Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review
Abstract
:1. Introduction
2. Factors Contributing to Sea-Level Rise
2.1. Major Factors
2.1.1. Thermal Expansion of the Ocean
2.1.2. Glacier and Ice Sheet Melt
2.2. Secondary Factors
3. Sea-Level Rise Influences on Geologic Hazard
3.1. Storm Surge
3.2. Seawater Intrusion
3.3. Decrease in Coastal Wetland
3.4. Seismicity
3.5. Seismic Liquefaction
3.6. Submarine Mass Failure
4. Disaster Projection and Mitigation Measures
4.1. Projection of Sea-Level Rise
4.2. Mitigate Measures
5. Future Research Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dedekorkut-Howes, A.; Torabi, E.; Howes, M. When the tide gets high: A review of adaptive responses to sea level rise and coastal flooding. J. Environ. Plan. Manag. 2020, 63, 2102–2143. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, H.L. The impact of climate change on coastal geological disasters in southeastern China. Nat. Hazards 2013, 65, 377–390. [Google Scholar] [CrossRef]
- Bernstein, A.; Gustafson, M.T.; Lewis, R. Disaster on the horizon: The price effect of sea level rise. J. Financ. Econ. 2019, 134, 253–272. [Google Scholar] [CrossRef]
- Mucova, S.A.R.; Azeiteiro, U.M.; Filho, W.L.; Lopes, C.L.; Dias, J.M.; Pereira, M.J. Approaching Sea-Level Rise (SLR) Change: Strengthening Local Responses to Sea-Level Rise and Coping with Climate Change in Northern Mozambique. J. Mar. Sci. Eng. 2021, 9, 205. [Google Scholar] [CrossRef]
- Robinson, C.; Dilkina, B.; Moreno-Cruz, J. Modeling migration patterns in the USA under sea level rise. PLoS ONE 2020, 15, e0227436. [Google Scholar] [CrossRef]
- Micheal, O.; Bruce, G.; Hinkel, J.; Roderik, V.; Frederikse, T. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities; IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Fox-Kemper, B.; Hewitt, B.H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Climate Change 2021: The Physical Science Basis; A Contribution of Working Group of Sea Level to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021. [Google Scholar]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang. 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gartner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Wdowinski, S.; Bray, R.; Kirtman, B.P.; Wu, Z. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean. Coast. Manag. 2016, 126, 1–8. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Rodriguez-Delgado, C.; Iglesias, G. Wave farm impacts on coastal flooding under sea-level rise: A case study in southern Spain. Sci. Total Environ. 2019, 653, 1522–1531. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.L.; Tornqvist, T.E.; Fernandes, A.M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 2017, 8, 14792. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.; MacDonald, G.; Guntenspergen, G.; Ambrose, R.; Buffington, K.; Dugger, B.; Freeman, C.; Janousek, C.; Brown, L.; Rosencranz, J.; et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 2018, 4, eaao3270. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Lu, X.; Sanders, C.J.; Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 2019, 10, 5434. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 A degrees C global warming could be dangerous. Atmos. Chem. Phys. 2016, 16, 3761–3812. [Google Scholar] [CrossRef] [Green Version]
- Orton, P.M.; Conticcllo, F.R.; Cioffi, F.; Hall, T.M.; Georgas, N.; Lall, U.; Blumberg, A.F.; MacManus, K. Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary. Nat. Hazards 2020, 102, 729–757. [Google Scholar] [CrossRef]
- Ketabchi, H.; Mahmoodzadeh, D.; Ataie-Ashtiani, B.; Simmons, C.T. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. J. Hydrol. 2016, 535, 235–255. [Google Scholar] [CrossRef]
- Krvavica, N.; Ruzic, I. Assessment of sea-level rise impacts on salt-wedge intrusion in idealized and Neretva River Estuary. Estuar. Coast. Shelf Sci. 2020, 234, 106638. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [Green Version]
