Tailored Leaching Tests as a Tool for Environmental Management of Mine Tailings Disposal at Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mine Tailings and Sediments Used in the Leaching Experiments
2.2. Chemical Analysis
2.3. Leaching Experiments
2.4. Multivariate Analysis
3. Results
3.1. Metal Concentrations
3.2. Leaching and Metal Partitioning
3.3. Variable Importance for Leaching
3.4. Model Prediction for Leaching of Metals from Mine Tailings Sediments
4. Discussion
4.1. Metal Concentration Discrepancy
4.2. Variable Importance
4.3. Leaching Tests—Implications for the Repparfjord and Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moullec, F.; Asselot, R.; Sguotti, C.; Steidle, L.; Tams, V.; Pellerin, F.; Auch, D.; Blöcker, A.M.; Börner, G.; Färber, L.; et al. Identifying and addressing the anthropogenic drivers of global change in the North Sea: A systematic map protocol. Environ. Evid. 2021, 10, 19. [Google Scholar] [CrossRef]
- Halpern, B.S.; Longo, C.; Lowndes, J.S.S.; Best, B.D.; Frazier, M.; Katona, S.K.; Kleisner, K.M.; Rosenberg, A.A.; Scarborough, C.; Selig, E.R. Patterns and Emerging Trends in Global Ocean Health. PLoS ONE 2015, 10, e0117863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacho, K.O.; Mosgaard, M.; Riisgaard, H. Capturing uncaptured values—A Danish case study on municipal preparation for reuse and recycling of waste. Resour. Conserv. Recycl. 2018, 136, 297–305. [Google Scholar] [CrossRef]
- Weißenbach, T.; Graf, J.; Pomberger, R.; Sarc, R. Calculation of the additional recycling potential in the European Union by implementing the Circular Economy Package. Environ. Waste Manag. Recycl. 2020, 3, 1–9. [Google Scholar]
- Junakova, N.; Junak, J. Alternative reuse of bottom sediments in construction materials: Overview. IOP Conf. Ser. Mater. Sci. Eng. 2019, 549, 012038. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Bizzigotti, G.O.; Castelly, H.; Hafez, A.M.; Smith, W.H.B.; Whitmire, M.T. Parameters for Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments. Chem. Rev. 2009, 109, 236–256. [Google Scholar] [CrossRef]
- Bianchini, A.; Cento, F.; Guzzini, A.; Pellegrini, M.; Saccani, C. Sediment management in coastal infrastructures: Techno-economic and environmental impact assessment of alternative technologies to dredging. J. Environ. Manag. 2019, 248, 109332. [Google Scholar] [CrossRef]
- Lonsdale, J.-A.; Blake, S.; Griffith, A. A novel systematic, risk based approach to support the designation of aquatic disposal sites. Mar. Pollut. Bull. 2021, 162, 111874. [Google Scholar] [CrossRef]
- Bolam, S.G.; Rees, H.L. Minimizing impacts of maintenance dredged material disposal in the coastal environment: A habitat approach. Environ. Manag. 2003, 32, 171–188. [Google Scholar] [CrossRef]
- Fredette, T.J. Why confined aquatic disposal cells often make sense. Integr. Environ. Assess. Manag. Int. J. 2006, 2, 35–38. [Google Scholar] [CrossRef]
- Ausili, A.; Mecozzi, M.; Gabellini, M.; Ciuffa, G.; Mellara, F. Physico chemical characteristics and multivariate analysis of contaminated harbour sediments. Water Sci. Technol. 1998, 37, 131–139. [Google Scholar] [CrossRef]
