Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Parameters
2.3. Chlorophyll a
2.4. Primary Productivity and Photosynthetic Rate
2.5. Data Analysis
3. Results
3.1. Environmental Parameters
3.2. Distribution of Chl
3.3. Surface PP and PB
3.4. Correlations among Biological and Environment Parameters
4. Discussion
4.1. Dynamics of Chl
4.2. Dynamics of PP and PB
4.3. Possible Effects of Zooplankton on Phytoplankton
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tang, Q.; Su, J.; Sun, S.; Zhang, J.; Huang, D.; Jin, X.; Tong, L. A study of marine ecosystem dynamics in the coastal ocean of China. Adv. Earth Sci. 2005, 20, 1288–1299, [In Chinese with English Abstract]. [Google Scholar]
- Zhou, F.; Chai, F.; Huang, D.; Xue, H.; Chen, J.; Xiu, P.; Xuan, J.; Li, J.; Zeng, D.; Ni, X.; et al. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE. Prog. Oceanogr. 2017, 159, 237–254. [Google Scholar] [CrossRef]
- Hao, Q.; Chai, F.; Xiu, P.; Bai, Y.; Chen, J.; Liu, C.; Le, F.; Zhou, F. Spatial and temporal variation in chlorophyll a concentration in the Eastern China Seas based on a locally modified satellite dataset. Estuar. Coast. Shelf Sci. 2019, 220, 220–231. [Google Scholar] [CrossRef]
- Ning, X.; Shi, J.; Cai, Y.; Liu, C. Biological productivity front in the Changjiang Estuary and the Hangzhou Bay and its ecological effects. Acta Oceanol. Sin. 2004, 26, 96–106, [In Chinese with English Abstract]. [Google Scholar]
- Zhou, F.; Chai, F.; Huang, D.; Wells, M.; Ma, X.; Meng, Q.; Xue, H.; Xuan, J.; Wang, P.; Ni, X.; et al. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: The Changjiang (Yangtze River) Estuary. Front. Mar. Sci. 2020, 7, 259. [Google Scholar] [CrossRef]
- Jin, X.; Shan, X.; Guo, X.; Li, X. Community structure of fishery biology in the Yangtze River estuary and its adjacent waters. Acta Ecol. Sin. 2009, 29, 4761–4772, [In Chinese with English Abstract]. [Google Scholar]
- Xu, Y.; Yu, C.; Zhang, P.; Deng, X.; Zhang, Z.; Shen, H. Spring nekton community structure and its relationship with environmental variables in Hangzhou Bay-Zhoushan inshore waters. J. Fish. China 2019, 43, 605–617, [In Chinese with English Abstract]. [Google Scholar]
- Xie, D.; Wang, Z.; Gao, S.; De Vriend, H.J. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Cont. Shelf Res. 2009, 29, 1757–1767. [Google Scholar] [CrossRef]
- Gao, S.; Chen, J.; Jin, H.; Wang, K.; Lu, Y.; Li, H.; Chen, F. Characteristics of nutrients and eutrophication in the Hangzhou Bay and its adjacent waters. J. Mar. Sci. 2011, 29, 36–47, [In Chinese with English Abstract]. [Google Scholar]
- Hu, Y.; Yu, Z.; Zhou, B.; Li, Y.; Yin, S.; He, X.; Peng, X.; Shum, C.K. Tidal-driven variation of suspended sediment in Hangzhou Bay based on GOCI data. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101920. [Google Scholar] [CrossRef]
- Ning, X.; Liu, Z.; Cai, Y. A review on primary production studies for China seas in the past 20 years. Donghai Mar. Sci. 2000, 18, 13–20, [In Chinese with English Abstract]. [Google Scholar]
- Li, W.; Ge, J.; Ding, P.; Ma, J.; Liu, D. Effects of dual fronts on the spatial pattern of chlorophyll-a concentrations in and off the Changjiang River Estuary. Estuaries Coasts 2021, 44, 1408–1418. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, Z.; Li, B.; Wu, X.; Gong, M.; Yang, H. Distribution changes of suspended sediment concentration and its dynamic analysis in Xiangshan Bay, Zhejiang Province. Mar. Sci. Bull. 2014, 33, 694–702, [In Chinese with English Abstract]. [Google Scholar]