- Correia, J.A.F.O.; Ferradosa, T.; Castro, J.M.; Pavlou, D.G.; De Jesus, A.M.P. Editorial: Renewable Energy and Oceanic Structures: Part II. Proc. Inst. Civ. Eng.-Marit. Eng. 2019, 172, 71–72. [Google Scholar] [CrossRef] [Green Version]
- Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng.-Marit. Eng. 2019, 172, 118–123. [Google Scholar] [CrossRef]
- Vanem, E.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F. Statistical description and modelling of extreme ocean wave conditions. Proc. Inst. Civ. Eng.-Marit. Eng. 2019, 172, 124–132. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Marine renewable energy. Renew. Energy 2020, 150, 1160–1164. [Google Scholar] [CrossRef]
- Smith, N.R.; Needler, G.T. An ocean observing system for climate. Clim. Chang. 1995, 31, 475–494. [Google Scholar] [CrossRef]
- Rignot, E.; Velicogna, I.; van den Broeke, M.R.; Monaghan, A.; Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 2011, 38, e046583. [Google Scholar] [CrossRef] [Green Version]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M. Understanding Sea-Level Rise & Vulnerability; Church, J., Woodworth, P., Aarup, T., Wilson, W., Eds.; Wiley-Blackwell: Chichester, UK, 2010; 428p, ISBN 978-1-4443-3452-4. [Google Scholar]
- Chao, B.F.; Wu, Y.H.; Li, Y.S. Impact of artificial reservoir water impoundment on global sea level. Science 2008, 320, 212–214. [Google Scholar] [CrossRef] [Green Version]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Zerbini, S. Review article: Sea-level rise in Venice: Historic and future trends. Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V. Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 2009, 36, e037155. [Google Scholar] [CrossRef]
- Domingues, C.M.; Church, J.A.; White, N.J.; Gleckler, P.J.; Wijffels, S.E.; Barker, P.M.; Dunn, J.R. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 2008, 453, 1090–1093. [Google Scholar] [CrossRef]
- Cazenave, A.; Llovel, W. Contemporary Sea Level Rise. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.E.; Bakker, A.M.R.; Keller, K. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim. Chang. 2017, 144, 347–364. [Google Scholar] [CrossRef]
- Horton, B.P.; Khan, N.S.; Cahill, N.; Lee, J.S.H.; Shaw, T.A.; Garner, A.J.; Kemp, A.C.; Engelhart, S.E.; Rahmstorf, S. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. NPJ Clim. Atmos. Sci. 2020, 3, 18. [Google Scholar] [CrossRef]
- Meier, M.F. Contribution of Small Glaciers to Global Sea-Level. Science 1984, 226, 1418–1421. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Allison, I.; Alley, R.B.; Fricker, H.A.; Thomas, R.H.; Warner, R.C. Ice sheet mass balance and sea level. Antarct. Sci. 2009, 21, 413–426. [Google Scholar] [CrossRef] [Green Version]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar]
- Chen, J.L.; Wilson, C.R.; Blankenship, D.; Tapley, B.D. Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci. 2009, 2, 859–862. [Google Scholar] [CrossRef]
- Cazenave, A.; Meyssignac, B.; Ablain, M.; Balmaseda, M.; Bamber, J.; Barletta, V.; Beckley, B.; Benveniste, J.; Berthier, E.; Blazquez, A.; et al. Global sea-level budget 1993-present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar]
- Edwards, T.L.; Nowicki, S.; Marzeion, B.; Hock, R.; Goelzer, H.; Seroussi, H.; Jourdain, N.C.; Slater, D.A.; Turner, F.E.; Smith, C.J.; et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 2021, 593, 74–82. [Google Scholar] [CrossRef]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earths Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Pattyn, F.; Ritz, C.; Hanna, E.; Asay-Davis, X.; DeConto, R.; Durand, G.; Favier, L.; Fettweis, X.; Goelzer, H.; Golledge, N.R.; et al. The Greenland and Antarctic ice sheets under 1.5 degrees C global warming. Nat. Clim. Chang. 2018, 8, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.C.; Shen, S.L.; Zhu, H.H.; Zhang, X.L. Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 2004, 54, 143–147. [Google Scholar] [CrossRef]
