influence of Different Tip Clearance Widths (hTC) on Internal Flow
4.1. Influence of Different Tip Clearance Widths (hTC) on Turbine Performance

In view of the influence of hTC of the runner blade on the performance of tubular
turbine, numerical simulation calculation and analysis are carried out four hTC of 0 mm,
0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1.0 mm, respectively. The performance results of
turbines corresponding to each clearance condition are shown in Figure 5.
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Figure 5. Influence of different hTC conditions on turbine performance.

It can be observed from the figure that hTC of runner blade has a prominent impact on
the external characteristics of a tubular turbine unit. Under the rated working condition,
with the gradual increase in hTC, the shaft power and efficiency of tubular turbine decrease
first and then increase. When hTC reaches 0.8 mm, the shaft power and efficiency of the
unit reach the lowest value. However, with a further decrease in hTC, when hTC reaches
1.0 mm, shaft power and efficiency increase significantly, which shows that under rated
working conditions, hTC greatly affects the flow field structure in the turbine, resulting in
more complex flow. Therefore, it is necessary to further analyze the internal flow state
of the turbine in order to understand the influence of tip clearance on the internal flow
of the turbine.

Generally, the blade tip clearance of tubular units may reduce the efficiency by about
0.5% [34,35]. It can be observed from Figure 5 that in the process of hTC changing from 0 mm
to 1.0 mm, the lowest efficiency occurs at hTC = 0.8 mm. At this time, the efficiency of the
turbine decreases by about 1% compared with the efficiency of the model test. Meanwhile,
when hTC = 0 mm, the efficiency of the turbine increases significantly compared with the
model test with tip clearance because flow loss caused by clearance leakage vortex (TLV) is
not considered. It can be observed that in the CFD numerical simulation, for the tubular
unit, the existence of tip clearance needs to be considered in calculating the performance to
ensure the accuracy of prediction.

4.2. Influence of Different Tip Clearance Widths(hTC) on Flow Pattern

In order to further explore the characteristics of hTC flow field of tubular turbine, the
above six conditions of hTC are analyzed, and the effects of different hTC on the internal
flow of tubular turbine and the flow field in runner are compared.

4.2.1. Analysis of Leakage Flowrate and Average Leakage Velocity Caused by Tip Clearance

In order to analyze the influence of different hTC on runner leakage flowrate Qleak
and average leakage velocity Vleak, the ratio of the leakage flowrate Qleak corresponding to
different hTC to the total inlet flowrate Qin under various hTC conditions and the ratio of the
average leakage velocity Vleak to the average velocity Vin-runner at the inlet of the turbine
runner are used as dimensionless treatment, as shown in Figure 6. The selection method of
flow passage section in the tip clearance is the closed section formed by the chord line of
blade tip airfoil profile and its projection line on the inner wall of chamber, as shown in
Figure 7.
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Figure 7. Schematic map of tip clearance location. (a) represents the front view of blade tip clearance.
(b) represents the vertical view of blade tip clearance.

With the gradual increase in hTC, dimensionless number Qleak/Qin increases linearly.
The functional relationship between hTC and clearance leakage flowrate can be obtained
by fitting the curve. Similarly, the dimensionless number Vleak/Vin-runner and hTC also
show a continuous rise. Compared with the leakage flowrate, the rising condition is more
complex and nonlinear. The functional relationship between hTC and the average leakage
velocity can also be obtained by curve fitting. The relationship between the two groups of
functions is shown in the Table 5 below.

Table 5. Fitting functions of leakage flow and average leakage velocity for different hTC.

y x Function

Qleak/Qin (%) hTC (mm) y = −3.118 × 10−5 + 0.001x
Vleak/Vin-runner (%) hTC (mm) y = 1.424 + 0.274(1-e−x/0.318) + 0.274(1-e−x/0.318)

4.2.2. Comparison of Leakage Vortex Morphology

In order to compare and analyze the pressure distribution of suction sides under
different hTC conditions and compare the morphological changes of tip leakage vortex
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at each hTC, it is necessary to normalize pressure data and express the results with the
pressure coefficient Cp, which can be expressed as follows:

Cp =
p

ρgH
(4)

where p represents the pressure at the suction side, Pa; ρ represents the density of the
medium, m3/s; and H represents the water head under this working condition, m.