- Lindsay, M.; Moncur, M.; Bain, J.G.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- Fredette, T.; French, G. Understanding the physical and environmental consequences of dredged material disposal: History in New England and current perspectives. Mar. Pollut. Bull. 2004, 49, 93–102. [Google Scholar] [CrossRef]
- Brooks, S.J.; Escudero-Oñate, C.; Lillicrap, A.D. An ecotoxicological assessment of mine tailings from three Norwegian mines. Chemosphere 2019, 233, 818–827. [Google Scholar] [CrossRef]
- Vogt, C.; Peck, E.; Hartman, G. Dredging for Navigation, for Environmental Cleanup, and for Sand/Aggregates. In Handbook on Marine Environment Protection: Science, Impacts and Sustainable Management; Salomon, M., Markus, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 189–213. [Google Scholar]
- Ramirez-Llodra, E.; Trannum, H.C.; Evenset, A.; Levin, L.A.; Andersson, M.; Finne, T.E.; Hilario, A.; Flem, B.; Christensen, G.; Schaanning, M.; et al. Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Mar. Pollut. Bull. 2015, 97, 13–35. [Google Scholar] [CrossRef]
- Bolam, S.G. Impacts of dredged material disposal on macrobenthic invertebrate communities: A comparison of structural and functional (secondary production) changes at disposal sites around England and Wales. Mar. Pollut. Bull. 2012, 64, 2199–2210. [Google Scholar] [CrossRef]
- Gambi, C.; Canals, M.; Corinaldesi, C.; Dell’Anno, A.; Manea, E.; Pusceddu, A.; Sanchez-Vidal, A.; Danovaro, R. Impact of historical sulfide mine tailings discharge on meiofaunal assemblages (Portmán Bay, Mediterranean Sea). Sci. Total Environ. 2020, 736, 139641. [Google Scholar] [CrossRef]
- Perner, K.; Leipe, T.; Dellwig, O.; Kuijpers, A.; Mikkelsen, N.; Andersen, T.; Harff, J. Contamination of arctic Fjord sediments by Pb–Zn mining at Maarmorilik in central West Greenland. Mar. Pollut. Bull. 2010, 60, 1065–1073. [Google Scholar] [CrossRef]
- Søndergaard, J.; Asmund, G.; Johansen, P.; Rigét, F. Long-term response of an arctic fiord system to lead–zinc mining and submarine disposal of mine waste (Maarmorilik, West Greenland). Mar. Environ. Res. 2011, 71, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Medina, M.; Andrade, S.; Faugeron, S.; Lagos, N.; Mella, D.; Correa, J. Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Mar. Pollut. Bull. 2005, 50, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.; Kristensen, J.; Asmund, G.; Bjerregaard, P. Lead and zinc in sediments and biota from Maarmorilik, West Greenland: An assessment of the environmental impact of mining wastes on an Arctic fjord system. Environ. Pollut. 2001, 114, 275–283. [Google Scholar] [CrossRef]
- Oen, A.M.; Pettersen, A.; Eek, E.; Glette, T.; Brooks, L.; Breedveld, G.D. Monitoring chemical and biological recovery at a confined aquatic disposal site, Oslofjord, Norway. Environ. Toxicol. Chem. 2017, 36, 2552–2559. [Google Scholar] [CrossRef] [PubMed]
- OSPAR. OSPAR Guidelines for the Management of Dredged Material at Sea, Agreement 2014-06; OSPAR: London, UK, 2014. [Google Scholar]
- Kvassnes, A.J.S.; Iversen, E. Waste sites from mines in Norwegian Fjords. Mineralproduksjon 2013, 3, A27–A38. [Google Scholar]
- Côtè, P.; Constable, T. Evaluation of experimental conditions in batch leaching procedures. Resour. Conserv. 1982, 9, 59–73. [Google Scholar] [CrossRef]
- USEPA. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods Compendium. SW-846; USEPA: Washington, DC, USA, 2014.