- Shen, S.-L.; Xu, Y.-S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Li, M.G.; Chen, J.J.; Xu, Y.S.; Tong, D.G.; Cao, W.W.; Shi, Y.J. Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Eng. Geol. 2021, 282, 105995. [Google Scholar] [CrossRef]
- Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Anzidei, M.; Lambeck, K.; Antonioli, F.; Furlani, S.; Vannucci, G. Coastal Structure, Sea-Level Changes and Vertical Motion of the Land in the Mediterranean; Special Publications; Geological Society: London, UK, 2016. [Google Scholar]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Pavlou, D.; Gao, F.P.; Carvalho, H.; Oliveira-Pinto, S. Preface: Advanced Research on Offshore Structures and Foundation Design: Part 2. Proc. Inst. Civ. Eng.-Marit. Eng. 2020, 173, 96–99. [Google Scholar] [CrossRef]
- Pant, R.; Thacker, S.; Hall, J.W.; Alderson, D.; Barr, S. Critical infrastructure impact assessment due to flood exposure. J. Flood Risk Manag. 2017, 11, 22–33. [Google Scholar] [CrossRef]
- Lin, N.; Shullman, E. Dealing with hurricane surge flooding in a changing environment: Part I. Risk assessment considering storm climatology change, sea level rise, and coastal development. Stoch. Environ. Res. Risk Assess. 2017, 31, 2379–2400. [Google Scholar] [CrossRef] [Green Version]
- Jisan, M.A.; Bao, S.; Pietrafesa, L.J. Ensemble projection of the sea level rise impact on storm surge and inundation at the coast of Bangladesh. Nat. Hazards Earth Syst. Sci. 2018, 18, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, A.M.; Loerzel, J.; Ferreira, C.M. Valuing natural habitats for enhancing coastal resilience: Wetlands reduce property damage from storm surge and sea level rise. PLoS ONE 2020, 15, e0226275. [Google Scholar]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef]
- Karim, M.F.; Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Chang. 2008, 18, 490–500. [Google Scholar] [CrossRef]
- Shepard, C.C.; Agostini, V.N.; Gilmer, B.; Allen, T.; Stone, J.; Brooks, W.; Beck, M.W. Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Nat. Hazards 2012, 60, 727–745. [Google Scholar] [CrossRef]
- Arns, A.; Wahl, T.; Dangendorf, S.; Jensen, J. The impact of sea level rise on storm surge water levels in the northern part of the German Bight. Coast. Eng. 2015, 96, 118–131. [Google Scholar] [CrossRef]
- Lippmann, T.C.; Simpson, A.E.; Cook, S.E.; Kirshen, P. Effects of Sea Level Rise on Storm Surge Flooding and Current Speeds in New Hampshire Estuaries. J. Waterw. Port Coast. Ocean. Eng. 2021, 147, 04020054. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Park, S.-H.; Woo, S.-B.; Jeong, K.-Y.; Lee, E.-I. Sea Level Rise and Storm Surge around the Southeastern Coast of Korea. J. Coast. Res. 2017, 79, 239–243. [Google Scholar] [CrossRef]
- Kyprioti, A.P.; Taflanidis, A.A.; Nadal-Caraballo, N.C.; Campbell, M.O. Incorporation of sea level rise in storm surge surrogate modeling. Nat. Hazards 2021, 105, 531–563. [Google Scholar] [CrossRef]
- Passeri, D.L.; Bilskie, M.V.; Plant, N.G.; Long, J.W.; Hagen, S.C. Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise. Clim. Chang. 2018, 149, 413–425. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.H.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- da Silva, F.P.; Martins, J.R.S.; Nogueira, F.F. Impacts of Sea Level Rise on Seawater Intrusion in Cubatao River, Brazil. Environ. Modeling Assess. 2020, 25, 831–841. [Google Scholar] [CrossRef]
- Loaiciga, H.A. Long-term climatic change and sustainable ground water resources management. Environ. Res. Lett. 2009, 4, 035004. [Google Scholar] [CrossRef] [Green Version]
- Langevin, C.D.; Zygnerski, M. Effect of Sea-Level Rise on Salt Water Intrusion near a Coastal Well Field in Southeastern Florida. Ground Water 2013, 51, 781–803. [Google Scholar] [CrossRef]
- Shi, W.L.; Lu, C.H.; Werner, A.D. Assessment of the impact of sea-level rise on seawater intrusion in sloping confined coastal aquifers. J. Hydrol. 2020, 586, 124872. [Google Scholar] [CrossRef]