Due to similar flow field characteristics between blade passages, Figure 8 takes a single
blade as an example and uses the contour surface of λ2 = − 1.714 × 105 s−2 to show the
vortex shape near the blade tip as well as the pressure coefficient distribution contour map
on the suction side of the blade and the blade tip (there is no Cp distribution on the blade
tip when hTC is 0 mm).
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hTC = 0.8 mm, (f) represents hTC = 1.0 mm.
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It can be observed from Figure 8 that when there is a clearance at the tip of the runner
blade, there is an obvious tip leakage vortex on the suction side of the blade tip. When hTC
is small (hTC = 0.2 mm), tip leakage vortex is relatively weak. Meanwhile, the tip leakage
vortex at the tip of the blade suction side is divided into two parts, namely, the main
vortex area generated from the tip of the leading edge of the blade leading-edge and the
vortex area at the tip of the blade trailing edge. With the continuous increase in hTC, both
vortices gradually strengthen and develop forward and backward, respectively. Finally,
at the blade tip, when hTC reaches 0.8 mm, two vortices are connected into one, forming
an entire tip leakage vortex shape. Similarly, for the pressure distribution on the suction
side and tip of the blade, it can be observed that tip clearance has a weak impact on the
pressure distribution on the suction side of the blade. During the process of hTC from 0 mm
to 1.0 mm, the pressure distribution on the suction side of the blade maintains a similar
distribution state; that is, there are obvious low-pressure areas in the second half of the
blade tip and the middle part of the bottom of the blade.

4.2.3. Comparison of Streamline and Turbulent Kinetic Energy

In order to further analyze the influence of hTC on the tip leakage of tubular turbine,
one circumferential section is intercepted at the chord length of turbine runner blade of
90% from the blade leading-edge, which is named Section 0.9, as shown in Figure 9. By
using numerical simulation, the turbulent kinetic energy (k) distribution and streamline
distribution of the section of tubular turbine under different hTC are obtained. With the
help of the streamline on the circumferential section, the vortex motion state in the rotating
plane can be reflected, as shown in Figure 10.
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Figure 9. Location of Section 0.9.

According to the research before, the existence of tip clearance will affect about 20% of
the area in the flow channel. Moreover, the turbulent kinetic energy at the tip clearance will
appear in an obvious high value area in the low-pressure area of the blade. It will increase
significantly with the increase in the blade tip clearance width at the blade tip [18,35].
Combined with this study, it can be observed from the figure that, under the rated working
condition, the leakage flow passes through the blade tip from the pressure side to the suction
side of the blade under the action of the pressure difference between the pressure side (PS)
to the suction side (SS) of the blade and forms a separation vortex structure at the blade tip
on the suction side of the blade. On the Section 0.9, which is 90% away from the leading
edge of the blade, due to the full development of turbulence, the intensity of turbulent
kinetic energy (k) is significantly enhanced, and a large area of high turbulent kinetic energy
(k) area appears at the chamber, which has a great impact on the mainstream in the runner
passage. According to Figure 10, the influence of different hTC on the circumferential section
of Section 0.9 is analyzed. It can be observed that with the continuous increase in hTC, the
high turbulent kinetic energy (k) area increases significantly, mainly extending upstream of
the blade suction side, forming a narrow and long high turbulent kinetic energy (k) zone,
which is consistent with existing relevant research conclusions. Meanwhile, when hTC is
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small, the separation vortex structure in the passage at the suction side of the blade does
not develop completely on the Section 0.9 section, and the streamline in this area does
not show a more obvious vortex structure. However, with the increase in hTC, after hTC
reaching 0.6 mm, the vortex structure near the suction side of the blade becomes clear, and
the separation vortex develops completely. Therefore, the increase in hTC is conducive to
the development of the tip separated vortex, and a larger hTC will significantly affect the
mainstream flow in the runner. Generally, the enhancement of tip leakage vortex (TLV)
mainly affects the flow state at the chamber, and its influence range on the overall flow is
strongly related to the strength of tip leakage vortex (TLV).
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Figure 10. Streamline and turbulent kinetic energy(k) distribution of circumferential section in front
of blade tip at Section 0.9 under different hTC conditions. (a) represents hTC = 0 mm, (b) represents
hTC = 0.2 mm, (c) represents hTC = 0.4 mm, (d) represents hTC = 0.6 mm, (e) represents hTC = 0.8 mm,
(f) represents hTC = 1.0 mm.

