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Abstract: In the navigation of an autonomous underwater vehicle (AUV), the positioning accuracy
and stability of the navigation system will decrease due to uncertainties such as mobility, inaccuracy
of a priori process noise characteristic, and simplification of a dynamic model. In order to solve the
above problems, a new, adaptive factor-based H∞ cubature Kalman filter based on a fading factor
(AF-H∞CKF) is proposed in this paper. On the one hand, the H∞ game theory provides AF-H∞CKF
good robustness in the worst case; on the other hand, the fading factor makes the innovation
orthogonal and inflates the predicted error covariance and the Kalman gain, which avoids a decrease
in estimation precision in the case of model uncertainty. The simulation and experiment results show
that the AF-H∞CKF filter can deal with AUV navigation better than other existing algorithms in the
presence of outliers and model uncertainty, which confirms its effectiveness and superiority.

Keywords: autonomous underwater vehicle; adaptive factor; cubature kalman filter; H∞

1. Introduction

AUV integrates a variety of advanced technologies, such as underwater communica-
tion, multi-sensor fusion, data processing, etc., and has been widely used in the fields of
mine clearance, oceanographic survey, and ocean sounding data acquisition [1]. The naviga-
tion system provides the motion data for an AUV to reach the destination and successfully
complete the task. Due to the advantages of autonomy and good accuracy in short time, the
inertial navigation system (INS) is widely used in AUV navigation [2]. However, inertial
navigation cannot meet the demands of long range because of its accumulation of measure-
ment error [3]. Thus, the dead reckoning (DR), comprised of Doppler velocity log (DVL)
and magnetic compass, is often combined with inertial navigation (INS), which ensures
high precision in a short time and suppresses the influence of error accumulation [4].

In the practical application of AUV navigation, data fusion and interference sup-
pression need to be realized by the filtering algorithm [5,6]. Kalman filter (KF), which is
widely used in navigation systems, is a practical real-time optimal estimation method [7].
However, KF cannot meet the requirements of nonlinear systems, and its estimation results
are susceptible to model uncertainty [8].

The improved extended Kalman filter (EKF) is suitable for nonlinear systems. How-
ever, the model error will be generated and accumulated over time in the EKF linearization
transformation [9]. The unscented Kalman filter (UKF) [10,11] and the cubature Kalman
filter (CKF) can solve the above problems. In addition, CKF shows higher accuracy than
UKF when the model dimension is beyond three [12]. However, due to the influence of
water depth and flow in AUV navigation, partial measurement systems may stop work-
ing, resulting in system instability [13]. The H∞ filter can ensure good robustness in the
presence of outliers, whose theory is to minimize the influence of outliers on the estimated
output in the presence of outliers; however, it only satisfies the linear system [14]. The
combination of H∞ filter and cubature Kalman filter can not only extend the application
range to nonlinear system, but also ensure robustness [15].
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Although the H∞CKF shows good robustness in regard to extreme noises, the accuracy
still needs to be improved in the case of uncertainty. Therefore, various adaptive methods
were proposed. The Sage–Husa noise estimator [16] was presented to modify the real-time
noise properties through using the measurements, which decreases the influence caused
by noise property uncertainty. Yang proposed an adaptive H-Infinity cubature Kalman
filter based on the Sage–Husa estimator (AH∞CKF), which combines H∞CKF and the
Sage–Husa estimator to revise noise properties [17]. Gao proposed the model predictive
unscented Kalman filter (MP-UKF) [18] to correct the dynamic model by comparing the
estimation outputs with the measurements. The Huber method can also compensate the
process’s uncertainty [19]. Nevertheless, the variance of the process and measurement
errors cannot be estimated by these algorithms concurrently. However, a fading factor
adaptive algorithm based on innovation orthogonality [20] can suppress the effects of
model uncertainty without estimating the process and measurement errors.

In the practical navigation of AUVs, there always exists maneuverability, unknown
noise properties, and simplified motion model, all of which bring about instability and low
precision. Hence, a novel filter named AF-H∞CKF, combining H∞CKF with a fading factor
adaptive algorithm, is proposed to modify the predicted error covariance and improve the
filter accuracy for the navigation of AUVs. In this novel filter, H∞ theory can ensure the
robustness in the case of extreme error, and the adaptive factor can keep high accuracy
when the model is uncertain.