- Ghanavati, E.; Shah-Hosseini, M.; Marriner, N. Analysis of the Makran Coastline of Iran’s Vulnerability to Global Sea-Level Rise. J. Mar. Sci. Eng. 2021, 9, 891. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Temmerman, S.; Skeehan, E.E.; Guntenspergen, G.R.; Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Chang. 2016, 6, 253–260. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Santos, P.R.; Ferradosa, T.F. Integrated Coastal Zone Management: Preservation, adaptation and monitoring. J. Integr. Coast. Zone Manag. 2021, 21, 5–9. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Anthropogenic influences on Integrated Coastal Zone Management. J. Integr. Coast. Zone Manag. 2020, 20, 215–217. [Google Scholar] [CrossRef]
- Craft, C.; Clough, J.; Ehman, J.; Joye, S.; Park, R.; Pennings, S.; Guo, H.Y.; Machmuller, M. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 2009, 7, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Akumu, C.E.; Pathirana, S.; Baban, S.; Bucher, D. Examining the potential impacts of sea level rise on coastal wetlands in north-eastern NSW, Australia. J. Coast. Conserv. 2011, 15, 15–22. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; D’Alpaos, A.; Morris, J.T.; Mudd, S.M.; Temmerman, S. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef]
- Spencer, T.; Schuerch, M.; Nicholls, R.J.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Reef, R.; McFadden, L.; Brown, S. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Glob. Planet. Chang. 2016, 139, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of mangrove survival under rapid sea level rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef]
- Simpson, D.W.; Leith, W.S.; Scholz, C.H. 2 types of reservoir-induced seismicity. Bull. Seismol. Soc. Am. 1988, 78, 2025–2040. [Google Scholar] [CrossRef]
- Talwani, P. On the nature of reservoir-induced seismicity. Pure Appl. Geophys. 1997, 150, 473–492. [Google Scholar] [CrossRef]
- Zang, A.N.; Oye, V.; Jousset, P.; Deichmann, N.; Gritto, R.; McGarr, A.; Majer, E.; Bruhn, D. Analysis of induced seismicity in geothermal reservoirs—An overview. Geothermics 2014, 52, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Firoozfar, A.; Bromhead, E.N.; Dykes, A.P. Caspian sea level change impacts regional seismicity. J. Great Lakes Res. 2012, 38, 667–672. [Google Scholar] [CrossRef]
- Brothers, D.S.; Luttrell, K.M.; Chaytor, J.D. Sea-level-induced seismicity and submarine landslide occurrence. Geology 2013, 41, 979–982. [Google Scholar] [CrossRef]
- Dall’Osso, F.; Dominey-Howes, D.; Moore, C.; Summerhayes, S.; Withycombe, G. The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: A probabilistic multi-hazard approach. Sci. Rep. 2014, 4, 7401. [Google Scholar] [CrossRef] [Green Version]
- Han, S.C.; Sauber, J.; Pollitz, F.; Ray, R. Sea Level Rise in the Samoan Islands Escalated by Viscoelastic Relaxation After the 2009 Samoa-Tonga Earthquake. J. Geophys. Res.-Solid Earth 2019, 124, 4142–4156. [Google Scholar] [CrossRef] [Green Version]
- Peltier, W.R.; Fairbanks, R.G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 2006, 25, 3322–3337. [Google Scholar] [CrossRef]
- Luttrell, K.; Sandwell, D. Ocean loading effects on stress at near shore plate boundary fault systems. J. Geophys. Res.-Solid Earth 2010, 115, 115. [Google Scholar] [CrossRef] [Green Version]
- Neves, M.C.; Cabral, J.; Luttrell, K.; Figueiredo, P.; Rockwell, T.; Sandwell, D. The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics 2015, 658, 206–220. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M. Macroscopic Characteristics of Seismic Liquefaction. In Hazard Analysis of Seismic Soil Liquefaction; Huang, Y., Yu, M., Eds.; Springer: Singapore, 2017; pp. 11–33. [Google Scholar]
- Seed, H.B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J. Geotech. Eng. Div.-Asce 1979, 105, 201–255. [Google Scholar] [CrossRef]
- Ishihara, K. Liquefaction and flow failure during earthquakes. Geotechnique 1993, 43, 351–415. [Google Scholar] [CrossRef]