4.2.4. Comparison of the Pressure Distribution, Turbulent Kinetic Energy and Turbulence
Eddy Frequency

In order to further quantify and analyze the flow field of tip clearance under different
hTC, a monitoring line is intercepted at the chord length of turbine runner blade of 90% from
the leading edge of blade for analysis, which corresponds to the location of Section 0.9 and
named Monitoring Line 0.9. The location of the monitoring line varies slightly according to
different hTC, which is mainly reflected in the fact that the monitoring line is arranged in the
middle of the tip clearance, and the location of the monitoring line is shown in Figure 11.
Monitoring Line 0.9 takes the positive X direction as the zero point and rotates one circle
along the circumference according to the rotation direction of the runner.
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1. Circumferential pressure distribution

The circumferential pressure distribution of Monitoring Line 0.9 is obtained, as shown
in Figure 12, which takes the positive X direction as the zero point and rotates one circle
along the circumference according to the rotation direction of the runner. It can be observed
from the figure that the circumferential pressure distribution of the four blade chambers
with different hTC is basically the same. In one rotation of the runner, the circumferential
pressure of the monitoring line shows four obvious periods corresponding to the number of
runner blades. The pressure starts to rise gradually in the flow channel at the suction side
of the blade and reaches the highest when entering the blade tip clearance. After leaving
the tip clearance, the pressure rapidly decreases to the lowest point of the period, and then
starts a new round of rise so as to go back and forth.
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Figure 12. Circumferential pressure distribution under different hTC conditions at Monitoring Line 0.9.

The main influence of different hTC on circumferential pressure distribution of the
chamber is shown in the lowest circumferential pressure at Monitoring Line 0.9, which is
mainly shown as that with the continuous increase in hTC. The minimum axial pressure at
Monitoring Line 0.9 (i.e., blade tip) decreased significantly. When hTC increased from 0 mm
to 1.0 mm, the minimum circumferential pressure Cpmin decreased from −2 to about −2.4,
greatly increasing the risk of tip vortex cavitation.

2. Distribution of Circumferential Turbulent Kinetic Energy

The circumferential turbulent kinetic energy (k) distribution on Monitoring Line 0.9 is
obtained, as shown in Figure 13, which takes the positive X direction as the zero point and
rotates one circle along the circumference according to the rotation direction of the runner.
The overall form of turbulent kinetic energy (k) at the chamber is much simpler than that of
pressure. It only rises significantly at the blade tip clearance, and then decreases to about
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0.3 m2/s2 after leaving the gap. Similarly, for different hTC, it can be observed that the size
of hTC has little effect on the peak value of turbulent kinetic energy (k) at blade tip.
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Figure 13. Circumferential turbulent kinetic energy (k) of different hTC conditions at Monitoring Line 0.9.

