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Abstract: This observational study is concerned with the seasonal variability of near-inertial internal
waves (NIWs) in the central part of the Black Sea. Rotary spectral analysis of the nearly year-long
time series of the sea current velocity measurements at 100 m and 1700 m revealed the prevailing
anticyclonic component of the motions near the local inertial frequency f. Both the rotary spectra
and the visual exploration of the time series showed that the peaks of NIWs were blue-shifted to
higher frequencies. The monthly average blue-shift was stronger up to 1.038f in the summer. It was
found that the minimum intensification of the NIWs occurred in summertime and the maximum
intensification was characteristic of the autumn-winter period when the NIW packets included up to
16 waves with pronounced clockwise rotation of the velocity vectors.

Keywords: internal waves; near-inertial motions; currents; Black Sea; central basin

1. Introduction

Ocean internal gravity waves propagate through the stratified interior of the ocean.
As waves propagate, they interact with each other, producing an internal gravity wave
continuum consisting of energy in many frequencies. The propagation of NIW energy can
lead to mixing due to wave breaking in the thermocline [1,2]. It is well known that the
average annual contribution of inertial internal waves (IWs) to the global energy flux in the
upper mixed layer in the ocean is comparable to that of internal tides [3]. Among possible
generation mechanisms of inertial internal waves are wind forcing [4,5] and nonlinear
interactions of IWs (which likely leads to the generation of inertial waves of higher modes),
the formation of lee waves by geostrophic flow over the seabed topography, and generation
due to the interaction of mesoscale and submesoscale motions [1]. An analytical solution for
inertial internal waves in the boundary layers was given in [6]. In particular, the boundary
layers were shown to be dependent on the horizontal extension of the wind forcing: the
smaller the scale is, the sharper the boundary layer and the stronger the localization of
inertial oscillations at the Ekman layer boundary. For inertial oscillations that propagate
over regions of a horizontal size of baroclinic Rossby radius and larger, the boundary
layers are significantly thicker and develop more slowly, and the fluctuations can reach
the bottom.

Using an extensive moored current-meter database it was shown that the winter
enhancement by a factor of 4–5 in the Northern Hemisphere for latitudes 25◦–45◦ at all
depths less than 4500 m is in good agreement with the seasonal cycle of wind-forced
mixed-layer energy flux [7]. The IWs were typically observed in short packets, so it was
often difficult to define the wave frequency with a high degree of accuracy [1]. Below we
study the seasonal change of IW during almost year-long observations using the current
meter mooring data in the Black Sea.
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The semi-enclosed Black Sea is a bowl-shaped and deep (>2000 m) basin, where inertial
motions dominate the dynamics at time scale < 1 day throughout the water column [8].
In the Black Sea, the effect of near-inertial internal waves on the generation of turbulence
and vertical mixing in the pycnocline is of a great importance [9,10]. The Black Sea tides
are so small [11] that the tidal waves do not interfere with IWs. The significance of IWs in
hydrophysical studies of the Black Sea is primarily determined by the role as an energy
source for internal waves in a higher frequency range, which is important for mixing.

Instrumental observations of inertial motions in the Black Sea have been conducted
since the 1960s [12–14]. Measurements of the IWs in the Black Sea were carried out using
moorings equipped with temperature sensors and acoustic Doppler current profilers [15–17].
Observations were often conducted in the sea coastal zone during the summer-autumn
season, although some data were obtained under winter stratification conditions. Measure-
ments were rare at the continental slope due to difficulties with setting up the oceanographic
instruments in the strong boundary current named the Rim Current (for the Black Sea
circulation, see observational and modeling studies [18–21]). Recently, the IWs of the
second mode were recorded [15]. These and other studies [22,23] were also concerned
with the manifestation of abnormal inertial motions in the Black Sea, such as cyclonic
rotation of hodographs of inertial currents, similar to those observed on the ocean shelf in
the Northern Hemisphere [24]. Over the Black Sea, the IWs were also observed by remote
sensing methods using radars, spectrometers, and radiometers onboard of Envisat, ASAR,
ERS-2 SAR, and Landsat-5, 7, and 8 satellites [25,26].