- Yasuhara, K. GIS Application for Prediction of Liquefaction Potential Caused by Rising Groundwater Level. In Proceedings of the International Symposium on Engineering Practice and Performance of Soft Deposits, Toyonaka, Japan, 2–4 June 2004. [Google Scholar]
- Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S.; Yasuhara, K.; Suzuki, N.; Wei, N.I.; Komine, H. Vulnerability assessment to liquefaction hazard induced by rising sea-levels due to global warming. In Geotechnical Engineering for Disaster Mitigation and Rehabilitation, the 1st International Conference; World Scientific: Singapore, 2005. [Google Scholar]
- Abueladas, A.-R.A.; Niemi, T.M.; Al-Zoubi, A.; Tibor, G.; Kanari, M.; Ben-Avraham, Z. Liquefaction susceptibility maps for the Aqaba-Elat region with projections of future hazards with sea-level rise. Q. J. Eng. Geol. Hydrogeol. 2021, 54, 54. [Google Scholar] [CrossRef]
- Monk, C.B.; van Ballegooy, S.; Hughes, M.; Villeneuve, M. Liquefaction vulnerability increase at north new brighton due to subsidence, sea level rise and reduction in thickness of the non-liquefying layer. Bull. N. Z. Soc. Earthq. Eng. 2016, 49, 334–340. [Google Scholar] [CrossRef]
- Schnyder, J.S.D.; Eberli, G.P.; Kirby, J.T.; Shi, F.Y.; Tehranirad, B.; Mulder, T.; Ducassou, E.; Hebbeln, D.; Wintersteller, P. Tsunamis caused by submarine slope failures along western Great Bahama Bank. Sci. Rep. 2016, 6, 35925. [Google Scholar] [CrossRef] [Green Version]
- Pakoksung, K.; Surrasri, A.; Imamura, F.; Athanasius, C.; Omang, A.; Muhari, A. Simulation of the Submarine Landslide Tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, Using a Two-Layer Model. Pure Appl. Geophys. 2019, 176, 3323–3350. [Google Scholar] [CrossRef]
- Schulten, I.; Mosher, D.C.; Piper, D.J.W.; Krastel, S. A Massive Slump on the St. Pierre Slope, A New Perspective on the 1929 Grand Banks Submarine Landslide. J. Geophys. Res. -Solid Earth 2019, 124, 7538–7561. [Google Scholar] [CrossRef]
- Trincardi, F.; Cattaneo, A.; Correggiari, A.; Mongardi, S.; Asioli, A. Submarine Slides During Relative Sea Level Rise: Two Examples from the Eastern Tyrrhenian Margin. In Submarine Mass Movements and Their Consequences; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Smith, D.E.; Harrison, S.; Jordan, J.T. Sea level rise and submarine mass failures on open continental margins. Quat. Sci. Rev. 2013, 82, 93–103. [Google Scholar] [CrossRef]
- Georgiopoulou, A.; Masson, D.G.; Wynn, R.B.; Krastel, S. Sahara Slide: Age, initiation, and processes of a giant submarine slide. Geochem. Geophy. Geosy. 2010, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Bea, R.G. How sea- floor slides affect offshore structures. Oil Gas. J. 1971, 69, 88–92. [Google Scholar]
- Yang, Z.S.; Chen, W.M.; Chen, Z.R.; Wu, G.H.; Shen, W.Q. Subaqueous landslide system in the huanghe river (yellow river) delta. Oceanol. Limnol. Sin. 1994, 25, 573–581. [Google Scholar]
- Zhang, M.; Huang, Y.; Bao, Y.J. The mechanism of shallow submarine landslides triggered by storm surge. Nat. Hazards 2016, 81, 1373–1383. [Google Scholar] [CrossRef]
- Le Bars, D. Uncertainty in Sea Level Rise Projections Due to the Dependence Between Contributors. Earths Future 2018, 6, 1275–1291. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Woppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas-y-Melia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Athanasiou, P.; van Dongeren, A.; Giardino, A.; Vousdoukas, M.I.; Ranasinghe, R.; Kwadijk, J. Uncertainties in projections of sandy beach erosion due to sea level rise: An analysis at the European scale. Sci. Rep. 2020, 10, 11895. [Google Scholar] [CrossRef]