The rest of this manuscript is as follows. In Section 2, the H∞ theory and H∞CKF
are introduced. Then, an adaptive factor algorithm and the AF-H∞CKF are introduced
in Section 3. In Section 4, the proposed filter is verified through simulations. To further
validate the efficacy of the novel filter, the four filters are applied in a lake experiment and
simulations in Section 5. Lastly, we obtain a conclusion in Section 6.

2. H∞ Theory and H∞CKF

In a nonlinear system, the measurement equation and estimated equation can be
given by: {

ax+1 = f (ax) + qx
bx = h(bx) + rx

(1)

The x shown in the Equation (1) indicates the filtering epoch; ax ∈ Rn denotes the
state vector; bxRm denotes the measurement vector; f is the dynamic model function; h is
the observation function; and qx and rx represent the process noise and measurement noise,
respectively. The covariance of qx and rx is represented by Qx and Rx, respectively.

The principle of the H∞ theory is that the estimation error can be minimized when
the external interference reaches the maximum value [21]. A linear combination of states is
used in the estimation as follows:

cx = lxax (2)

where cx ∈ Rn is exactly the vector that needs to be estimated; lx is a known linear matrix
without additional calculation. Additionally, lx is generally regarded as an identity matrix
to make the estimation easier.

The design principle of H∞ filter is based on game theory, i.e., the specific cost function
will be minimized when P0, Qx, and Rx arrive at the upper limits. In addition, P0, mentioned
above, represents the initial predicted error covariance that is presented on the basis of the
actual conditions, and it denotes the closeness between the initial estimate â0 and actual
initial state vector a0. The cost function [22] is shown below:

J =

N
∑

x=1

∣∣∣∣cx − ĉx
∣∣|22

||c0 − ĉ0||2P−1
0

+
N
∑

x=1
(
∣∣∣∣∣∣qx

∣∣∣|2
Q−1

x
+
∣∣∣∣∣∣rx

∣∣∣|2
R−1

x
)

(3)
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where ĉx represents the optimal estimation vector, which needs to be found for the sake

of minimizing the cost function J. In addition, the expression ‖c0 −
∧
c0‖

2

P−1
0

represents

(c0 − ĉ0)
T P−1

0 (c0 − ĉ0). Nevertheless, obtaining an optimal analytical solution through
Equation (3) is very difficult. Thus, a suboptimal solution has been commonly adopted in
the literature [23]. A threshold is defined as limiting the function J to make sure J is under
a predetermined disturbance tolerance level:

max J < γ2 (4)

where γ is the threshold mentioned above. To apply H∞ theory to nonlinear systems, the
H∞CKF algorithm which combines H∞ with CKF framework is presented in [15]. The
formula of H∞CKF is given below:

Prediction:

(1) Obtain the cubature points:

Px|x = SxST
x (5)

ak
x = Sxδk + âk, k = 1, 2, · · · , n, . . . , 2n (6)

δk =
√

n[1]k =
√

n




1
0
...
0

,


0
1
...
0

, · · · ,


0
0
...
1

,


−1
0
...
0

,


0
−1

...
0

, · · · ,


0
0
...
−1


 (7)

where δk is a cubature point.

(2) Propagate the cubature points:

ak
x+1|x = f (ak

x) (8)

(3) Predict the state vector and calculate the predicted covariance:

âx+1|x = 1
2n

2n
∑

k=1
ak

x+1|x

Px+1|x = 1
2n

2n
∑

k=1
ak

x+1|x(ak
x+1|x)

T − âx+1|x(âx+1|x)
T + Q̂x

(9)

Time update:

(1) Calculate cubature points:

Px+1|x = Sx+1|xST
x+1|x

Ak
x+1|x = Sx+1|xδk + âx+1|x

(10)

(2) Obtain the cubature points:

bk
x+1 = h(Ak

x+1|x) + r̂x+1 (11)

(3) Calculate the predicted observation vector:

b̂x+1|x =
1

2n

2n

∑
k=1

bk
x+1|x (12)

(4) The innovation covariance Pcc,x+1|x and the cross-covariance Pac,x+1|x are calculated by:
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Pcc,x+1|x = 1
2n