- Cappuyns, V.; Swennen, R. The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J. Hazard. Mater. 2008, 158, 185–195. [Google Scholar] [CrossRef]
- Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.M.G. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef]
- Pedersen, K.B.; Reinardy, H.C.; Jensen, P.E.; Ottosen, L.M.; Junttila, J.; Frantzen, M. The influence of Magnafloc10 on the acidic, alkaline, and electrodialytic desorption of metals from mine tailings. J. Environ. Manag. 2018, 224, 130–139. [Google Scholar] [CrossRef]
- Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F.M.G.; Verloo, M. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuar. Coast. Shelf Sci. 2008, 77, 589–602. [Google Scholar] [CrossRef]
- Ghosh, U.; Talley, J.W.; Luthy, R.G. Particle-Scale Investigation of PAH Desorption Kinetics and Thermodynamics from Sediment. Environ. Sci. Technol. 2001, 35, 3468–3475. [Google Scholar] [CrossRef]
- Badea, S.-L.; Mustafa, M.; Lundstedt, S.; Tysklind, M. Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter. Sci. Total Environ. 2014, 499, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Benamar, A.; Tian, Y.; Portet-Koltalo, F.; Ammami, M.; Giusti-Petrucciani, N.; Song, Y.; Boulangé-Lecomte, C. Enhanced electrokinetic remediation of multi-contaminated dredged sediments and induced effect on their toxicity. Chemosphere 2019, 228, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Dao, V.H.; Cameron, N.R.; Saito, K. Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym. Chem. 2016, 7, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Skei, J.M.; Syvitski, J.P. Natural flocculation of mineral particles in seawater-influence on mine tailings sea disposal and particle dispersal. Mineralproduksjon 2013, 3, 1–10. [Google Scholar]
- Taylor, M.L.; Morris, G.E.; Self, P.G.; Smart, R.S. Kinetics of Adsorption of High Molecular Weight Anionic Polyacrylamide onto Kaolinite: The Flocculation Process. J. Colloid Interface Sci. 2002, 250, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Pearse, M. An overview of the use of chemical reagents in mineral processing. Miner. Eng. 2005, 18, 139–149. [Google Scholar] [CrossRef]
- Sternal, B.; Junttila, J.; Skirbekk, K.; Forwick, M.; Carroll, J.; Pedersen, K.B. The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, northern Norway. Mar. Pollut. Bull. 2017, 120, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, K.B.; Jensen, P.E.; Sternal, B.; Ottosen, L.M.; Henning, M.V.; Kudahl, M.M.; Junttila, J.; Skirbekk, K.; Frantzen, M. Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway. Environ. Sci. Pollut. Res. 2018, 25, 32901–32912. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Finne, T.; Jensen, L.; Eggen, O. Geochemistry of a copper mine tailings deposit in Repparfjorden, northern Norway. Sci. Total Environ. 2018, 644, 1219–1231. [Google Scholar] [CrossRef]
- Guttorm, N.; Christensen, A.J.S.K.; Tjomsland, T.; Leikvin, Ø.; Kempa, M.; Kolluru, V.; Velvin, R.; Dahl-Hansen, G.A.P.; Jørgensen, N.M. Consequences of Establishing Submarine or Landbased Disposal for Nussir and Ulveryggen Mine Tailings for the Marine Environment in Repparfjorden, Kvalsund Municipality, Norway (in Norwegian); 5249-01; Akvaplan-niva AS: Tromsø, Norway, 2011; pp. 1–214. [Google Scholar]
- Didriksen, T.-A.; Wilersrud, Ø. Zoning and Environmental Impact of Planned Mining of Nussir and Ulveryggen in Kvalsund Municipality (in Norwegian) Reguleringsplan med Konsekvensutredning for Planlagt Gruvedrift i Nussir og Ulveryggen i Kvalsund Kommune; SWECO: Alta, Norway, 2010. [Google Scholar]
- Pedersen, K.B.; Jensen, P.E.; Ottosen, L.M.; Evenset, A.; Christensen, G.N.; Frantzen, M. Metal speciation of historic and new copper mine tailings from Repparfjorden, Northern Norway, before and after acid, base and electrodialytic extraction. Miner. Eng. 2017, 107, 100–111. [Google Scholar] [CrossRef]