The inertial motions can be identified in the frequency spectra by a peak close to
the local inertial frequency f [27,28]. Due to the shift relative to f, IWs are called near-
inertial waves (NIWs) [29]. In the Black Sea, the frequency of near-inertial motions’ peak
in the energy spectrum was found to be 4–5% higher than f [8], which is a so-called blue-
shift of frequency [30]. In the Black Sea the magnitude of this shift was consistent with
theoretical and experimental values obtained in other regions of the World Ocean [31,32].
In addition, the blue-shift increased with depth, which did not contradict the theory. For
the Black Sea, the share of NIWs energy in the total kinetic energy increases from 10% at a
depth of 50 m to 30% at 350 m [16]. This estimation was obtained for the averaged profile
of the vertical stratification observed in the autumn, when the buoyancy frequency maxima
were located in the seasonal pycnocline at a depth of 35 m, in the cold intermediate
layer (CIL) at 50 m, and in the main pycnocline at 105 m [33,34]. It should be noted
that the seasonal thermocline isolates the CIL and the underlying water masses from
atmospheric impact in the warm period of the year. Above the core of the CIL, there is a
stable stratification both in temperature and salinity; deeper, the stratification is unstable in
temperature and stable in salinity.

Although there have been collected various data about inertial motions in the Black
Sea, most of the observations were limited to the coastal areas and the summer sea-
son. For the central part of the sea, the observations were of short duration and for the
summer–autumn period only. The data analyzed in this study is based on frequent nearly
year-long measurements in the CIL layer (the upper part of the main pycnocline) and in
the deep layer (approximately 100 m above the sea bottom). Our study region is suitable
for NIW observations for several reasons: the basin is microtidal, the study point is far
from the continental shelf and coast, where the bottom is almost flat, and there is no sea
breeze activity. Specific examples of the manifestations of NIWs are considered to compare
the variability in different seasons. Additionally, an analysis of near-inertial fluctuations is
presented for the annual series of sea temperature at 265 m depth in the northeastern part
of the deep basin of the Black Sea (see Appendix B).

2. Materials and Methods

The anchored buoy station (ABS) was deployed in the northwestern part of the central
basin of the Black Sea in 2016–2017. The mooring (ABS No. 1 in Figure 1) was deployed
at ~1800 m depth at 43◦47′ N 32◦04′ E. The top buoy of the mooring was located at a
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depth of 50–60 m in order to avoid the effect of waves and strong near-surface currents.
The mooring was equipped with the acoustic Doppler current meters at fixed depths as
follows: a Sontek Argonaut at 100 m and a Nortek Aquadopp at 1700 m. We analyzed
Sontek data from 1 December 2016 to 5 October 2017 and Nortek data from 1 December
2016 to 30 November 2017.The temperature was recorded at 100 m. The measurement
interval was 15 min and the internal instrumental averaging was 5 min. Noticeably, the
measurement interval of 15 min is 0.0145 part of the local inertial period at the ABS
No. 1 mooring site. Additionally, to get the time series of the sea temperature, the north-
eastern station (ABS No. 2) was deployed at the 2160 m depth at 43◦26′ N 36◦22′ E from
18 December 2017 to 4 December 2018 (results are discussed in the Appendix B). It was
equipped with RBR Duet instrument fixed at a depth of 265 m. The sampling interval for
the temperature was set to 30 s.
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Figure 1. The anchored buoy stations (ABS) locations in 2016–2018. Bathymetry of the Black Sea
according to ETOPO1 data doi:10.7289/V5C8276M. 1—is for ABS No. 1, 2—is for ABS No. 2.

The de-trended time series of the current velocity were processed using rotary spec-
tral analysis, or the method of rotational components, which has become widespread in
oceanography since the 1970s [35,36] in particular, in applications to tidal [37] and inertial
currents [38]. The method is based on a representation of the horizontal velocity vector as a
complex number:

u(t) = u(t) + iv(t), (1)

where t is time, u and v are zonal and meridional components, and i =
√
−1. The velocity

vector can be decomposed for each frequency into two oppositely rotating motions, each
with its amplitude (A+, A−) and phase (θ+, θ−). Counterclockwise rotations correspond
to movements with positive frequencies, and clockwise rotations correspond to negative
ones. The components of the two-dimensional velocity vector at the inertial frequency
make periodic elliptic orbits in the hodograph plane. Energy spectra are determined for
both the negative and positive frequencies. The total energy spectrum S(ω), where ω
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is the frequency, can be represented as the sum of the clockwise and counterclockwise
components of the spectra ranges in the following form:

S(ω) = S−(ω) + S+(ω) (2)

As follows from the classic theory (for example, [28,35]) for the Northern Hemisphere,
inertial oscillations appear in the clockwise component. One of the characteristics of a
random vector process is the rotary coefficient r(ω), proposed in [35]:

r(ω) =
S−(ω)− S+(ω)

S−(ω) + S+(ω)
. (3)

For clockwise movements, the rotary coefficient is positive r(ω) ≥ 0 and for inertial
oscillations r(ω) = 1; in this case, the rotation of the velocity vector is observed as a circular
orbit. When r(ω) 6= 1, the orbit approaches an ellipse.