2n
∑

k=1
bk

x+1|x(b
k
x+1|x)

T − b̂x+1|x(b̂x+1|x)
T
+ R̂x+1

Pac,x+1|x = 1
2n

2n
∑

k=1
Ak

x+1|x(b
k
x+1|x)

T − âx+1|x(b̂x+1|x)
T

(13)

(5) Calculate the gain matrix and the updated state:

Kx+1 = Pac,x+1|x(Pcc,x+1|x)
−1

âx+1 = âx+1|x + Kx+1(bx+1 − b̂x+1)
(14)

(6) Calculate Px+1|x+1, the covariance of the estimation vector:

P−1
x+1|x+1 = P−1

x+1|x + P−1
x+1|xPac,x+1|xR−1

x+1(Pac,x+1|x)
T(P−1

x+1|x)
T − γ−2 In

Px+1|x+1 = P−1
x+1|x+1\In

(15)

where In is an identity matrix. The threshold γ is of vital importance to ameliorate the
performance of the H∞ cubature filter. As the γ decreases, the sensitivity of the filtering
algorithm to model errors and outliers also decreases; however, its robustness would
generally enhance. Nevertheless, with γ decreasing, the covariance of the estimated state
vector would increase, while the estimation accuracy would decrease. In the meantime, the
filter may be invalid when the threshold γ becomes very small, which means the minimum
of γ must be able to ensure the stability of the filter.

Overall, the H∞CKF guarantees good robustness of the H∞ theory.

3. A Fading Factor Adaptive Filter and the Proposed AF-H∞CKF

H∞CKF provides better robustness compared to that of CKF in terms of extreme
disturbance. Although the H∞ theory ensures the robustness of H∞CKF in the condition
of the worst disturbance, the accuracy of H∞CKF still declines when it comes to unknown
external noises and an inaccurate dynamic model. The predicted covariance needs to be
adjusted according to measurements. Therefore, a fading factor adaptive filter is introduced
to be combined with H∞CKF in this section.

3.1. The Fading Factor Adaptive Filter

To ameliorate the filter algorithm’s accuracy and tracking capability when there is
an uncertain system model, Donghua Zhou and others put forward the concept of an
EKF-based fading factor adaptive filter. The innovation sequence should be irrelevant
when the filter works well, which can be interpreted as effective information being fully
utilized. Thus, the orthogonality of the innovation sequence can be regarded as an index to
measure the filtering performance. The main idea of the fading factor adaptive filter is to
modify the predicted error covariance Px+1|x by way of satisfying the following equations:

E[(ax − âx|x)(ax − âx|x)
T ] = min (16)

E[αx+jαx
T ] = 0, x = 0, 1, 2 . . . , j = 1, 2 . . . (17)

where αx+1 = cx+1 − ĉx+1|x. Equation (16) denotes the performance criteria of the adaptive
filter and Equation (17) denotes that the innovation sequence should be irrelevant. An
adaptive factor is introduced to ensure the position accuracy and strong tracking charac-
teristics of the filter. The predicted covariance is modified by this factor. By adjusting the
predicted covariance and gain matrix online, the innovation is coerced to be orthogonal to
ensure the tracking ability. The steps of the algorithm in [20] are as follows:

âx+1|x = f (âx|x) (18)
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Px+1|x = λx+1Fx+1|xPx|xFT
x+1|x + Qx (19)

ĉx+1|x = h(âx+1|x) (20)

Kx+1 = Px+1|x HT
x+1(Hx+1Px+1|x HT

x+1 + Rx+1)
−1

(21)

âx+1|x+1 = âx+1|x + Kx+1(cx+1 − ĉx+1|x) (22)

Px+1|x+1 = (I − Kx+1Hx+1)Px+1|x (23)

where Fx+1|x = ∂ f (âx)
∂ax

∣∣∣ax=âx|x , Hx+1 = ∂h(ax+1)
∂ax+1

∣∣∣ax+1=â
x+1|x

, and λx+1 denote the fading
factor, which is derived as follows:

λx+1 =

{
λ0, λ0 ≥ 1
1, λ0 < 1

(24)

λ0 =
tr(Mx+1)

tr(Nx+1)
(25)

Mx+1 = Vx+1 − Hx+1Qx HT
x+1 − βRx+1 (26)