- Kleiv, R.A. Physical and Chemical Properties of Flotation Tailings from Nussir- and Ulveryggen Ores (in Norwegian); M-RAK 2011:7; NTNU: Trondheim, Norway, 2011; p. 25. [Google Scholar]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Quevauviller, P.; Rauret, G.; Muntau, H.; Ure, A.M.; Rubio, R.; Fiedler, H.D.; Griepink, B. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius' J. Anal. Chem. 1994, 349, 808–814. [Google Scholar] [CrossRef]
- The Norwegian Environment Agency. Permission to Operate under the Pollution Control Act for Nussir ASA (in Norwegian); The Norwegian Environment Agency: Oslo, Norway, 2015; pp. 1–40. [Google Scholar]
- Eriksson, L.; Trygg, J.; Wold, S. A chemometrics toolbox based on projections and latent variables. J. Chemom. 2014, 28, 332–346. [Google Scholar] [CrossRef]
- Carlson, R.; Carlson, J.E. Design and Optimization in Organic Synthesis; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- The Norwegian Environment Agency. Quality Standards for Water, Sediment and Biota (in Norwegian) Updated 30.10.2020; The Norwegian Environment Agency: Oslo, Norway, 2016; 13. [Google Scholar]
- European Commission. Technical Guidance for Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 27; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Verbruggen, E.; Smit, C.; van Vlaardingen, P. Environmental Quality Standards for Barium in Surface Water: Proposal for an Update According to the Methodology of the Water Framework Directive; National Institute for Public Health and the Environment, RIVM: Bilthoven, The Netherlands, 2020. [Google Scholar]
- Summer, K.; Reichelt-Brushett, A.; Howe, P. Toxicity of manganese to various life stages of selected marine cnidarian species. Ecotoxicol. Environ. Saf. 2019, 167, 83–94. [Google Scholar] [CrossRef]
- Christensen, G.N.; Dahl-Hansen, G.A.P.; Gaardsted, F.; Leikvin, Ø.; Palerud, R.; Velvin, R.; Vögele, B. Marine Baseline Survey of Repparfjorden in Finnmark, 2010–2011 (in Norwegian); APN 4973-01; Akvaplan-niva AS: Tromsø, Norway, 2011; pp. 1–100. [Google Scholar]
- Chen, M.; Lu, G.; Wu, J.; Sun, J.; Yang, C.; Xie, Y.; Wang, K.; Deng, F.; Yi, X.; Dang, Z. Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution. Environ. Res. 2020, 186, 109490. [Google Scholar] [CrossRef]
- Gurung, B.; Race, M.; Fabbricino, M.; Kominkova, D.; Libralato, G.; Siciliano, A.; Guida, M. Assessment of metal pollution in the Lambro Creek (Italy). Ecotoxicol. Environ. Saf. 2018, 148, 754–762. [Google Scholar] [CrossRef]
- Fonti, V.; Dell’Anno, A.; Beolchini, F. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Res. 2013, 47, 5139–5152. [Google Scholar] [CrossRef]
- Wang, F.; Yu, J.; Xiong, W.; Xu, Y.; Chi, R.-A. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge. Environ. Sci. Pollut. Res. 2018, 25, 1752–1765. [Google Scholar] [CrossRef]
- Pedersen, K.B.; Lejon, T.; Jensen, P.E.; Ottosen, L.M.; Evenset, A.; Frantzen, M. Impacts of climate change on metal leaching and partitioning for submarine mine tailings disposal. 2022; To be submitted. [Google Scholar]
- Atkinson, C.A.; Jolley, D.; Simpson, S. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef] [Green Version]
- Keshavarzifard, M.; Moore, F.; Sharifi, R. The influence of physicochemical parameters on bioavailability and bioaccessibility of heavy metals in sediments of the intertidal zone of Asaluyeh region, Persian Gulf, Iran. Geochemistry 2019, 79, 178–187. [Google Scholar] [CrossRef]
