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Abstract: Floating offshore wind turbines (FOWTs) still face many challenges in improving platform
stability. A fully submersible FOWT platform with inclined side columns is designed to tackle
the current technical bottleneck of the FOWT platform, combining the structural characteristics of
the semi-submersible and Spar platform. An integrated numerical model of FOWT is established
considering the fully coupled effect, and the hydrodynamic performance of the novel FOWT, the
semi-submersible FOWT, and the Spar FOWT are compared and analyzed under different wave
incidence angles and wave frequencies, as well as the blade and tower dynamic response of the
three FOWTs under the coupling effect of wind, wave, and current. The results show that the novel
floating platform can significantly optimize the hydrodynamic performance and has a better recovery
ability after being subjected to external loads. The novel floating platform can significantly reduce
the heave peak and its corresponding wave frequency compared to the semi-submersible platform,
reducing the possibility of heave resonance. FOWT operation should ensure positive wave inflow as
far as possible to avoid excessive wave forces in the lateral direction. Both blade and tower dynamic
response are affected by rotor rotation and tower vibration to varying degrees, while tower dynamic
response is mainly affected by platform motion. This study suggests that the application of the novel
FOWT concept is feasible and can be an alternative in offshore wind exploitation in deep water.

Keywords: offshore wind turbine; floating platform; structural coupling; hydrodynamic performance;
dynamic response

1. Introduction

Harvested by advanced technical systems honed over decades of research and devel-
opment, wind energy has become a mainstream energy resource [1]. 2020 saw global new
wind power installations surpass 90 GW, a 53% growth compared to 2019, bringing total
installed capacity to 743 GW, a growth of 14% compared to last year. China led the world
in new annual offshore wind installations for the third year in a row with over 3 GW of
new offshore wind capacity in 2020 [2]. Compared to shallow sea wind resources, deep-sea
wind energy has the advantages of abundant resources and less noise pollution. Therefore,
offshore wind power is gradually developing to the deep sea [3]. When the water depth
is greater than 60 m, the manufacturing and installation cost of the fixed-bottom wind
turbine increases significantly, and its safety is difficult to be guaranteed simultaneously.
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Furthermore, FOWT as the main method of deep-sea wind energy development has become
an important direction of the current offshore wind energy development. The FOWT will be
subjected to harsher marine environmental loads and a more dramatic motion response. The
current common floating platforms can be divided into three types depending on the way
they provide stability [4]: Spar platform, where the ballast lowers the center of gravity to
provide stability, semi-submerged platform, where several floating bodies provide recovery
torque, and Tension Leg Platform, where the mooring cable tension provides stability.

In recent years, many researchers have combined the characteristics of these three
types of floating platforms and proposed many different forms of new floating platforms.
Based on the original semi-submersible platform, Liu et al. [5] explored the effect of
mooring cable arrangement and column inclination on the motion response by changing
the mooring cable connection and platform structure. Lai et al. [6] designed a new semi-
submersible platform with a deep draft and optimized damping structure and studied its
hydrodynamic performance by numerical methods. Le et al. [7] proposed a new 10 MW
submersible FOWT concept and established a fully coupled numerical model of the towing
system to study the towing performance of a three-column platform versus a four-column
one under different wave conditions. Cao et al. [8] designed a 10 MW FOWT concept
named SPIC and established the aero-hydro-servo-elastic-moor method to establish a
fully coupled numerical model and model tests to investigate its dynamic response in
different sea conditions. Konispoliatis et al. [9] combined the characteristics of the semi-
submersible platform and TLP platform with oscillating water column device to propose a
new concept of FOWT platform named REFOS and based on the numerical model of aero-
elastic-hydrodynamic coupling and proportional model test for hydrodynamic analysis to
verify its reliability. Jiang et al. [10] designed a novel Stepped Short Spar platform named
SJTU-S4 for the problem that the traditional Spar type platform is only applicable to deep
water and conducted model tests at a scale of 1:50.