Nx+1 = Hx+1Fx+1|xPx|xFT
x+1|x HT

x+1 (27)

Vx+1 =

{
α0α0

T , x = 0
ρVx+αx+1αx+1

T

1+ρ

, x ≥ 1 (28)

where ρ(0 < ρ ≤ 1) denotes the forgetting factor. β(β ≥ 1) is a weakening factor selected
previously by experience, which is added to avoid possible over-regulation. If λx ≥ 1, the
filter predicted covariance will also be inflated, leading to an increase in the weight of the
newly measured data in the filter estimation, achieving the purpose of restraining the filter
divergence and improving the filter accuracy.

3.2. The Proposed AF-H∞CKF

The defect of low filtering accuracy always exists in the H∞CKF algorithm introduced
above, due to the uncertainty of the model. Therefore, the adaptive filter mentioned above
would be applied in H∞CKF and improve the tracking performance of H∞CKF.

Then, the fading factor λx+1 can be used to update the predicted error covariance
Px+1|x, which is represented as follows:

Px+1|x = λx+1[
1

2n

2n

∑
k=1

ak
x+1|x

(
ak

x+1|x

)T
− âx+1|x(âx+1|x)

T ] + Q̂x (29)

Equation (24) denotes the calculation of factor λx+1. However, in CKF, the Mx+1 and
Nx+1 cannot be derived as Equation (25) because there is no Jacobian matrix. Thus, the
Mx+1 and Nx+1 that can be applied in CKF need to be derived.

Before the fading factor is added, the predicted covariance Px+1|x, the innovation
covariance matrix Pcc, x+1|x, and the cross-covariance matrix Pac,x+1|x are expressed as:

Px+1|x = E[(ax+1 − âx+1|x)(ax+1 − âx+1|x)
T ] = FPx|xFT + Qx (30)

Pcc,x|x+1 = E[(cx+1 − ĉx+1|x)(cx+1 − ĉx+1|x)
T ] = Hx+1|xPx+1|x HT

x+1|x + Rx+1 (31)

Pac,x+1|x = E[(ax+1 − âx+1|x)(cx+1 − ĉx+1|x)
T ] = Px+1|x HT

x+1|x (32)

According to Equation (32), we can obtain the following formula:

Hx+1|x = [Pac,x+1|x][Px+1|x]
−1 (33)
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Put Equations (30), (31), and (33) into Equation (25), and the Mx+1 and Nx+1 can be
derived as following:

Mx+1 = Vx+1 − [Pac,x+1|x]
T [Px+1|x]

−1Qx[Pac,x+1|x]
−1[Px+1|x]

T − βRx+1Nx+1 = Pcc,x+1|x −Vx+1 + Mx+1 (34)

According to the above derivation, the core AF-H∞CKF algorithm structure is shown
in Figure 1.
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The detailed steps of the AF-H∞CKF algorithm are as follows:

(1) Initialization;
(2) Obtain cubature points ak

x and propagate points using Equations (5)–(8);
(3) Predict the state vector âx+1|x and obtain the covariance Px+1|x using Equation (9);
(4) Calculate the predicted measurement vector b̂x+1|x with the updated cubature points

using Equations (10)–(12);
(5) Compute the covariance Pcc,x+1|x and Pac,x+1|x using Equation (13);
(6) Calculate the fading factor λx+1 using Equations (24) and (34);
(7) Update the predicted error covariance Px+1|x using Equation (29);
(8) Update the covariance Pcc,x+1|x and Pac,x+1|x with the updated Px+1|x using

Equation (13);
(9) Compute matrix Kx+1 and updated state âx+1 using Equation (14);
(10) Calculate the corresponding covariance Px+1|x+1 using Equation (15).

Aimed at the uncertainty of the system model, the AF-H∞CKF proposed in this thesis
is used to increase the accuracy and tracking ability of the system.

4. Simulations and Analysis

In order to verify the robustness and accuracy of the new filter, AF-H∞CKF is sim-
ulated and compared with CKF, H∞CKF and AH∞CKF, in which AH∞CKF is also an
adaptive robustness CKF algorithm. These algorithms can be well-verified by the CA
model below [24].