3. Distribution of Circumferential Turbulence Eddy Frequency

A circumferential turbulence eddy frequency (ω) distribution on the Monitoring Line
0.9 is obtained, as shown in Figure 14, which takes the positive X direction as the zero
point and rotates one circle along the circumference according to the rotation direction
of the runner. The distribution of turbulence eddy frequency (ω) of the monitoring line
is consistent with that of turbulent kinetic energy (k). However, different hTC conditions
have a great impact on the turbulence eddy frequency (ω). In the process of hTC increasing
from 0 mm to 1.0 mm, the turbulence eddy frequency (ω) of Monitoring Line 0.9 decreased
significantly, and the turbulence eddy frequency (ω) of Monitoring Line 0.9 decreased from
2 × 105 to 5 × 104, which decreased by about 80%. Based on the above analysis of the
separated vortex structure and turbulent flow field, it can be observed that the energy losses
and dissipation of the blade tip are very serious when hTC is small; thus, it is impossible
to form a stable and separated vortex at the blade tip. However, after hTC increases, the
turbulence eddy frequency (ω) near the blade tip decreases significantly, and the energy
loss and dissipation near the blade tip clearance also decreases significantly, Therefore, the
separated vortex structure at the blade tip is cannot be easily damaged, resulting in a very
obvious vortex structure.
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Figure 14. Circumferential turbulence eddy frequency (ω) under different hTC conditions at Monitor-
ing Line 0.9.
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5. Influence of Different Tip Clearance Widths (hTC) on Unsteady Flow Characteristics
5.1. Influence of Different Tip Clearance Widths (hTC) on Internal Pressure Pulsation

Unsteady numerical simulation calculation and analysis of the internal flow of tubular
turbine are carried out for different hTC. Unsteady numerical simulation is carried out for
three different clearance conditions of 0 mm, 0.6 mm, and 1.0 mm.

In order to analyze internal flow transient characteristics of the rotating parts, fixed
parts and blade tip clearance of the turbine, a series of monitoring points is set in the flow
passage of each part in the turbine. The location arrangement of the monitoring points is
shown in Figure 15, in which Figure 15a is the location of the monitoring points at the inlet
and outlet section, Figure 15b is the three-dimensional location of the monitoring points
at the runner and guide vane and Figure 15c is the two-dimensional projection position
of the monitoring points of the runner and guide vane. In the figure, Pij represents the
name of the monitoring point, i from 1 to 11, representing the axial position sequence of the
monitoring point from the inlet through the guide vane and runner to the outlet; j from
1 to 3 represents the radial position sequence from the chamber to the hub. P71 is a special
monitoring point, which is located in the middle of the blade tip clearance of the runner
blade. Therefore, there is no P71 monitoring point under the calculation condition with
an hTC of 0 mm.
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Figure 15. Layout of monitoring points for unsteady calculation. (a) The layout position of monitoring
points at the inlet and outlet section, (b) the three-dimensional position of monitoring points at the
runner and guide vane part and (c) the two-dimensional projection position of monitoring points at
the runner and guide vane part.

5.2. Pressure Pulsation Analysis of Different Tip Clearance Widths (hTC)
5.2.1. Time Domain Analysis of Pressure Pulsation

This study focuses on the analysis of pressure pulsation from the guide vane to the
runner section; that is, the pressure pulsation changes of all monitoring points. Data of the
last five periods of numerical simulation calculation are selected as the analysis object.

For different tip clearance conditions, the mean value of pressure pulsation at the
monitoring points and the peak-to-peak values of pressure pulsation in the 97% confidence
interval are calculated and analyzed, and the contour map of the internal pressure pulsation
of the entire turbine from the inlet to the outlet is drawn. Figure 16 is the contour map of
the mean value of pressure pulsation in the turbine, and Figure 17 is the contour map of
the peak-to-peak value of pressure pulsation change in the turbine.
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It can be observed from Figures 16 and 17 that, under different hTC, the mean value
distribution of pressure pulsation in the turbine is relatively close, and the overall distribu-
tion law is that pressure pulsation decreases first and then increases from inlet to outlet.
Pressure pulsation decreases slowly in the inlet section. When the flow enters the guide
vane, the decline speed of the mean value of pressure pulsation accelerates. From the
inlet of guide vane to the middle of the runner, the average value of the overall relative
pressure in the turbine is above 0. Only in the vaneless region from the guide vane outlet
to the runner inlet is there a special area near the chamber where the average value of the
pressure pulsation first decreases sharply and then rises suddenly, and the average value
of the relative pressure is only about −0.1. After entering the runner, the mean value of
pressure pulsation further decreases. Finally, the lowest point of the mean value of pressure
pulsation in the turbine is reached at the blade tip clearance of the runner blade (under the
condition of hTC = 0 mm, the mean value of the lowest pressure pulsation in the turbine
appears at the trailing edge of the runner blade). When the fluid reaches the outlet section
through the rotating parts, the mean value of pressure rises gradually and finally returns to
about 0. By using analysis from the chamber to the hub, it can be observed that the mean
value of the pressure pulsation in the turbine with different hTC from the chamber to the
hub is an overall downward trend.