- Ho, H.H.; Swennen, R.; Cappuyns, V.; Vassilieva, E.; Van Gerven, T.; Van Tran, T. Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in Cam River-mouth (Vietnam) under influence of pH and oxidation. Sci. Total Environ. 2012, 435–436, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Beolchini, F.; Fonti, V.; Rocchetti, L.; Saraceni, G.; Pietrangeli, B.; Dell’Anno, A. Chemical and biological strategies for the mobilisation of metals/semi-metals in contaminated dredged sediments: Experimental analysis and environmental impact assessment. Chem. Ecol. 2013, 29, 415–426. [Google Scholar] [CrossRef]
- Davidson, C.; Thomas, R.P.; McVey, S.E.; Perala, R.; Littlejohn, D.; Ure, A.M. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Anal. Chim. Acta 1994, 291, 277–286. [Google Scholar] [CrossRef]
- Sparks, D.L. (Ed.) 6—Ion Exchange Processes. In Environmental Soil Chemistry, 2nd ed.; Academic Press: Burlington, VT, USA, 2003; pp. 187–205. [Google Scholar]
- Sjöberg, E.; Rickard, D. Temperature dependence of calcite dissolution kinetics between 1 and 62 °C at pH 2.7 to 8.4 in aqueous solutions. Geochim. Cosmochim. Acta 1984, 48, 485–493. [Google Scholar] [CrossRef]
- Sulpis, O. Calcite Dissolution Kinetics at the Sediment-Water Interface in an Acidifying Ocean; McGill University (Canada): Montreal, QC, Canada, 2019. [Google Scholar]
- Miranda, L.S.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties. J. Hazard. Mater. 2021, 421, 126743. [Google Scholar] [CrossRef]
- Doula, M.; Ioannou, A.; Dimirkou, A. Thermodynamics of Copper Adsorption-Desorption by Ca-Kaolinite. Adsorption 2000, 6, 325–335. [Google Scholar] [CrossRef]
- Li, Y.; Yue, Q.; Gao, B. Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid. J. Hazard. Mater. 2010, 178, 455–461. [Google Scholar] [CrossRef]
- Hsu, J.H.; Lo, S.L. Characterization and Extractability of Copper, Manganese, and Zinc in Swine Manure Composts; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Larsen, F.; Postma, D. Nickel Mobilization in a Groundwater Well Field: Release by Pyrite Oxidation and Desorption from Manganese Oxides. Environ. Sci. Technol. 1997, 31, 2589–2595. [Google Scholar] [CrossRef]
- Matern, K.; Lux, C.; Ufer, K.; Kaufhold, S.; Mansfeldt, T. Removal of nickel from groundwater by iron and manganese oxides. Int. J. Environ. Sci. Technol. 2019, 16, 2895–2904. [Google Scholar] [CrossRef]
- Bailey, S.E.; Hwang, S.; Brooks, M.C.; Schroeder, P.R. Evaluation of Chemical Clarification Polymers and Methods for Removal of Dissolved Metals from CDF Effluent. 2006. Available online: https://apps.dtic.mil/sti/pdfs/ADA452680.pdf (accessed on 9 March 2022).
- Hage, J.; Mulder, E. Preliminary assessment of three new European leaching tests. Waste Manag. 2004, 24, 165–172. [Google Scholar] [CrossRef]
- Townsend, T.; Jang, Y.-C.; Tolaymat, T. A Guide to the Use of Leaching Tests in Solid Waste Management Decision Making; University of Florida, The Florida Center for Solid and Hazardous Waste: Gainesville, FL, USA, 2003. [Google Scholar]
- Lillicrap, A.; Sweetman, A.; Macrae, K.; Heiaas, H. Determination of the Acute Toxicity of Mine Tailings from Nussir. ASA to the Marine Alga Skeletonema Costatum, the Marine Copepod Tisbe Battagliai and the Polychaete Arenicola Marina; NIVA: Oslo, Norway, 2011; Available online: https://niva.brage.unit.no/niva-xmlui/handle/11250/215449 (accessed on 9 March 2022).
- Farkas, J.; Altin, D.; Hansen, B.H.; Øverjordet, I.B.; Nordtug, T. Acute and long-term effects of anionic polyacrylamide (APAM) on different developmental stages of two marine copepod species. Chemosphere 2020, 257, 127259. [Google Scholar] [CrossRef] [PubMed]
- Berge, J.; Beylich, B.; Brooks, S.; Jaccard, P.; Tobiesen, A.; Øxnevad, S. Monitoring of Bøkfjorden 2011 and Toxicity Tests of Process Chemicals Magnafloc LT 38 and Magnafloc 10 (in Norwegian); NIVA: Oslo, Norway, 2012; Available online: https://niva.brage.unit.no/niva-xmlui/bitstream/handle/11250/215821/6310-2012_72dpi.pdf?sequence=1&isAllowed=y (accessed on 9 March 2022).