The position, velocity, acceleration, and other information output by the navigation
system are used to construct the error equation of the system. In this paper, six state
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parameters are selected to construct the state vector ax, which are the position ex, velocity
ve,x, and acceleration ae,x in the east, and the position nx, velocity vn,x, and acceleration an,x
in the north. See Formula (35).

ax = [ex, ve,x, ae,x, nx, vn,x, an,x] (35)

The mathematical dynamic model [25] is shown as:

ax+1 = φx+1|xax + qx (36)

In the above formula, qx represents the process noise vector, which satisfies
qx ∼ N(0, Qx), φx+1|x represents the transformation matrix, and φx+1|x is defined
as follows:

φx+1|x = diag[φe,φn]φe = φn =

 1 t t2/2
0 1 t
0 0 1

 (37)

where t is the sampling time.
The observation model is given by:

bx =


eINS,x
nINS,x

θx
ex

 =


ex
nx

arctan[ ve,x
vn,x

]

t
√

v2
e,x + v2

n,x

+ rx (38)

where rx denotes the observation noise vector at epoch x and satisfies vx ∼ N(0, Rx); eINS,x,
nINS,x, θx, and sx denote the eastern position, northern position, azimuth, and distance,
respectively, in the sampling time.

This simulation sets up two different situations that will occur in AUV navigation;
one is adding abnormal noise, and the other is a situation where the model is inaccurate.
In Case 1, anomalous noise was added in the 150th, 300th, and 450th second to verify the
robustness of the novel algorithm. In Case 2, the noise property from the 300th second
to the 400th second was unknown and different from other parts during the simulation
process to verify the accuracy.

In addition, the initial parameters of simulations are given as follows. The initial
state vector is a0 = [0, 10, 0, 0, 10, 0]T ; the sampling interval is t = 1s; the process noise
covariance is Qx = diag[0, 0, 0.032, 0, 0, 0.032]; and the measurement noise covariance is
Rx = diag[32, 32, 0.12, 0.12].

On the basis of the above terms, twenty Monte Carlo simulations were put into effect
to assess the performance of CKF, H∞CKF, AH∞CKF, and the proposed AF-H∞CKF in
two cases.

Moreover, the root mean square error (RMSE) is an utterly common method to evaluate
whether filtering is the most suitable algorithm for the system. Hence, this paper also uses
the RMSE to compare the performance of the four filters mentioned above, which can be
written as:

RMSEx =

√√√√ 1
N

N

∑
k=1

(âk
x − ax)

2 (39)

where N is the Monte Carlo run.

4.1. Case 1: Outliers

In Case 1, the noise characteristics at other times are known, except for adding abnor-
mal noise at the 150th, 300th, and 450th second. The outlier vectors (30, 0, 0, 30, 0, 0) and
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(3, 3, 0, 20) are respectively, added in the state vector and measurement vector at these time
points. Finally, four filters are simulated in this condition. The simulation results are shown
in Figures 2–5.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 15 
 

 

the 400th second was unknown and different from other parts during the simulation pro-
cess to verify the accuracy. 

In addition, the initial parameters of simulations are given as follows. The initial state 
vector is 0 [0,10,0,0,10,0]Ta = ; the sampling interval is 1t s= ; the process noise covariance 
is 2 2[0,0,0.03 ,0,0,0.03 ]xQ diag= ; and the measurement noise covariance is 

2 2 2 2[3 ,3 ,0.1 ,0.1 ]xR diag= . 
On the basis of the above terms, twenty Monte Carlo simulations were put into effect 

to assess the performance of CKF, H∞CKF, AH∞CKF, and the proposed AF-H∞CKF in 
two cases. 

Moreover, the root mean square error (RMSE) is an utterly common method to eval-
uate whether filtering is the most suitable algorithm for the system. Hence, this paper also 
uses the RMSE to compare the performance of the four filters mentioned above, which 
can be written as: 

 2

1

1 ( )
N k

xx x
k

RMSE a a
N =

= −   (24) 

where N is the Monte Carlo run. 

4.1. Case 1: Outliers 
In Case 1, the noise characteristics at other times are known, except for adding ab-

normal noise at the 150th, 300th, and 450th second. The outlier vectors (30,0,0,30,0,0)  and 
(3,3,0, 20)  are respectively, added in the state vector and measurement vector at these 
time points. Finally, four filters are simulated in this condition. The simulation results are 
shown in Figures 2–5. 