In addition, research on fully coupled methods for FOWT is also a focus of attention.
Thomsen et al. [11] investigated and compared three different approaches: Morison ap-
proach, linear boundary element method (BEM), and a hybrid approach and evaluated their
applicability on the TetraSpar FOWT concept. However, the impact of ocean currents and
wind loads on wind turbines is not considered. Alkarem et al. [12] carried out a numerical
investigation of DeepCwind semi-submersible FOWTs and investigated two hydrodynamic
calibrating methodologies: free decay test-based calibration and wave loading test-based
analyzed the irregularity of wave spectra shape and directions influence on the platform
motion. However, no wind loads were considered in this analysis. Villoslada et al. [13] pre-
sented a general methodology for the identification of a reduced dynamic model of FOWT
by Matlab, the coupling between the floating platform and the wind turbine has been
modeled using a linearized model. Although this model improves the calculation efficiency
without loss of accuracy by linearization and reduction of degrees of freedom, it has not
yet considered the influence of turbulent wind and waves. Karimi et al. [14] present a fully
coupled frequency domain model for FOWT using the validated numerical tools FAST and
WAMIT to obtain the aerodynamic and hydrodynamic performance, respectively. However,
compared with the time-domain model, the frequency domain model does improve the
calculation efficiency but ignores the influence of turbulent wind and irregular waves.
Cermelli et al. [15] integrated FAST into a fluid dynamics analysis tool called TimeFloat
for fully coupled modeling of the WindFloat concept. Shim [16] developed an interface to
combine FAST with the fluid mechanic’s analysis tool CHARM3D by Fortran, to study the
coupled dynamic response of a 1.5 MW TLP FOWT. The platform motions were solved in
CHARM3D and then imported into FAST. Based on this method, Bae et al. [17–19] analyzed
the dynamics of Hywind Spar wind turbine, multi-turbine Semi-submersible wind turbine,
and TLP wind turbine and studied their dynamic response under maximum operational
and survival conditions. However, CHARM3D-FAST does not consider the speed and
acceleration of the platform when solving the motion equation of the upper structure.
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The current design solutions for floating platforms of FOWTs provide ideas and a
basis for future offshore wind power development. However, the current studies mainly
focus on a specific index for individualized solution design and have not yet established
a perfect design system for floating platforms of FOWTs. Meanwhile, the analysis of the
dynamic response of FOWTs often ignores the structural fully coupled effect. Therefore, it
is crucial to establish a process-oriented design system for FOWT platforms considering
the full coupling effect of the structure based on combining the advantages of existing
FOWT platform solutions. Meanwhile, the proposal of developing a new floating platform
of FOWT on this basis has important theoretical significance and engineering application
value for future deep-sea wind energy.

Because of this, a new floating platform with a large draft, small waterline surface
area, and inclined side columns is designed in this paper. The initial parameters of the
platform are optimized iteratively according to the stability and design requirements. The
numerical method considering the fully coupled effect is used as the basic method for
the current study, and the validity of the method is verified. On this basis, the hydrody-
namic performance of the semi-submersible platform, the Spar platform, and the novel
floating platform are analyzed. The correlation between structural characteristics and
hydrodynamic performance was investigated. The potential relationship between the wind
turbine dynamic response and the floating platform motion response is revealed. Finally,
the suggestions for the FOWT platform design are proposed.

2. Design of Novel Floating Offshore Wind Turbine Platform

All three mainstream floating platforms have their advantages and disadvantages.
Tension leg platforms can resist heave and pitch caused by wind and wave currents, but
they are more expensive to manufacture and install and more difficult to construct. In
particular, the connection between the tendon and the anchor point on the seabed is not
advantageous in the selection of deep-sea floating platform solutions. Spar platform has
the characteristics of deep draft, low center of gravity, and less influence by waves, but it
is prone to vortex-induced vibration and has relatively low structural safety performance.
Although the semi-submersible platform is easy to install and easy to tow, it has the
disadvantages of a large waterline area, susceptibility to wave load, shallow draft, etc.

In this paper, a novel floating platform for FOWT is designed based on the design
principle of initial stability of the floating body to resist external forces to avoid capsizing. The
NREL 5 MW model was chosen for the upper wind turbine model, as it is more commonly
studied to provide easy follow-up validation, and its parameters are shown in Table 1.

Table 1. NREL 5 MW wind turbine parameters.

Parameter Value

Rated power (MW) 5

Rotor Upwind

Number of blades 3

Diameter of rotor (m) 126

Diameter of hub (m) 3

Cut-in wind speed (m/s) 3

Rated wind speed (m/s) 11.4

Cut-out wind speed (m/s) 25

Cut-in speed (rpm) 6.9

Rated speed (rpm) 12.1
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2.1. Initial Stability Design Principle

The floating platform is in equilibrium by the action of gravity and buoyancy. When the
platform is tilted by the environmental load, the position of its floating center changes, thus
forming a restoring moment that destroys the original equilibrium state, as shown in Figure 1.

Figure 1. The diagram effect of restoring torque [20].

When the platform is in the equilibrium position the waterline is WL, the waterline is
W1L1 after being tilted by external forces at an angle of θ. After the floating platform tilted
θ, the center of buoyancy moved from B to B1; extension line intersects the center line at M,
called metacenter. When θ is very small, BB1 can be viewed as a segment of a circular arc.
M is center of circle; BM = B1M is the radius of the initial stability center.

Accordingly, it can be inferred that there are two ways to improve the stability of
floating platforms: lowering the center of gravity and increasing the moment of inertia. The
current mainstream floating platforms are also designed based on these two approaches.
For example, the Spar platform lowers the center of gravity by increasing the draft depth,
and the semi-submersible platform increases the moment of inertia by multi-column design.

2.2. The Novel Floating Platform

The main direction for optimizing the floating platform is to lower the center of
gravity and increase the moment of inertia, as determined by the analysis in Section 2.1.
However, lowering the center of gravity will inevitably increase the applicable water depth
and manufacturing costs. Increasing the spacing or diameter of the side columns can
increase the moment of inertia, but it will lead to enlarged stress on the support structure,
and the added displacement of the platform will lead to the tendency of heave resonance.
Therefore, this paper proposes that the novel platform uses inclined side columns to enlarge
the moment of inertia without significantly increasing the stress. Based on this design
principle, the novel platform size is optimized, and the procedure is shown in Figure 2.