Similarly, for the change of pressure pulsation peak-to-peak value in the turbine, the
change law of pressure pulsation peak-to-peak value in the turbine under different hTC is
basically the same. Contrary to the change of mean value of pressure pulsation, the peak-to-
peak value of pressure pulsation in the entire flow range from inlet to outlet first increases
and then decreases, and the change of peak-to-peak value in the inlet section is relatively
slow. After the fluid passes through the bulb body, the peak-to-peak value amplitude of
pressure pulsation begins to rise. When the blade tip clearance width is hTC = 0 mm and
0.6 mm, the peak-to-peak value of pressure pulsation in the turbine reaches the highest
near the chamber at the trailing edge of the guide vane and the vaneless region between the
runner and the guide vane near the chamber. When hTC reaches 1.0 mm, the peak-to-peak
value of pressure pulsation in the turbine appears at two heights, in addition to the position
of the vaneless region close to the chamber as the condition when hTC = 0 mm and 0.6 mm.
There is also a very high peak-to-peak value condition near the blade tip clearance. Then,
the amplitude changes of the peak-to-peak value of the pressure pulsation in the runner
decreases gradually and finally reaches a more stable pressure pulsation change at the
outlet. It can be observed from the time domain of pressure pulsation that the appropriate
hTC can effectively weaken the peak value of pressure pulsation in the turbine. When
hTC = 0.6 mm, the maximum peak-to-peak value is ∆Cp = 0.22, while when hTC = 0 mm, the
peak-to-peak value is ∆Cp = 0.24. Excessive hTC will cause a development intensity in flow
turbulence in the turbine, cause a violent change in pressure pulsation and make multiple
violent vibration positions in the turbine. At the same time, the pulsation amplitude
increases greatly, and the peak value of the highest pressure pulsation is ∆Cp = 0.38.

5.2.2. Frequency Domain Analysis of Pressure Pulsation

The time domain signal of pressure pulsation at each monitoring point is subjected to
fast Fourier transform (FFT) in order to obtain the frequency domain of pressure pulsation
at different monitoring points in the runner and guide vane under different hTC, as shown
in Figure 18. The shaft frequency fs of the main shaft of the rotating part is 17.38 Hz, the
blade passage frequency fr = Nrfs of the rotating part is about 69.54 Hz and the blade
passage frequency fv = Nvfs of the fixed part is about 278.15 Hz.
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For different hTC conditions, the frequency domain signals of pressure pulsation at all
monitoring points are obtained according to FFT transformation, and three characteristic
frequency signals are extracted: shaft frequency fs, the blade passage frequency of the
rotating part fr (four times fs) and the blade passage frequency of the fixed part fv (16 times
fs). The contour map of each frequency distribution in the entire turbine from the inlet to
the outlet is drawn. Figure 18 is the contour map of the distribution of fs in the turbine
under different hTC conditions. It can be observed from Figure 18 that under different
hTC conditions, the amplitude of fs in the turbine passage is small as a whole, and the
distribution of fs shows a trend of firstly increasing and then decreasing, and the highest fs
location appears in the second half of the runner. It can be observed from the figure that
hTC has a great impact on the characteristic frequency fs of the turbine. With the continuous
increase in hTC, characteristic frequency fs increases. When hTC = 1.0 mm, the amplitude of
fs increases to about Cp = 0.0015. At the same time, due to the occurrence of tip clearance,
there is a significant difference in fs of pressure pulsation at the blade tip when hTC = 0 mm
and hTC = 1.0 mm. When hTC = 1.0 mm, the flow at the blade tip loses the control of the
blade due to the excessive tip clearance width. Due to the occurrence of clearance leakage
vortex, the flow at the blade tip clearance changed significantly and a peak of amplitude
of fs appears. When hTC = 0 mm, the characteristic frequency fs performance at the blade
tip clearance is not strong because the flow is controlled by the blade. However, when
hTC = 0.6 mm, the amplitude of fs at the blade tip clearance is not very obvious, indicating
that a reasonable blade tip clearance width cannot result in large changes in the internal
pressure pulsation of the turbine.