 
Figure 2. RMSE in the X-axis in Case 1. Figure 2. RMSE in the X-axis in Case 1.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 3. RMSE in the Y-axis in Case 1. 

 

Figure 4. Trajectory in Case 1. 

 
Figure 5. Partial enlargement of Figure 4. 

Figure 3. RMSE in the Y-axis in Case 1.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 3. RMSE in the Y-axis in Case 1. 

 

Figure 4. Trajectory in Case 1. 

 
Figure 5. Partial enlargement of Figure 4. 

Figure 4. Trajectory in Case 1.



J. Mar. Sci. Eng. 2022, 10, 326 9 of 15

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 3. RMSE in the Y-axis in Case 1. 

 

Figure 4. Trajectory in Case 1. 

 
Figure 5. Partial enlargement of Figure 4. Figure 5. Partial enlargement of Figure 4.

Figures 2 and 3 describe the RMSE position in both the X-axis and Y-axis obtained
by CKF, H∞CKF, AH∞CKF, and AF-H∞CKF, respectively. It is obvious that the RMSE
values of the four filters are all very small when the outliers are not added. However, the
RMSE of CKF and H∞CKF increase sharply at the time point of adding outliers, while
AH∞CKF and AF-H∞CKF show good robustness because the H∞ theory is adopted and
adaptiveness is considered. For example, it can be concluded from Figure 2 that the RMSE
of AF-H∞CKF decreased by 82.76% and 75.61%, respectively, compared with CKF and
H∞CKF, where the RMSE of AH∞CKF decreased by 70.69% and 58.54% compared with the
first two algorithms at the 150th second. Although both AH∞CKF and AF-H∞CKF show
good robustness, AF-H∞CKF performs better when no outliers exist. Figure 4 indicates the
trajectory obtained by the four filters, and Figure 5 shows the partial enlargement of the
rectangular region in Figure 4. It can be clearly indicated that the trajectory precision of the
proposed AF-H∞CKF is much higher than that of the other three filters.

In summary, the new AF-H∞CKF ensures better robustness than the others in the case
of outliers.

4.2. Case 2: Inaccurate Model

In order to evaluate the effectiveness of the novel AF-H∞CKF in terms of an inaccurate
model, the process noise suddenly becomes unknown during the time period (300 s , 400 s).
The actual process noise is unknown in this period, which is wx ∼ N(10, diag[202, 0, 0.032,
202, 0, 0.032]). The noise properties are returned to the initiate property at the beginning of
the 400th second. The simulation results are shown in Figures 6–9.

Figures 6 and 7 describe the RMSE position in both the X-axis and Y-axis obtained by
CKF, H∞CKF, and AF-H∞CKF, respectively. The RMSE of CKF, H∞CKF, and AH∞CKF
in Figure 7 is about 14 m, 13 m, and 6 m, respectively, while AF-H∞CKF is no more than
5 m in Figure 7 when process noise suddenly becomes unknown. It can be derived that
the positioning accuracy of CKF and H∞CKF is very poor during the time interval (300 s,
400 s) due to the unknown noise, while AF-H∞CKF can still provide high accuracy and
the error of AH∞CKF does not increase sharply; it is still larger than that of AF-H∞CKF.
Figure 8 indicates the trajectory obtained through the four filters. Figure 9 shows the
partial enlargement of the rectangular region in Figure 8. Figures 8 and 9 indicate that the
trajectory obtained by simulation of AF-H∞CKF is closest to the real trajectory among the
four different filters.

Table 1 describes the comparison between the four filters on mean error and running
time. It can be calculated that the X-axis error decreases by 26%, 17%, and 18% and the
Y-axis error decreases by 48%, 36%, and 38%, respectively, compared with the former three
algorithms, which further proves the superiority of this AF-H∞CKF. On the other hand, we
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must realize that a longer running time for the proposed AF-H∞CKF is needed, compared
to the other three algorithms.
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Table 1. Comparison of the four algorithms in Case 2.