Figure 2. The flow chart of design optimization of offshore wind turbine floating platform proposed
in this paper.
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The novel floating platform is designed by combining the advantages of multiple
columns (semi-submersible platform) and a large center of gravity (Spar platform). Further-
more, the platform structure is improved based on the inclined side columns. As shown in
Figure 3, some detail of the novel floating platform has been presented, and the parameters
are listed in Table 2. The upper part is inclined outward. The lower part is simplified as a
heave plate to reduce the overall weight. In addition, the novel platform is set with a draft
depth greater than the height of the column to reduce the impact of waves. The lower part of
the side column is connected by the pontoon. The center column is connected to the horizontal
floater by the cross brace and diagonal brace, which reduces the stress and fatigue load at
the joint and increases the damping. In terms of design principle, the novel floating platform
designed in this paper should have the advantages of semi-submersible and Spar platforms,
respectively. The subsequent analysis will compare the various hydrodynamic performances
of the three platforms based on the consideration of the upper wind turbine structure.

Figure 3. Schematic diagram of the novel floating platform model proposed in this paper.

Table 2. Parameters of the novel floating platform proposed in this paper.

Parameter Draft (m)
Center of

Gravity (m)
Platform
Mass (kg)

Platform
Displacement (m3)

Moment of Inertia (kg·m2)

Roll Pitch Yaw

Value 25 24.518 12,375,000 10,763 7.763 × 109 7.763 × 109 1.427 × 1010

3. Methodology of the Coupling Framework

Unlike other offshore structures, the FOWT platform is equipped with tall towers
and huge wind turbines, which are subject to strong aerodynamic thrusts and overturning
moments in service. The coupling between aerodynamic loads, hydrodynamic loads,
and mooring cable tensions can make the motion of the FOWT exceptionally complex.
Therefore, the dynamic analysis method of FOWT needs to consider the interaction between
upper and lower structures.

3.1. Environmental Load
3.1.1. Aerodynamic Load

Aerodynamic load calculations for FOWT need to consider the effect of turbulent
wind. The turbulent wind is divided into the average wind and fluctuating wind. Average
wind speed is expressed as

v(h) =
v∗
K

ln
(

h
Z0

)
(1)

where v(h) is the average wind speed at a height of h, K is the Karman constant, v∗ is the
friction velocity, Z0 is the roughness parameter.

It has been suggested that the Kaimal spectrum can better describe the energy distri-
bution of the pulsating wind speed field in the frequency domain [21]. Kaimal spectrum is
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also recommended by the International Electrotechnical Commission (IEC) for turbulent
wind design conditions of wind turbines [22]. Kaimal spectrum is expressed as

S( f ) =
4σ2L/V

(1 + 6 f L/V)5/3 (2)

where f is the frequency, S is the power spectral density, σ is the standard deviation of
velocity, L is the turbulence integration scale, V is the hub wind speed.

Aerodynamic loads are calculated by Blade Element Method (BEM). BEM assumes
that each blade element is independent and does not influence the other. The aerodynamic
load acting on each blade element is determined only by the lift and drag coefficient of the
airfoil. Thrust and torque can be expressed as

dT =
1
2

ρW2Nc(Cl cos φ + Cd sin φ)dr (3)

dM =
1
2

ρW2Nc(Cl sin φ + Cd cos φ)rdr (4)

where W is the relative velocity of the blade, N is the number of blades, c is the chord
of this segment of the blade element airfoil, Cl and Cd are the lift and drag coefficients,
respectively, φ is the angle of inflow, r is the radius of the blade. On this basis, the thrust
and torque of each blade element are obtained and then integrated along the blade to obtain
the aerodynamic load of the whole blade.

3.1.2. Hydrodynamic Load

Characteristic diameter of the floating body is less than 0.2 times the incident wave-
length, for example, tube and brace have no significant effect on wave motion, mainly
considering its viscosity effect and added mass effect. Characteristic diameter greater than
0.2 times the incident wavelength, such as floater and column, has a significant impact on
the wave motion, mainly considering the wave diffraction effect. Floating platforms are
usually systems that combine the above two structures. This paper calculates the wave load
of floating platforms based on Morison formulation and Potential Flow theory, which are
widely used in wave theory [23]. Morison formulation of the hydrodynamic force acting
on the cross-section of a slender structural member is expressed as

dF =

[
1
2

ρDCD|u f − us|(u f − us) + ρACm
.
u f − ρA(Cm − 1)

.
us

]
dL (5)

where CD is drag coefficient, D is the characteristic drag diameter, u f is the lateral velocity
of fluid particles, us is the lateral velocity of the structure, ρ is the seawater density, take
the value of 1.025 g/cm3, Cm is the inertia coefficient, A is the cross-sectional area, L is the
length of the structure.

The total velocity potential of the fluid domain around the floating body structure is
expressed as

φ(x, y, z, t) = φI(x, y, z, t) + φD(x, y, z, t) + φR(x, y, z, t) (6)

where φI(x, y, z, t) is incident wave velocity potential, φD(x, y, z, t) is diffraction wave
velocity potential, φR(x, y, z, t) is radiation wave velocity potential. Each velocity potential
needs to satisfy Laplace equation and boundary conditions.