Figure 19 shows the distribution of fs in the turbine under different hTC conditions. It
can be observed from the figure that compared with the distribution of fs, the distribution
of fr inside the turbine passage is more regular. The distribution of fr inside the turbine
shows two peaks: One in the vaneless region between the guide vane and the runner, which
is mainly caused by the rotor–stator interaction between the fixed parts and the rotating
parts. Another peak appears at the tip clearance of the blade. The same is observed for the
distribution of fs: When hTC = 0 mm and 0.6 mm, the characteristic frequency fr at the blade
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tip clearance does not change much and remains at a small amplitude. However, when
hTC increases to 1.0 mm, the characteristic frequency fr at the blade tip clearance increases
significantly, indicating that the flow at the runner tip clearance is obviously disordered. At
the same time, compared with the distribution of fs, the two peaks of the distribution of fr in
the passage significantly increased, and the overall Cp value increased to more than 0.009,
indicating that the rotation of rotating parts has a great impact on the internal pressure
pulsation of the turbine.
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Figure 19. Contour map of the distribution of fr inside the turbine under different hTC conditions.

Figure 20 is a contour map of the distribution of fv inside the turbine under different
hTC conditions. It can be observed from the figure that the distribution of fv in the turbine
is closer to that of fr, and there are obvious peaks in the vaneless region and blade tip
clearance. Different from fr, the peak value and influence range of fv are larger. This shows
that the appearance of the characteristic frequency fv is obviously related to the mixing and
dissipation in the fluid. Another difference is that with the increase in hTC, the amplitude
and peak range of characteristic frequency fv gradually decrease.

In conclusion, the existence and width of blade tip clearance significantly affect the
amplitude and distribution of characteristic frequency of pressure pulsation in tubular
turbines. With reasonable and moderate blade tip clearance width, the amplitude of
characteristic frequency at blade tip clearance can be effectively avoided, and the amplitude
of characteristic frequency caused by rotor–stator interaction in a vaneless region can be
reduced so as to provide guarantee for safe and stable operation of the unit.
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6. Influence of Different Tip Clearance Widths (hTC) on the Forces of Tubular Turbine

During the operation of tubular turbine, the fluid will produce a large force on the
unit. The force on the rotating part of the unit mainly includes axial and radial directions,
and the leakage flow in the blade tip clearance is the source of radial excitation force. The
existence of these two forces will have a certain impact on the safety and stability of the
unit during operation.

In this study, schematic diagrams of axial force and radial force on the runner are
shown in Figure 21, where the axial force is Fz, as shown in the figure, while the radial force
Fr is the resultant force of the runner’s hydrodynamic force Fx in the X direction and Fy in
the Y direction. The expression of radial force Fr is as follows:

Fr =
√

F2
x + F2

y (5)

where Fr represents the radial force received by the runner, N; Fx and Fy represent the
hydrodynamic forces acting on the two vertical directions of the runner, respectively, N.
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6.1. Influence of Different Tip Clearance Widths (hTC) on Axial Force