- Jia, H.; Shao, J.; Cao, L. Analysis of the changes and development trend of ecological environment in Hangzhou Bay. Environ. Pollut. Control. 2014, 36, 14–19, [In Chinese with English abstract]. [Google Scholar]
- Liu, Z.; Ning, X. Phytoplankton standing stock and primary production in the front of Hangzhou Bay. Donghai Mar. Sci. 1994, 12, 58–65, [in Chinese with English Abstract]. [Google Scholar]
- Liu, Z.; Ning, X.; Cai, Y. Primary productivity and standing stock of the phytoplankton in the Hangzhou Bay to the Zhoushan Fishing Ground during autumn. Acta Oceanol. Sin. 2001, 23, 93–99, [In Chinese with English Abstract]. [Google Scholar]
- Jiang, M.; Shen, X. Relationship between chlorophyll a and inorganic nitrogen and phosphate in the Changjiang estuary and its adjacent waters. Mar. Fish. 2004, 26, 35–39, [In Chinese with English Abstract]. [Google Scholar]
- Wei, N.; Hu, H.; Mao, H.; Huang, B.; Wang, J.; Wang, Y. Survey and study of phytoplankton ecology in Zhoushan fishing ground and adjacent waters. Mar. Environ. Sci. 2010, 29, 170–173, [In Chinese with English Abstract]. [Google Scholar]
- Jia, H.; Hu, H.; Shao, J.; Wang, Y.; Wei, N. Community structure and environmental factors of phytoplankton in Changjiang Estuary and adjacent sea in spring and autumn. Mar. Environ. Sci. 2013, 32, 851–855, [In Chinese with English Abstract]. [Google Scholar]
- Huang, B.; Wang, J.; Shen, M. Community structure of zooplankton in the offshore water of the northern Zhejiang. Environ. Monit. China 2012, 28, 64–68, [In Chinese with English Abstract]. [Google Scholar]
- Jia, H.; Tang, J.; Hu, H. The variation tendency of biodiversity and cause analysis in Hangzhou Bay from 1992 to 2012. Acta Oceanol. Sin. 2014, 36, 111–118, [In Chinese with English Abstract]. [Google Scholar]
- Su, J.; Wang, K. Changjiang river plume and suspended sediment transport in Hangzhou Bay. Cont. Shelf Res. 1989, 9, 93–111. [Google Scholar]
- Su, J.; Wang, K.; Li, Y. Fronts and transport of suspended matter in the Hangzhou Bay. Acta Oceanol. Sin. 1992, 12, 1–15. [Google Scholar]
- National Aeronautics and Space Administration Oceancolor. Available online: https://oceancolor.gsfc.nasa.gov (accessed on 2 April 2021).
- Castillo Ramirez, A.; Santamaria Angel, E.; Gonzalez Silvera, A.; Frouin, R.; Sebastia Frasquet, M.T.; Tan, J.; Lopez Calderon, J.; Sanchez Velasco, L.; Enriquez Paredes, L. A new algorithm to estimate diffuse attenuation coefficient from Secchi disk depth. J. Mar. Sci. Eng. 2020, 8, 558. [Google Scholar] [CrossRef]
- Knap, A.; Michaels, A.; Close, A.; Ducklow, H.; Dickson, A. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements; JGOFS Rep. No19 Repr. IOC Man. Guides No. 29; UNESCO-IOC: Paris, France, 1994; Volume 19, p. 170. [Google Scholar]
- Nielsen, S. The use of radioactive carbon (C14) for measuring organic production in the sea. J. Du Cons. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- Ning, X.; Vaulot, D.; Liu, Z. Standing stock and production of phytoplankton in the estuary of the Chang-jiang (Yangtse River) and the adjacent East China Sea. Mar. Ecol. Prog. Ser. 1988, 49, 141–150. [Google Scholar] [CrossRef]
- Evans, C.; O’Reilly, J.E.; Thomas, J. A Handbook for the Measurement of Chlorophyll and Primary Production; Texas A&M University: College Station, TX, USA, 1987; pp. 1–114. [Google Scholar]
- Parsons, T.R.; Maita, Y.; Lalli, C. A Manual of Chemical and Biological Methods for Seawater Analysis; Pergamon Press: Oxford, UK, 1984; pp. 101–173. [Google Scholar]
- Schlitzer, Reiner, Ocean Data View. Available online: https://odv.awi.de (accessed on 20 January 2022).