∇2φ = 0 (7)

∂u
∂t

+ (u·∇)u = −∇
(

gz +
p
ρ

)
(8)

where u is the fluid velocity, ρ is the fluid density, p is the pressure, z is the height, g is the
gravitational acceleration.
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For the novel floating platform proposed in this paper, the characteristic diameters of the
diagonal braces and cross braces are small, and the wave loads in this part need to be calculated
by Morison formulation. The characteristic diameters of side columns, center columns, floaters,
heave plates, and pontoons are larger, so the wave load in this part is calculated by potential
flow theory. The names of each part of the platform are shown in Figure 3a.

3.1.3. Mooring Load

To improve the model accuracy and computational efficiency, the lumped-mass moor-
ing line model is used to calculate the mooring load in this paper [24]. The mooring cable
is discretized into uniformly sized line segments connecting nodes to establish a dynamic
mooring model. The position of each node is determined by a vector. Each section of
the mooring cable has the same density and dimensional characteristics. The equation of
motion of the mooring cable is expressed as

mi
..
ri = Fbi

+ Wi + Ti + Ci + FMi + FSi (9)

where
..
ri is the ith node acceleration matrix, Fbi

is the static buoyancy of each node, Wi is
the gravity of each node, Ti is the axial tension of each node, Ci is the damping force of each
node, FMi is the added mass force of the mooring cable, FSi is the seabed support force.

3.1.4. Environmental Conditions

The North Pacific sea state statistics are used to carry out the environmental conditions
of this study [25]. The water depth was selected as 200 m and the wind speed was set to the
rated wind speed of NREL 5 MW wind turbine. The environmental working conditions
parameters are shown in Table 3.

Table 3. Parameters of environmental conditions in this paper.

Parameter Wind Speed (m/s) Significant Wave
Height (m) Wave Period (s) Current

Velocity (m/s)

Value 11.4 5 12.4 0.5

3.2. Development of the Coupling Framework

The novel floating wind turbine model is shown in Figure 4. Among them, the blade
and tower belong to the ultra-long flexible parts; their deformation cannot be ignored,
so we consider the flexible body. The deformation of the hub, nacelle, and the floating
platform is negligible and they can be considered as rigid parts. The mooring cable for the
centralized mass node simplification considers its dynamic characteristics.

The numerical analysis method in this paper is implemented based on FAST and
AQWA [25–28]. It contains:

(1) Upper wind turbine: The aerodynamic model based on the BEM, the servo control
model based on individual variable pitch, and the multi-body dynamics model based
on the Kane equation were developed by FAST.

(2) Floating platform and mooring system: The hydrodynamic model based on Morison
formulation and Potential Flow theory and the dynamic mooring model based on the
lumped-mass mooring line model were established by AQWA.

(3) Structural coupling: FAST is called through the dynamic link library (DLL) in AQWA
for data exchange.
The calculation flow chart is shown in Figure 5.
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Figure 4. Novel floating wind turbine.

Figure 5. Calculation flow chart considering the fully coupled effect of the structure.

3.3. Validation

To verify the numerical method, the reference [25] is reappeared (Table 4). The results
of this paper’s method with those of OpenFAST are compared. The same controller is used
for pitch and torque control. The model settings for the two methods are shown in Table 5.

Table 4. Verify the study case settings.

Parameter
Significant

Wave Height
(m)

Wave Period (s) Wind Speed
(m/s)

Wind Profile
Index

Turbulent
Intensity

(%)

Simulation
Time (s) Time Step (s)

Value 1.94 5.01 11.4 0.12 14 4000 0.005
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Table 5. Comparison of two calculation models.

Calculation Model Aerodynamics Module Hydrodynamic Module Mooring Module

OpenFAST OC3-Hywind Spar FAST WAMIT MoorDyn
This paper OC3-Hywind Spar FAST AQWA AQWA

Figures 6 and 7 and Table 6 compare the motion response of the wind turbine and the
platform calculated by the two methods. The results show that the rotor speed operation
trends calculated by the two methods are similar, and the differences between the results
of blade tip out-of-plane deflection and tower top fore-aft deflection calculated by the
different methods are small. The pitch results calculated by the two methods match well,
the error of heave motion response is small, and the predicted surge motion response by
the two methods has the same trend of change. Thus, it can be seen that the calculation
method in this paper is reliable.

Figure 6. Wind turbine motion response verification.

Figure 7. Platform motion response verification.

Table 6. The statistics of two calculation models.

Rotor Speed (rpm) Blade-Tip Deflection
(m)

Tower-Top
Deflection (m) Surge (m) Heave (m) Pitch (◦)

Max Mean STD Max Mean STD Max Mean STD Max Mean STD Max Mean STD Max Mean STD

OpenFAST 14.13 11.88 0.77 7.75 4.60 1.01 0.72 0.39 0.10 27.99 20.49 3.24 1.52 0.95 0.20 7.06 4.24 1.06
This paper 13.75 12.01 0.56 7.28 4.73 0.86 0.59 0.40 0.07 26.17 18.99 3.07 1.36 0.79 0.20 7.05 4.23 1.05
Error (%) 2.7 −1.1 27 6.1 −2.8 14.8 18.1 −2.5 30 6.5 7.3 5.2 10.5 16.8 0 0.1 0.2 0.9
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4. Motion Response Analysis

Before carrying out the analysis of the results in this paper, it is necessary to define
the global coordinate system and the local coordinate system of each part. The global
coordinate system and local coordinate system are shown in Figures 8 and 9, respectively.