- Oddo, P.C.; Lee, B.S.; Garner, G.G.; Srikrishnan, V.; Reed, P.M.; Forest, C.E.; Keller, K. Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management. Risk Anal. 2020, 40, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Mukul, S.A.; Alamgir, M.; Sohel, M.S.I.; Pert, P.L.; Herbohn, J.; Turton, S.M.; Khan, M.S.I.; Munim, S.A.; Reza, A.; Laurance, W.F. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 2019, 663, 830–840. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Forest, C.E.; Pollard, D. The role of internal climate variability in projecting Antarctica’s contribution to future sea-level rise. Clim. Dyn. 2020, 55, 1875–1892. [Google Scholar] [CrossRef]
- Robel, A.A.; Seroussi, H.; Roe, G.H. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proc. Natl. Acad. Sci. USA 2019, 116, 14887–14892. [Google Scholar] [CrossRef] [Green Version]
- Levermann, A.; Winkelmann, R.; Albrecht, T.; Goelzer, H.; Golledge, N.R.; Greve, R.; Huybrechts, P.; Jordan, J.; Leguy, G.; Martin, D.; et al. Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth Syst. Dyn. 2020, 11, 35–76. [Google Scholar] [CrossRef] [Green Version]
- Slater, T.; Hogg, A.E.; Mottram, R. Ice-sheet losses track high-end sea-level rise projections. Nat. Clim. Chang. 2020, 10, 879–881. [Google Scholar] [CrossRef]
- Wang, H.M.; Wang, Y.; Jiao, X.; Qian, G.R. Risk management of land subsidence in Shanghai. Desalination Water Treat. 2014, 52, 1122–1129. [Google Scholar] [CrossRef]
- Bakker, A.M.R.; Louchard, D.; Keller, K. Sources and implications of deep uncertainties surrounding sea-level projections. Clim. Chang. 2017, 140, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Little, C.M.; Horton, R.M.; Kopp, R.E.; Oppenheimer, M.; Yip, S. Uncertainty in Twenty-First-Century CMIP5 Sea Level Projections. J. Clim. 2015, 28, 838–852. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Wang, G. Understanding the Uncertainty in the 21st Century Dynamic Sea Level Projections: The Role of the AMOC. Geophys. Res. Lett. 2019, 46, 210–217. [Google Scholar] [CrossRef] [Green Version]
- van de Wal, R.S.W.; Zhang, X.; Minobe, S.; Jevrejeva, S.; Riva, R.E.M.; Little, C.; Richter, K.; Palmer, M.D. Uncertainties in Long-Term Twenty-First Century Process-Based Coastal Sea-Level Projections. Surv. Geophys. 2019, 40, 1655–1671. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A.; et al. Bioenergy and climate change mitigation: An assessment. Glob. Chang. Biol. Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef] [Green Version]
- Bauer, N.; Rose, S.K.; Fujimori, S.; van Vuuren, D.P.; Weyant, J.; Wise, M.; Cui, Y.Y.; Daioglou, V.; Gidden, M.J.; Kato, E.; et al. Global energy sector emission reductions and bioenergy use: Overview of the bioenergy demand phase of the EMF-33 model comparison. Clim. Chang. 2020, 163, 1553–1568. [Google Scholar] [CrossRef]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob. Chang. Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschakert, P. The costs of soil carbon sequestration: An economic analysis for small-scale farming systems in Senegal. Agr. Syst. 2004, 81, 227–253. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Gisiason, S.R.; Matter, J. Mineral Carbonation of CO2. Elements 2008, 4, 333–337. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.F.; Zhang, Y.Q.; Qin, S.G.; Sun, Y.Q.; Mao, H.N.; Miao, L. Desert soil sequesters atmospheric CO2 by microbial mineral formation. Geoderma 2020, 361, 114104. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Moore, J.C.; Huisingh, D.; Zhao, Y.X. Review of geoengineering approaches to mitigating climate change. J. Clean. Prod. 2015, 103, 898–907. [Google Scholar] [CrossRef]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Gan, L.; Wang, Y.; Lin, Z.; Lev, B. A loss-recovery evaluation tool for debris flow. Int. J. Disaster Risk Reduct. 2019, 37, 101165. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Chen, W.Y.; Gu, X.; Peng, Y.; Sang, Y. Transformation towards resilient sponge cities in China. Nat. Rev. Earth Environ. 2021, 3, 99–101. [Google Scholar] [CrossRef]
- Croce, S.; Vettorato, D. Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustain. Cities Soc. 2021, 75, 103313. [Google Scholar] [CrossRef]