- Justić, D.; Rabalais, N.N.; Turner, R.E.; Dortch, Q. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 1995, 40, 339–356. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of sea-water. Sea 1963, 2, 26–77. [Google Scholar]
- Dortch, Q.; Whitledge, T.E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 1992, 12, 1293–1309. [Google Scholar] [CrossRef]
- Wang, K.; Chen, J.; Jin, H. Nutrient structure and limitation in Changjiang River Estuary and adjacent East China Sea. Acta Oceanol. Sin. 2013, 35, 128–136, [In Chinese with English Abstract]. [Google Scholar]
- Liu, X.; Xiao, W.; Landry, M.R.; Chiang, K.-P.; Wang, L.; Huang, B. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems. 2016, 19, 832–849. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Meng, X.; Wang, F.; Zheng, Z. Phytoplankton community diversity is influenced by environmental factors in the coastal East China Sea. Eur. J. Phycol. 2016, 51, 107–118. [Google Scholar] [CrossRef]
- Guesdon, S.; Stachowski-Haberkorn, S.; Lambert, C.; Beker, B.; Brach-Papa, C.; Auger, D.; Bechemin, C. Effect of local hydroclimate on phytoplankton groups in the Charente estuary. Estuar. Coast. Shelf Sci. 2016, 181, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Modéran, J.; David, V.; Bouvais, P.; Richard, P.; Fichet, D.J.E.; Coastal. Organic matter exploitation in a highly turbid environment: Planktonic food web in the Charente estuary, France. Estuar. Coast. Shelf Sci. 2012, 98, 126–137. [Google Scholar] [CrossRef]
- Nagy, G.J.; Gomez-Erache, M.; Lopez, C.H.; Perdomo, A.C. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary System. Hydrobiologia 2002, 475, 125–139. [Google Scholar] [CrossRef]
- Zhou, W.; Yuan, X.; Huo, W.; Yin, K. Distribution of chlorophyll a and primary productivity in the adjacent sea area of Changjiang River Estuary. Acta Oceanol. Sin. 2004, 26, 143–150, [In Chinese with English Abstract]. [Google Scholar]
- Wang, Y.; Liu, D.; Lee, K.; Dong, Z.; Di, B.; Wang, Y.; Zhang, J. Impact of Water-Sediment Regulation Scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River Estuary. Estuar. Coast. Shelf Sci. 2017, 198, 92–105. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Jiang, Z.; Wang, Q.; Wang, H. Variations of summer phytoplankton community related to environmental factors in a macro-tidal estuarine embayment, Hangzhou Bay, China. J. Ocean. Univ. China 2015, 14, 1025–1033. [Google Scholar] [CrossRef]
- Qin, M.; Cai, Y.; Wang, X.; Wei, Y.; Ren, M.; Ge, C. Analysis and assessment on eutrophication in Hangzhou Bay. Mar. Environ. Sci. 2009, 28, 53–56, [In Chinese with English Abstract]. [Google Scholar]
- Li, L.; Zang, J.; Liu, J.; Liu, W.; Yin, X.; Zhang, B.; Ran, X. Phosphate Distribution, Variation and Its Relationship with Phytoplankton Changes in the Qiantangjiang River Estuary. Adv. Mar. Sci. 2018, 36, 279–289, [In Chinese with English Abstract]. [Google Scholar]
- Zhou, Y.; Zhao, C.; Gao, Y.; Long, H.; Yu, J. Variation and distribution characteristics of phytoplankton in ecology-monitoring area of Hangzhouwan Bay from 2005 to 2008. J. Mar. Sci. 2010, 28, 28–35, [In Chinese with English Abstract]. [Google Scholar]
- Sarthou, G.; Timmermans, K.R.; Blain, S.; Tréguer, P. Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 2004, 53, 25–42. [Google Scholar] [CrossRef]