- Othmani, B.; Rasteiro, M.G.; Khadhraoui, M. Toward green technology: A review on some efficient model plant-based coagulants/flocculants for freshwater and wastewater remediation. Clean Technol. Environ. Policy 2020, 22, 1025–1040. [Google Scholar] [CrossRef]
Exp. No. | Salinity (ppt) | pH | Aerated/Anoxic | Stirring | DOC (mg/L) | Temperature °C | Magnafloc10 (µg/mg) |
---|---|---|---|---|---|---|---|
1 | 0.5 | 6 | Air | No | 0.5 | 4 | 0 |
2 | 40 | 6 | Nitrogen | No | 0.5 | 20 | 60 |
3 | 0.5 | 6 | Air | Yes | 20 | 20 | 60 |
4 | 40 | 6 | Nitrogen | Yes | 20 | 4 | 0 |
5 | 0.5 | 9 | Nitrogen | No | 20 | 4 | 60 |
6 | 40 | 9 | Air | No | 20 | 20 | 0 |
7 | 0.5 | 9 | Nitrogen | Yes | 0.5 | 20 | 60 |
8 | 40 | 9 | Air | Yes | 0.5 | 4 | 0 |
9 | 20 | 7.5 | Air | Yes | 10 | 20 | 30 |
10 | 20 | 7.5 | Air | Yes | 10 | 20 | 30 |
11 | 20 | 7.5 | Air | Yes | 10 | 20 | 30 |
Mine Tailings | Repparfjord Sediment | 1:1 Mine Tailing and Repparfjord Sediment | |
---|---|---|---|
Al | 6580 ± 30 | 9010 ± 100 | 7740 ± 240 |
Ba | 140 ± 3 | 29 ± 4 | 145 ± 6 |
Ca | 78,300 ± 105 | 2285 ± 110 | 36,600 ± 1800 |
Fe | 9600 ± 105 | 16,680 ± 105 | 11,350 ± 350 |
K | 5170 ± 50 | 4720 ± 140 | 5400 ± 160 |
Mg | 19,400 ± 125 | 6590 ± 60 | 15,020 ± 440 |
Mn | 2700 ± 40 | 147 ± 1.3 | 1450 ± 60 |
As | 0.3 ± 0.03 | 2.7 ± 0.3 | 2.3 ± 0.5 |
Cd | 0.1 ± 0.01 | <0.05 | <0.05 |
Cr | 58 ± 1.0 | 20 ± 2.0 | 72 ± 1.7 |
Cu | 1000 ± 10 | 11 ± 3.5 | 230 ± 13 |
Ni | 22 ± 1.0 | 12 ± 1.1 | 30 ± 0.8 |
Pb | 1.3 ± 0.1 | 5.4 ± 1.3 | 4.0 ± 1.3 |
Zn | 11 ± 1.3 | 19 ± 2.7 | 17 ± 2.7 |
Exp. No. | Al | Ba | Fe | Ca | Mn | Cr | Cu | Ni |
---|---|---|---|---|---|---|---|---|
1 | <0.01 | 0.31 | <0.01 | 4.1 | 0.71 | <0.01 | 0.05 | 0.11 |
2 | <0.01 | 0.17 | <0.01 | 10 | 0.84 | <0.01 | 0.15 | 0.23 |
3 | <0.01 | 0.40 | <0.01 | 3.9 | 0.56 | <0.01 | 0.06 | 0.16 |
4 | <0.01 | 0.29 | <0.01 | 7.3 | 1.57 | <0.01 | 0.14 | 0.41 |
5 | <0.01 | 0.08 | <0.01 | 0.3 | 0.01 | <0.01 | 0.06 | <0.01 |
6 | <0.01 | 0.10 | <0.01 | 1.4 | 0.19 | <0.01 | 0.07 | 0.09 |
7 | 0.03 | 0.17 | 0.05 | 0.5 | 0.08 | <0.01 | 0.03 | <0.01 |
8 | <0.01 | 0.14 | <0.01 | 1.1 | 0.02 | <0.01 | 0.78 | 0.16 |
9 | <0.01 | 0.11 | <0.01 | 1.8 | 0.25 | 0.02 | 0.09 | 0.07 |
10 | <0.01 | 0.11 | <0.01 | 1.4 | 0.10 | 0.02 | 0.08 | 0.03 |
11 | <0.01 | 0.11 | <0.01 | 1.7 | 0.18 | 0.03 | 0.08 | <0.01 |
Al | Ba | Fe | Mn | Cr | Cu | Ni | |
---|---|---|---|---|---|---|---|
Metal leaching | |||||||
Min. concentration | <0.01 | 0.12 | <0.01 | 0.08 | <0.01 | 0.08 | <0.01 |
Max. concentration | 1.9 | 0.58 | 5.7 | 25 | 0.02 | 1.9 | 0.11 |
Mean concentration | -* | 0.26 | -* | 6.2 | -* | 0.35 | 0.04 |
Confidence interval | -* | 0.10 | -* | 5.1 | -* | 0.34 | 0.03 |
Exchangeable fraction | |||||||