- Desouza, K.C.; Flanery, T.H. Designing, planning, and managing resilient cities: A conceptual framework. Cities 2013, 35, 89–99. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- de Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.; Zhang, L.M. Resilience assessment of regional areas against earthquakes using multi-source information fusion. Reliab. Eng. Syst. Saf. 2021, 215, 107833. [Google Scholar] [CrossRef]
- Prasanth, S.; Ghosh, G. Effect of cracked section properties on the resilience based seismic performance evaluation of a building. Structures 2021, 34, 1021–1033. [Google Scholar] [CrossRef]
- Tena-Colunga, A.; Hernandez-Ramirez, H.; Godinez-Dominguez, E.A.; Perez-Rocha, L.E. Mexico City during and after the September 19, 2017 earthquake: Assessment of seismic resilience and ongoing recovery process. J. Civ. Struct. Health Monit. 2021, 11, 1275–1299. [Google Scholar] [CrossRef]
- Wang, S.L.; Gu, X.F.; Luan, S.Y.; Zhao, M.W. Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory. Int. J. Crit. Infrastruct. Prot. 2021, 35, 100459. [Google Scholar] [CrossRef]
- Chen, Z.; Orton, P.; Wahl, T. Storm Surge Barrier Protection in an Era of Accelerating Sea-Level Rise: Quantifying Closure Frequency, Duration and Trapped River Flooding. J. Mar. Sci. Eng. 2020, 8, 725. [Google Scholar] [CrossRef]
- Admiraal, H. Future cities, resilient cities—The role of underground space in achieving urban resilience. Undergr. Space 2021, 6, 231. [Google Scholar] [CrossRef]
- Fu, L.; Yang, X.; Zhang, D.Y.; Cao, Y. Assessment of Climate-Resilient City Pilots in China. Chin. J. Urban Environ. Stud. 2021, 9, 9. [Google Scholar] [CrossRef]
- Khatibi, H.; Wilkinson, S.; Dianat, H.; Baghersad, M.; Ghaedi, K.; Javanmardi, A. Indicators bank for smart and resilient cities: Design of excellence. Built Environ. Proj. Asset Manag. 2021, 12, 5–19. [Google Scholar] [CrossRef]
- Xiong, M.; Huang, Y. Novel perspective of seismic performance-based evaluation and design for resilient and sustainable slope engineering. Eng. Geol. 2019, 262, 105356. [Google Scholar] [CrossRef]
Geological Disasters Related to Sea-Level Rise | Mitigation Measures |
---|---|
Seawater intrusion | Control the mining of underground water Freshwater injection in coastal zone Seawater intrusion barriers Long-distance water transfer |
Decrease in coastal wetland | Make good management of sediment Develop rational land use plans Rehabilitation and re-creation of wetland habitat Forbid or restrict the use of hard defenses in some areas |
Storm surge | Strengthen the construction of early-warning forecast system and emergency response Construct high-level seawall and floodgates Grow plants that can dissipate waves in coastal areas |
Seismicity | Increase the level of seismic fortification in some coastal areas Enhancement of monitoring |
Seismic liquefaction | Strengthen the assessment of liquefaction vulnerability in coastal areas Use some remedial measures against soil liquefaction in coastal areas |
Submarine mass failure | Reasonable selection of offshore engineering field Use some bank protection and slop reinforcement measures Strengthen the deformation monitoring of coastal slope |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Cao, J.; Liu, X. Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review. J. Mar. Sci. Eng. 2022, 10, 355. https://doi.org/10.3390/jmse10030355
Dong L, Cao J, Liu X. Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review. Journal of Marine Science and Engineering. 2022; 10(3):355. https://doi.org/10.3390/jmse10030355
Chicago/Turabian StyleDong, Liuqun, Jiming Cao, and Xian Liu. 2022. "Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review" Journal of Marine Science and Engineering 10, no. 3: 355. https://doi.org/10.3390/jmse10030355
APA StyleDong, L., Cao, J., & Liu, X. (2022). Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review. Journal of Marine Science and Engineering, 10(3), 355. https://doi.org/10.3390/jmse10030355