Figure 8. Global coordinate system and wind, wave, current direction definition.

Figure 9. Blade and tower local coordinate system [29].

4.1. Platform Hydrodynamic Performance

In order to study the hydrodynamic performance of the novel floating platform, OC4
DeepCwind semi-submersible platform [30] and OC3 Hywind Spar platform [31] were
selected as the comparison. The structures are shown in Figure 10, the parameters are
shown in Table 7, and the mooring system properties of three platforms are shown in
Table 8, respectively. It is worth noting that the novel floating platform and the semi-
submersible platform have similar structural dimensions, so the same mooring system
properties are selected. The optimization of the mooring system parameters of the novel
floating platform will be the focus of our future research. Consider the influence of wave
frequency and platform form on hydrodynamic performance. The wave frequency range
of 0.02 to 0.4 Hz covers the possible range of wave frequencies in the actual ocean (actual
wave frequency range of 0.04 to 0.3 Hz [32]).
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Figure 10. Schematic of the semi-submerged platform and Spar platform.

Table 7. Parameters of the semi-submersible platform and Spar platform.

Parameter Draft (m) Mass (kg) Displacement (m3)
Center of

Gravity (m)
Moment of Inertia (kg·m2)

Roll Pitch Yaw

DeepCwind 20 13,444,000 13,986.8 14.4 8.011 × 109 8.011 × 109 1.391 × 1010

Hywind 120 7,466,330 8029 89.92 7.26 × 108 7.26 × 108 1.45 × 109

Table 8. Mooring system properties of three platforms.

Parameter DeepCwind Hywind Novel

Number of mooring lines 3 3 3
Angle between adjacent lines (◦) 120 120 120

Depth to fairleads below SWL (m) 14 70 14
Radius to anchors (m) 837.6 853.87 837.6
Radius to fairleads (m) 40.868 5.2 40.868

Unstretched mooring line length (m) 835.5 902.2 835.5
Mooring line diameter (m) 0.0766 0.09 0.0766

Equivalent mooring line mass density (kg/m) 113.35 77.71 113.35
Equivalent mooring line extensional stiffness (kN) 7.536 × 105 3.842 × 105 7.536 × 105

4.1.1. Hydrodynamic Load
First-Order Force/Moment

A comparison of the first-order wave forces in the translational direction for the three
floating platforms is presented in Figures 11–13. Considering the symmetry of the platform,
only the results of 0◦, 45◦, and 90◦ wave incident angles are presented. The surge first-order
wave force is significantly affected by the wave frequency and decreases with the increase of
the wave incident angle. The sway first-order wave force is influenced by the wave frequency
and increases with the increase of wave incident angle. The heave first-order wave force is
less influenced by wave frequency and less influenced by the wave incident angle.
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Figure 11. Comparison of the first-order wave force in surge direction of three floating platforms.

Figure 12. Comparison of the first-order wave force in sway direction of three floating platforms.

Figure 13. Comparison of the first-order wave force in heave direction of three floating platforms.

The comparison of the first-order wave moments in the rotation direction of the three
floating platforms is presented in Figures 14–16. The roll first-order wave moment is
significantly affected by wave frequency; the maximum roll first-order wave moment for
both the semi-submersible platform and the novel platform occurs at a 45◦ incident angle.
The maximum roll first-order wave moment for the Spar platform occurs at a 90◦ incident
angle. The maximum pitch first-order wave moment of the semi-submersible platform
and the novel platform appear at 0◦ and 90◦ incident angles and the pitch first-order wave
moment of the Spar platform decreases with the increase of the wave incident angle. The
maximum yaw first-order wave moment of the semi-submersible platform and the novel
platform appear at 90◦ incident angle, and the first-order wave moment of the Spar platform
is not affected by the wave direction.
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Figure 14. Comparison of the first-order wave moment in the roll direction of three floating platforms.

Figure 15. Comparison of the first-order wave moment in the pitch direction of three floating platforms.

Figure 16. Comparison of the first-order wave moment in the yaw direction of three floating platforms.

The results of comparing the first-order wave forces (moments) of the three floating
platforms at different wave incident angles can be seen: when the wave frequency is in
the range of 0.05~0.25 Hz, the first-order wave force and moment of the floating platform
are larger. The first-order wave force (moment) of the multi-column platform (including
semi-submersible and novel platform) is larger than that of the single-column platform,
and there are multiple peaks with the change of wave frequency, which is due to the larger
projection area of the multi-column platform in all directions, resulting in its more obvious
influence by wave force. In terms of first-order wave force and moment, the Spar platform
is significantly better than the other two platforms, but the standard Spar platform adopted
in this paper has a draft of 120 m, which greatly limits the use of the water depth range.
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Surface Pressure

Figure 17 shows the pressure distribution on the surface of the three floating platforms.
The load distribution of the three platforms is similar; all of them have relatively large
loads near the water surface, which indicates that the wave load has a great influence on
the floating platform. Meanwhile, the maximum surface pressure of the semi-submersible
platform is 42.87 kN/m2 and the maximum surface pressure of the Spar platform is
41.624 kN/m2, while the maximum surface pressure of the novel platform is 24.135 kN/m2,
which is reduced by 43.7%. It shows that the novel platform reduces the cross-sectional
area of the columns and significantly reduces the influence of waves on the platform.
Moreover, the maximum pressure distribution area of the novel platform is smaller and
only distributed at a single column, while the three columns of the semi-submersible
platform and the center column have the maximum pressure distribution. The distance
between the columns of the semi-submersible platform is close, and the hydrodynamic
influence between the columns is strong.