Min. concentration | 16 | 6.8 | 490 | 560 | 0.02 | 14 | 0.04 |
Max. concentration | 24 | 14 | 740 | 920 | 0.07 | 21 | 0.27 |
Mean concentration | 20 | 9.8 | 585 | 820 | -* | 19 | 0.18 |
Confidence interval | 1.1 | 1.6 | 43 | 65 | -* | 1.6 | 0.05 |
Reducible fraction | |||||||
Min. concentration | 5.7 | 14 | 525 | 250 | 0.07 | 0.8 | 0.04 |
Max. concentration | 15 | 18 | 625 | 350 | 0.09 | 3.6 | 0.27 |
Mean concentration | 10 | 15 | 555 | 280 | 0.08 | 1.9 | 0.18 |
Confidence interval | 1.7 | 0.9 | 20 | 20 | 0.01 | 0.7 | 0.05 |
Oxidizable fraction | |||||||
Min. concentration | 90 | 5.9 | 34 | 1590 | 0.4 | 100 | 1.0 |
Max. concentration | 210 | 13 | 550 | 2780 | 2.7 | 140 | 1.4 |
Mean concentration | 116 | 9.2 | 210 | 235 | 0.9 | 120 | 1.2 |
Confidence interval | 22 | 1.5 | 100 | 32 | 0.4 | 7.9 | 0.1 |
Residual fraction | |||||||
Min. concentration | 6620 | 98 | 9470 | 112 | 55 | 94 | 22 |
Max. concentration | 7940 | 115 | 11650 | 132 | 75 | 114 | 30 |
Mean concentration | 7360 | 108 | 10180 | 120 | 64 | 104 | 25 |
Confidence interval | 320 | 3.6 | 420 | 4.5 | 5.0 | 4.4 | 1.8 |
Ba | Cu | Mn | Ni | |||||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |
Experimental settings | ||||||||
pH | 9 | 6 | 9 | 6 | 9 | 6 | 9 | 6 |
Salinity (ppt) | 40 | 0.5 | 0.5 | 40 | 0.5 | 40 | 0.5 | 40 |
Stirring | No | Yes | No | Yes | No | Yes | No | Yes |
Temperature (°C) | 20 | 4 | 20 | 4 | 4 | 20 | 20 | 4 |
DOC | 20 | 0.5 | 0.5 | 20 | 20 | 0.5 | 20 | 0.5 |
Aerated/anoxic | Aerated | Anoxic | Anoxic | Aerated | Anoxic | Aerated | Aerated | Anoxic |
Magnafloc10 (µg/kg) | 60 | 0 | 60 | 0 | 60 | 0 | 60 | 0 |
PLS prediction | ||||||||
Leaching (mg/kg) | 0.10 | 0.65 | 0.03 | 1.5 | 0.06 | 98 | 0.01 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen, K.B.; Lejon, T.; Evenset, A. Tailored Leaching Tests as a Tool for Environmental Management of Mine Tailings Disposal at Sea. J. Mar. Sci. Eng. 2022, 10, 405. https://doi.org/10.3390/jmse10030405
Pedersen KB, Lejon T, Evenset A. Tailored Leaching Tests as a Tool for Environmental Management of Mine Tailings Disposal at Sea. Journal of Marine Science and Engineering. 2022; 10(3):405. https://doi.org/10.3390/jmse10030405
Chicago/Turabian StylePedersen, Kristine B., Tore Lejon, and Anita Evenset. 2022. "Tailored Leaching Tests as a Tool for Environmental Management of Mine Tailings Disposal at Sea" Journal of Marine Science and Engineering 10, no. 3: 405. https://doi.org/10.3390/jmse10030405
APA StylePedersen, K. B., Lejon, T., & Evenset, A. (2022). Tailored Leaching Tests as a Tool for Environmental Management of Mine Tailings Disposal at Sea. Journal of Marine Science and Engineering, 10(3), 405. https://doi.org/10.3390/jmse10030405