In order to analyze the axial force on the runner of tubular turbine under rated working
conditions, select the last period of data to analyze the change of axial force on tubular
turbine runner under different hTC at rated working conditions. The time domain is shown
in Figure 22. It can be observed from the figure that when blade hTC increases from 0 mm
to 1.0 mm, the axial force of the runner shows a downward trend as a whole. There are two
stages of changes in the process of axial force decline. From 0 mm to 0.6 mm, the axial force
of the runner decreases greatly, overall axial force decreases from 4325 N to about 4025 N,
and from 0.6 mm to 1.0 mm, the axial force of the runner decreases slowly, the axial force is
about 4025 N. It can be observed from the time domain diagram that under different hTC,
the variation amplitude of axial force in one cycle is similar, and the peak-to-peak values
are about 25 N. It can be observed that considering hTC has a significant impact on the
axial force of the rotating parts of the tubular turbine, the existence of hTC will result in
a significant decrease in the axial force, but the change of hTC will not have a significant
impact on the axial force of the rotating parts.
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6.2. Influence of Different Tip Clearance Widths (hTC) on Radial Force

In order to analyze the radial force on the runner of tubular turbine under rated
working conditions, select the last period of data to analyze the change of radial force on
tubular turbine runner under different hTC at rated working conditions. The time domain
is shown in Figure 23. It can be observed from the figure that under the rated working
condition, the radial force of runner blades with different clearances is different. Overall,
when hTC increases from 0 mm to 1.0 mm, the radial force decreases to a certain extent. At
0 mm, the radial force is the largest, and the overall mean value of pulsation amplitude is
more than 4 N. After considering tip clearance, when hTC is 0.6 mm, the overall amplitude
of radial force decreases to about 2 N. When hTC increases to 1.0 mm, the radial force on the
rotating parts increase to about 3 N. It can be observed that the existence of hTC will result
in an decrease in radial force. And, the decrease value is large, almost 50% of hTC = 0 mm.
Therefore, the tip clearance width has effect on the radial excitation force of rotating parts.
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Figure 23. Time domain of radial force of runner under different hTC conditions. (a) represents
hTC = 0 mm, (b) represents hTC = 0.6 mm, (c) represents hTC = 1.0 mm.

7. Conclusions

In this study, six different tip clearance widths are deeply studied, and the influence
of tip clearance width of tubular turbine is analyzed in detail. Conclusions can be drawn
as follows:

(1) With the increase in tip clearance width, the performance of tubular turbine firstly
decreases and then increases. When tip clearance width increases from 0 to 1.0 mm,
tip leakage vertical flow becomes stronger. The internal flow in runner becomes more
turbulent and disordered. The hydraulic loss in leakage is strong. As the tip clearance
width increases, the minimum pressure in the tip clearance decreases gradually, and
the turbulence eddy frequency decreases significantly, which is prone to the risk of tip
vortex cavitation. The internal flow in runner will be more complex.

(2) The tip clearance width has strong influence on pressure pulsation. A reasonable
width will reduce pressure pulsation intensity. However, excessive tip clearance width
(for example 1.0 mm) will cause severe pressure pulsation in the turbine, especially in
the vaneless region between the runner and guide vane and the blade tip clearance of
the runner because the flow is out of control, and the amplitude of pressure pulsation
is extremely strong.

(3) The force on a runner is affected by tip clearance width. If the width is larger, the
average value of axial force is smaller. When tip clearance width increases from 0 to
1.0 mm, the average value of axial force decreases from 4325 N to 4025 N for about
7%. However, the pulsation amplitude of axial force does not strongly change with
the variation of tip clearance width, the peak-to-peak values are about 25 N. However,
the change in tip clearance width has great influence on the radial excitation force,
with the increase of tip clearance width, the radial force decreases for about 50%.

The determination of blade tip clearance width of tubular turbine is a complex com-
prehensive problem. A tip clearance width that is too large enhances the leakage vortex
in the clearance and the pressure pulsation in the unit. Tip clearance that is too small will
result in a significant increase in the axial force on the runner and affects the safe and
stable operation of the unit. For the reasons above, the influence of tip clearance should
be considered in the design process of tubular turbine. A reasonable tip clearance width
is required because the efficiency, stability and security of turbine unit is very sensitive to
it. Therefore, in the future research, it is still necessary to combine actual production and
consider enough influencing factors to reasonably determine the appropriate tip clearance
width range.
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