Figure 17. Surface pressure distribution of three floating platforms.

4.1.2. Structural Hydrodynamic Coefficient
Added Mass

A comparison of the added mass of the three offshore wind turbine floating platforms
is given in Figure 18. The surge/sway added mass of the semi-submersible platform
becomes sharply smaller when the wave frequency increases. The surge/sway added
mass of the Spar platform is a small change with an increasing wave frequency of about
8 × 107 kg. The surge/sway added mass of the novel platform increases and then decreases
with increasing wave frequency. The heave added mass of the semi-submersible platform
varies around 1.4 × 107 kg. The heave added mass of the Spar platform varies around
2.3 × 105 kg. The heave added mass of the novel platform varies around 1 × 107 kg. The
roll/pitch added mass of the semi-submersible platform varies around 1.1 × 108 kg. The
roll/pitch added mass of the Spar platform decreases slightly at the wave frequency and
varies around 2.75 × 108 kg. The maximum roll/pitch added mass of the novel platform is
about 2.2 × 108 kg. The yaw added mass of the semi-submersible platform and the novel
platform increases and then decreases with wave frequency, while the yaw added mass of
the Spar platform is much smaller than the other two platforms.

Compared with the single-column platform, the added mass in each direction of the
multi-column platform (semi-submersible and novel platforms) is more influenced by the
wave frequency. The typical influence frequency range is 0.1–0.2 Hz. At this frequency, the
multi-column platform will show a more obvious added mass attenuation. However, the
novel platform proposed in this paper effectively optimizes the added mass attenuation
trend and still has a large added mass even at higher frequencies.
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Figure 18. Comparison of the added mass of three floating platforms.

Radiation Damping

A comparison of the radiation damping of the three floating platforms is given in
Figure 19. The surge/sway radiation damping of the three types of floating platforms is
influenced by wave frequency. With the increase of wave frequency, it increases first and then
decreases, and the semi-submersible platform is much larger than the other two platforms.
The heave radiation damping of the semi-submersible platform and the novel platform is
larger in wave frequency, while the heave radiation damping of the Spar platform is small.
The roll/pitch radiation damping of the three floating platforms is larger in wave frequency,
and the Spar platform and the novel platform are much larger than the semi-submersible
platform. The yaw radiation damping of three floating platforms is also affected by wave
frequency, especially for semi-submersible platforms and novel platforms.

The radiation damping of the floating platform is influenced by wave frequency. When
the wave frequency is in the range of 0.1~0.3 Hz, the radiation damping is larger. At low
and high frequencies, the radiation damping of the floating platform is smaller, and the
ability to naturally restore balance is weaker. Due to the complex structure of the multi-
column platform, the projected area is larger than that of the single-column platform, which
makes the radiation damping effect more obvious in comparison. In addition to the wave
frequency, the radiation damping is mainly affected by the projected area.

Figure 19. Cont.
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Figure 19. Comparison of the radiation damping of three floating platforms.

Response Amplitude Operator

Figures 20–25 show the response amplitude operators of the three floating platforms
for different wave incident angles in the translational direction and the rotational direction,
respectively. It can be learned that the anisotropic response amplitude operator of the
floating platform is strongly influenced by the wave frequency. The motion response of
the floating platform in translation direction is influenced by low-frequency waves, and
the motion response in rotation direction is more obviously influenced by common wave
frequencies. Due to the symmetry of the structure, the surge and sway response amplitude
operators and roll and pitch response amplitude operators of the floating platform show
opposite trends. The multi-column structure is more complex than the single-column
platform, which makes it easy to produce the yaw.

Figure 20. Comparison of the response amplitude operator in surge direction of three floating platforms.

Figure 21. Comparison of the response amplitude operator in sway direction of three floating platforms.
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Figure 22. Comparison of the response amplitude operator in heave direction of three floating platforms.

Figure 23. Comparison of the response amplitude operator in roll direction of three floating platforms.

Figure 24. Comparison of the response amplitude operator in pitch direction of three floating platforms.

Figure 25. Comparison of the response amplitude operator in yaw direction of three floating platforms.
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4.2. Wind Turbine Dynamic Response
4.2.1. Analysis of Blade
Blade Tip Deflection

Table 9 and Figure 26 show the time domain statistics and power spectral density of
the three FOWT blade tip deflections, respectively. The blade tip out-of-plane deflection
is more volatile compared to the blade tip in-plane deflection. The blade is the main part
of the aerodynamic thrust, so the blade tip deflection is mainly perpendicular to the rotor
plane. The blade tip deflection is affected by the combined effect of rotor rotation and tower
vibration. Blade deflection is largely unaffected by the floating platform.

Table 9. Blade tip deflection statistics.

Out-of-Plane Tip Deflection In-Plane Tip Deflection

Max Mean STD Max Mean STD

Semi 7.112 7.818 0.817 −1.496 −0.602 0.377
Spar 7.66 4.692 0.96 −1.598 −0.605 0.378

Novel 7.473 4.889 0.787 −1.478 −0.579 0.375

Figure 26. Power spectral density of blade tip deflection of three FOWTs.