CKF H∞CKF AH∞CKF AF-H∞CKF

Mean error in
the X-axis (m) 1.831 1.640 1.649 1.357

Mean error in
the Y-axis (m) 2.633 2.167 2.237 1.381

Running time (s) 0.049 0.067 0.078 0.082

In summary, the AF-H∞CKF introduced in this paper offers the best accuracy to the
navigation system among the four filters in the case of model uncertainty.

5. Experiments and Analysis

In addition to the above simulation results, we conducted an experiment on Taihu Lake
to obtain the actual navigation data and further verify the effectiveness of the algorithm.

In this experiment, we collected navigation data by carrying a navigation system
on a ship. The navigation system was composed of satellite navigation and autonomous
navigation including dead reckoning (DR) and inertial navigation. The hardware of this
contained a magnetic compass HMR3000, a Doppler log, a strapdown inertial navigation
system, and a GPS receiver JNS100. The GPS receiver was used as a reference station. The
location accuracy of the GPS receiver was 10 mm + 1.5 ppm (2DRMS); the precision of the
Doppler log was 0.5%; the precision of the HMR3000 log was 0.5◦RMS; and the gyro zero
drift stability was 0.05◦/h.

By matching the data collected by the above sensors with Google Maps, we could
obtain the actual navigation track of the ship, which is shown in Figure 10. The blue
part of Figure 10 shows Taihu Lake on the map, and the red line is the actual navigation
track. Then, the test data were applied to the CA model to verify the performance of the
AF-H∞CKF.

Figures 11 and 12 describe the filtering errors of position in both east and north
obtained by CKF, H∞CKF, AH∞CKF, and AF-H∞CKF. As shown in Figure 11, we can see
that the error of AF-H∞CKF is mostly less than 0.5 m, while CKF and H∞CKF are close to
4.6 m and 2.3 m, respectively. Due to the influence of unknown noise, the position accuracy
of CKF and H∞CKF is far lower than AF-H∞CKF and AH∞CKF in most of the whole
experiment, while AF-H∞CKF maintains higher accuracy than AH∞CKF. Figure 11 also
indicates that the errors of CKF and H∞CKF are divergent, which can be explained by the
INS measurement error accumulation. Nevertheless, the error of AF-H∞CKF shows no
divergence. In addition, it can be seen from Figure 12 that the error of the AF-H∞CKF
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algorithm is within 0.7 m, while that of CKF and H∞CKF reach 6 m and 3.6 m, respectively,
due to the appearance of outliers.
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In Table 2, the mean error in the X-axis of the AF-H∞CKF is 91%, 75%, and 69% lower
than that of CKF, H∞CKF, and AH∞CKF, respectively, and the mean error in the Y-axis of
the AF-H∞CKF is 80%, 69%, and 46% lower than that of CKF, H∞CKF, and AH∞CKF. On
the other hand, a longer running time for the proposed AF-H∞CKF is needed, compared
to other algorithms.

Table 2. Comparisons of the four algorithms.

CKF H∞CKF AH∞CKF AF-H∞CKF

Mean error in
the X-axis (m) 1.577 0.578 0.342 0.145

Mean error in
the Y-axis (m) 0.739 0.485 0.281 0.151

Running time (s) 0.029 0.039 0.044 0.047

According to the above analysis, we find that the experimental results are consistent
with the simulation results. In summary, the proposed AF-H∞CKF ensures good robustness
and high accuracy for its adjusting fading factor at the cost of increased running time.

6. Conclusions

In this paper, a new adaptive factor-based H∞ cubature Kalman filter (AF-H∞CKF) is
proposed to solve the problem of AUV navigation, including low estimation accuracy and
poor robustness. This paper introduces the improved cubature Kalman filter algorithm in
detail. The H∞ theory adopted in AF-H∞CKF can ensure good robustness in the worst
case. Moreover, the adaptive fading factor adopted makes the innovation orthogonal
and modifies the predicted covariance, which greatly improves the accuracy in case of
model uncertainty. The performance of AF-H∞CKF is compared with CKF, H∞CKF, and
AH∞CKF in a lake experiment and simulations. The experiment and simulations indicate
that H∞CKF provides better robustness than CKF; AH∞CKF provides better accuracy
than H∞CKF in the case of model uncertainty; and AF-H∞CKF guarantees both good
robustness and high precision, and performs better than the other three filters in the cases
of outliers and model uncertainty.
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