- Cloern, J.E.; Dufford, R. Phytoplankton community ecology: Principles applied in San Francisco Bay. Mar. Ecol. Prog. Ser. 2005, 285, 11–28. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E.S. Resurrecting the ecological underpinnings of ocean plankton blooms. Ann. Rev. Mar. Sci. 2014, 6, 167–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, R.S.; Hoover, D.; Miller, M.; Landry, M.R.; DeCarlo, E.H.; Mackenzie, F.T. Zooplankton response to storm runoff in a tropical estuary: Bottom-up and top-down controls. Mar. Ecol. Prog. Ser. 2006, 318, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Arruda, J.A.; Marzolf, G.R.; Faulk, R.T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 1983, 64, 1225–1235. [Google Scholar] [CrossRef]
- Herzig, A. The zooplankton of the open lake. In Neusiedlersee: The Limnology of a Shallow Lake in Central Europe; Löffler, H., Ed.; Springer: Dordrecht, The Netherlands, 1979; pp. 281–335. [Google Scholar]
- Gillooly, J.F.; Charnov, E.L.; West, G.B.; Savage, V.M.; Brown, J.H. Effects of size and temperature on developmental time. Nature 2002, 417, 70–73. [Google Scholar] [CrossRef]
Parameters | July 2006 | December 2006 | April 2007 | October 2007 |
---|---|---|---|---|
Chl (mg·m−3) | 1.66 ± 0.61 | 1.50 ± 0.51 | 1.00 ± 0.31 | 0.90 ± 0.41 |
PP (mg C·m−3·h−1) | 12.11 ± 12.25 | 1.32 ± 1.02 | 2.10 ± 1.18 | 0.20 ± 0.12 |
PB (mg C·(mg Chl·h)−1) | 5.46 ± 3.64 | 0.88 ± 0.30 | 2.33 ± 1.45 | 0.20 ± 0.01 |
Surface Temperature (°C) | 27.87 ± 1.08 | 7.83 ± 1.05 | 14.93 ± 0.63 | 19.83 ± 0.62 |
Surface Salinity | 13.90 ± 8.19 | 19.50 ± 3.09 | 19.06 ± 6.31 | 13.58 ± 3.84 |
MLD (m) | 8 ± 2 | 9 ± 2 | 9 ± 2 | 11 ± 3 |
PAR (Einstein·m−2·day−1) | 34.31 ± 3.50 | 18.99 ± 7.80 | 33.50 ± 4.19 | 22.17 ± 1.47 |
LE (Einstein·m−2·day−1) | 1.89 ± 0.98 | 0.43 ± 0.19 | 0.87 ± 0.35 | 0.46 ± 0.13 |
DIN (μmol·dm−3) | 89.81 ± 31.62 | 93.75 ± 28.37 | 99.15 ± 39.07 | 74.33 ± 22.40 |
DIP (μmol·dm−3) | 1.45 ± 0.32 | 1.44 ± 0.19 | 1.18 ± 0.11 | 1.61 ± 0.18 |
DSi (μmol·dm−3) | 62.96 ± 21.30 | 63.99 ± 11.03 | 53.07 ± 11.20 | 83.39 ± 12.77 |
N/P (dimensionless) | 60.80 ± 10.51 | 64.43 ± 13.42 | 82.67 ± 27.27 | 45.92 ± 11.56 |
N/Si (dimensionless) | 1.43 ± 0.15 | 1.44 ± 0.19 | 1.80 ± 0.34 | 0.87 ± 0.13 |
Si/P (dimensionless) | 42.77 ± 7.82 | 44.52 ± 4.51 | 44.81 ± 6.63 | 51.98 ± 5.97 |
TSM (g·dm−3) | 0.56 ± 0.35 | 2.34 ± 1.67 | 3.01 ± 2.04 | 2.41 ± 1.63 |
Study Area | Charente | Plata River | Changjiang | Yellow River | Hangzhou Bay |
---|---|---|---|---|---|
Season | Four seasons | Four seasons | Summer | Summer | Four seasons |
DIN (μmol·dm−3) | 65–308 | 35–60 | 5.7–167.5 | 13.60–77.94 | 37.76–176.49 |
DIP (μmol·dm−3) | 0.9–1.9 | 0.5–2 | 0.06–2.15 | 0.03–0.19 | 0.95–1.94 |
DSi (mg·dm−3) | 35–146 | 140–220 | 1.8–147.2 | 4.8–91.3 | 30.59–108.89 |
TSM (mg·dm−3) | 2–3519 | 100–140 | 1.5–229.4 | 6.6–3076 | 90–8390 |
Chl (mg·m−3) | 0.3–15.3 | 2-15 | 0.1-32.5 | 1.05–14.49 | 0.84–2.97 |
Reference | [38,39] | [40] | [12,41] | [42] | This Study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, J.; Zhou, F.; Zhang, W.; Hao, Q. Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay. J. Mar. Sci. Eng. 2022, 10, 356. https://doi.org/10.3390/jmse10030356
Wang Y, Chen J, Zhou F, Zhang W, Hao Q. Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay. Journal of Marine Science and Engineering. 2022; 10(3):356. https://doi.org/10.3390/jmse10030356
Chicago/Turabian StyleWang, Yiheng, Jianfang Chen, Feng Zhou, Wei Zhang, and Qiang Hao. 2022. "Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay" Journal of Marine Science and Engineering 10, no. 3: 356. https://doi.org/10.3390/jmse10030356
APA StyleWang, Y., Chen, J., Zhou, F., Zhang, W., & Hao, Q. (2022). Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay. Journal of Marine Science and Engineering, 10(3), 356. https://doi.org/10.3390/jmse10030356