Blade Root Load

Table 10 and Figures 27 and 28 show the time domain statistics and power spectral
density of the three FOWT blade root loads, respectively. The blade root shear force is
similar to the blade tip deflection, which is mainly in the direction perpendicular to the
rotor. The pulsating characteristic of the aerodynamic load leads to much greater shear
irregularity in the X direction than in the other two directions. Blade root shear force is
influenced by the combined effect of rotor rotation and tower vibration. The aerodynamic
load mainly affects the Y-direction root moment, so the Y-direction root moment is much
larger than the other two directions, both in terms of value and irregularity. FOWT blade
loads are also largely unaffected by changes on floating platforms.

Table 10. Blade root load statistics.

Blade Root in X-Direction Blade Root in Y-Direction Blade Root in Z-Direction

Max Mean STD Max Mean STD Max Mean STD

Semi
Shear force 389.5 261.3 35.6 −248.2 −38.8 125.5 934.9 589 130.5

Moment 5911 1234 2593 13620 9030 1346 115.9 0.9 43.03

Spar Shear force 396.6 258.3 45 −251.6 −38.2 124.6 994 589.9 138.4
Moment 5916 1217 2572 13,950 8846 1650 117.4 −0.32 44.39

Novel
Shear force 404.6 265.8 36.1 −243 −37.5 124.9 919 579.8 129.3

Moment 5815 1198 2584 13,860 9158 1335 123.1 1.86 43.66
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Figure 27. Power spectral density of blade root shear force of three FOWTs.

Figure 28. Power spectral density of blade root moment of three FOWTs.

Blade Fatigue Load

In this section, Miner’s linear cumulative damage rule [33] is used for fatigue analysis.
The blade is divided into 17 sections according to the airfoil aerodynamic characteristics,
and nine of them are intercepted. Fatigue analysis is performed on the shear force and
moment at the center of each blade element. The effects of blade length on Damage
Equivalent Load (DEL) and Damage Rate (DR) were investigated. The blade section
aerodynamic properties of each node are shown in Table 11.

Table 11. Blade section properties.

Node Number Length from Section to Root (m) Twist (◦) Chord (m) Airfoil

1 1.43335 13.308 3.542 Cylinder1
3 6.96665 13.308 4.167 Cylinder2
5 13.8 11.48 4.652 DU35_A17
7 22 9.011 4.249 DU30_A17
9 30.2 6.544 3.748 DU25_A17

11 38.4 4.188 3.256 DU21_A17
13 46.6 2.319 2.764 NACA64_A17
15 54.45835 0.863 2.313 NACA64_A17
17 60.26665 0.106 1.419 NACA64_A17

Figure 29 shows the DEL and DR for shear force and moment for different length
blade sections of three FOWTs. As the blade length increases, the DEL and DR of the blade
decrease, indicating that the blade root is most susceptible to fatigue damage. DEL is only
affected by the load amplitude and cycle period. Fz, Mx, and My have larger load variations
and longer load cycle periods, so the blade design needs to protect these three directions.
DR is proportional to the number of load cycles. Fz contains the effect of blade gravity
and is subject to high-frequency alternating loads. My is mainly affected by aerodynamic
loads and is subject to much more frequent alternating load cycles than Mx and Mz. The
differences between DEL and DR for different FOWT blades are not distinct.
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Figure 29. Blade fatigue load of three FOWTs.

4.2.2. Analysis of Tower
Tower Top Deflection

Table 12 and Figure 30 show the time domain statistics and power spectral density of
the three FOWT tower top deflections, respectively. The tower top deflection is mainly in
the windward direction. Tower top deflection of Spar FOWT is more volatile than the other
two FOWTs. The tower top fore-aft deflection is influenced by platform motion and tower
vibration. The tower top side-side deflection is influenced by its vibration mode more than
platform motion.

Table 12. Tower top deflection statistics.

Tower Top Fore-Aft Deflection Tower Top Side-Side Deflection

Max Mean STD Max Mean STD

Semi 0.548 0.374 0.056 −0.101 −0.047 0.017
Spar 0.622 0.402 0.079 −0.149 −0.044 0.026

Novel 0.621 0.418 0.06 −0.12 −0.046 0.016
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Figure 30. Power spectral density of tower top deflection of three FOWTs.

Loads at the Tower Base

Table 13 and Figures 31 and 32 show the time domain statistics and power spectral
density of the three FOWT tower base loads, respectively. The instability of turbulent winds
leads to drastic variations of aerodynamic loads. The tower has a similar trend to the rotor
load. The loads at tower base are influenced by the combined effect of platform motion,
tower vibration, and rotor rotation. The combined effect of a variety of factors makes the
loads at tower base change extremely violent. The load fluctuation frequency of the Spar
FOWT is greater than the other FOWTs. It indicates that lowering the center of gravity has
a greater effect.

Table 13. The statistics of loads at tower base.

Tower Base in X-Direction Tower Base in Y-Direction Tower Base in Z-Direction

Max Mean STD Max Mean STD Max Mean STD

Semi
Shear force 1397 953 152.4 −158.1 −20.6 42.6 −6009 −5934 16.1

Moment 15,440 5385 3252 101,100 70,607 10,658 −3660 276 1080

Spar Shear force 1658 1057 181.5 −317.4 −13.2 74.2 −5991 −5921 18.1
Moment 25,400 4867 5177 120,200 76,473 13,062 −4525 233 1271

Novel
Shear force 1574 1087 155.9 −196.2 −22.8 37 −5992 −5925 17.7

Moment 19,180 5425 2920 114,300 79,098 10,854 −3784 358 1084

Figure 31. Power spectral density of tower base shear force of three FOWTs.
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Figure 32. Power spectral density of tower base moment of three FOWTs.

Tower Fatigue Load

The tower is divided into 50 equal distance sections; nine of these sections are inter-
cepted and fatigue analysis is performed on each tower node. The relationship between the
fatigue load and the tower height is studied. At the same time, the DEL and DR at different
angles of the same section were analyzed considering the form of the circular section of the
tower. The corresponding tower heights for each section are shown in Table 14.

Table 14. Tower section properties.

Node Number Height (m)

1 2.19

7 10.95

13 19.71

19 28.47

25 37.23

31 45.99

37 54.75

43 63.51

49 72.27

Figure 33 shows DEL and DR of the tower nodes at different heights for the three
FOWTs. As the tower height increases, the DEL and DR are reduced, indicating that the
middle and lower parts of the tower are most susceptible to fatigue damage. The DEL and
DR at 0◦ are the largest, followed by 180◦ and 90◦, and 270◦ is the lowest, indicating that
the tower is more prone to fatigue damage in the fore and aft, and the tower is safer in the
side-to-side. Therefore, the tower should be designed with more safety measures at the rear
tower. In addition to this, the platform motion has a great impact on the tower fatigue load.
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Figure 33. Damage Equivalent Load and Damage Rate of three FOWT towers.

4.2.3. Analysis of Platform

In order to compare the motion performance of three different floating platforms, a
spectral analysis of the platform motion response was performed.

The PSD of the motion response of the three FOWTs is shown in Figure 34. The PSD
of surge motion at the low and wave frequencies of the novel platform and Spar platform
is significantly lower than that of the semi-submersible platform, indicating that the small
waterline surface can reduce the influence of waves on the platform. The novel platform’s
PSD of heave motion is greatly reduced, and the peak corresponding frequency of 0.024 Hz
is far away from the wave frequency, which reduces the possibility of heave resonance. The
higher PSD of pitch motion at the wave frequency of the novel platform indicates that the
pitch motion response of the novel platform is slightly larger than that of the other two
floating platforms.

Figure 34. Power spectral density of the motion response of three FOWTs.

4.3. Wind Turbine Output Power

In order to investigate the effect of different platform structures on the final capacity,
the output power of the three FOWTs is compared.

Figures 35 and 36 show the output power trends of the three FOWTs. It can be seen
that the three FOWTs’ output power change trend is relatively close, and output power
of Spar FOWT change is greater than the other two FOWTs. This confirms that the Spar
FOWT is more affected by the low frequency response.
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Figure 35. Output power curves of three FOWTs.

Figure 36. Output power statistics of three FOWTs.

5. Conclusions

In this paper, a novel floating platform for FOWT is designed by combining the
characteristics of the semi-submersible platform and the Spar platform. Considering
the fully coupled effect, the hydrodynamic performance and dynamic response of the
semi-submersible FOWT, Spar FOWT, and the novel FOWT are analyzed. The following
conclusions are obtained:

(1) The novel floating platform proposed based on the optimized design process in this
paper can significantly reduce the effect of wave loads. The novel platform reduces
the overall mass of the platform by almost 10% compared to the semi-submersible
platform. Compared with the Spar platform, the novel platform can reduce the
draft depth by 80%, which can effectively improve the applicable water depth range.
Comparing the hydrodynamic performance of the novel platform with the semi-
submersible and Spar platforms, the novel floating platform can significantly optimize
the hydrodynamic performance and has better restoring ability after being subjected
to the external load. The novel floating platform can significantly reduce the peak of
heave and its corresponding wave frequency compared with the semi-submersible
platform and reduce the possibility of heave resonance.

(2) The first-order wave force and moment of the floating platform depend mainly
on the projected area of the platform in all directions. It should be designed and
constructed in such a way that the waves are parallel to the floating platform to avoid
excessive lateral wave forces. The heave added mass of the multi-column platform
is significantly larger than that of the single-column platform. The pitch/roll added
mass is related to the center of gravity of the platform. The multi-column platform is
more complex, making the isotropic radiation damping significantly greater than the
single-column platform and more obvious in the wave frequency range. The novel
floating platform structure form can significantly reduce the platform surface pressure
of wave action.

(3) The influence of the floating platform of FOWT on the dynamic response of the upper
wind turbine is mainly reflected at the tower, with less influence on the blades. Blade
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deformation and blade load are mainly affected by the aerodynamic load but also
due to rotor rotation and tower vibration interference resonance. Blade fatigue loads
exist mainly downwind of the blade root and are largely unaffected by the platform.
Unlike the blade response, the tower dynamic response is mainly affected by the
platform motion and is also related to the rotor rotation and the tower’s vibration
mode. Fatigue loads are most pronounced at the tower base and can also be affected
by changes in platform form.
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