For the rotary spectral analysis we used the software package jLab v.1.7.1 [39]
http://www.jmlilly.net/software, accessed on 1 March 2022. The availability of nearly
year-long measurements of the currents with a 15-min sampling rate makes it possible
to carry out a frequency spectral analysis that is statistically rigorous and reveals the sea-
sonal variability of the observed NIWs. At the first stage of data processing, the energy
spectra of the clockwise (anticyclonic) and counterclockwise (cyclonic) components of
the current velocity were estimated for the entire observation period. Then, the rotary
energy spectra were calculated for each month, and the annual variability of the NIWs
was analyzed.

To assess the thermohaline stratification conditions near the ABS No. 1, the vertical
profiles of the density and buoyancy frequency (Brunt–Väisäla) were calculated from the
temperature and salinity data of the Argo floats (Nos. 6901832, 6901833, and 6901834) [40]
for 2017. Notice that the Argo floats are the primary research tools for contemporary
oceanography of the Black Sea [41–46].

To assess the atmospheric forcing condition, the correlation analysis between the
surface wind vector U and the current vector u was performed. The wind data were
taken from the ERA-5 meteorological reanalysis data, which combine model data and
observations on a grid with 0.25◦ latitude and longitude spacing. The hourly data of the
near-surface wind at the height of 10 m from the sea surface at a grid point close to the ABS
No. 1 site were used. To find the correlations between the time series U(t) and u(t), the
complex correlation method proposed by [47] was used. The complex correlation coefficient
was defined as the normalized inner product of two vector time series:

ρ0 = ρ exp(iϕ) =
〈U(t)u∗(t)〉

〈U(t)U∗(t)〉1/2〈u(t)u∗(t)〉1/2 , (4)

where the asterisk (*) is the complex conjugate operator, 〈 〉 denotes the ensemble-average
operator, ρ is the the magnitude of the correlation, and ϕ gives the mean counterclockwise
rotation angle of the current velocity vector relative to the wind velocity vector.

To estimate the correlation coefficient ρτ with a time lag (τ), we have:

ρτ =
〈U(t)u∗(t + τ)〉

〈U(t)U∗(t)〉1/2〈u(t + τ)u∗(t + τ)〉1/2 . (5)

Before calculating the correlations, the time series U(t) and u(t) were de-trended.
Since the reanalysis wind data included diurnal breeze signal (which is somewhat atypical
for a point in the central part of the sea), the wind data were filtered. The fourth-order
Butterworth bandpass filter was applied to extract near diurnal velocities. The cutoff fre-
quency band was [0.916, 1.083] fdiurnal , where the diurnal wind frequency
fdiurnal = 0.0416 cph. For the correlation calculation, time windows of 96–100 h and
lags τ ≤ 48 h were selected.

http://www.jmlilly.net/software
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The estimates of the NIW period based on the results of spectral analysis of relatively
short (1 month) time series may possess large uncertainty. This could be due to the phase
modulation of NIWs generated by successive atmospheric storms, which might occur
occasionally. Thereby, the total number of NIW crests in the time series of the velocity
components for the identified NIW packets for each month was calculated manually. To do
this, we visually identified the NIW packets and estimated the time interval between the
crests of two adjacent waves in the packet. The average period of waves was determined
for each month as the arithmetic means of the sum of the average periods of identified
packets. Taking into account the measurement interval of 15 min, the error of the individual
estimate of the distance between two inertial waves was 1.45% of the local inertial period.
The NIW intermittency was calculated as the ratio of the duration of the identified NIWs to
the total observation time for each month.

3. Results
3.1. Vertical Stratification and Near-Inertial Currents

The vertical stratification was obtained from the Argo float data available in the
observation region for 2017 (Figure 2). In the warm season, the vertical stratification was
characterized by seasonal and main pycnoclines. The upper quasi-homogeneous layer
began to form in April due to the warming of surface waters and could be observed until
October. The seasonal pycnocline was sharpest in June at depths of 30–40 m. In autumn,
the position of its lower boundary gradually shifted to a depth of 50 m. Two maxima
characterized the buoyancy frequency profile: subsurface N = 23 cph and deep maximum
N > 10 cph in the main pycnocline that was located usually below 80 m.
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Figure 2. Vertical profiles of the temperature T, potential density σθ , and the Brunt-Väisäla frequency
N near to ABS No. 1 for 11 January, 13 April, 13 June, and 11 October 2017, based on data from Argo
floats Nos. 6901832, 6901833, and 6901834. Profiles are given to a depth of 500 m to show the changes
in the upper layer of the sea in more detail.

According to ABS No. 1 observations at a depth of 100 m, the average current velocity
was 〈|u|〉 = 0.087 ms−1, the standard deviation was σu = 0.04 ms−1, and the current
was oriented mainly to the southwest (207◦). Seasonal changes in the current velocity
were observed: the highest values were noted in winter, mainly in December (maximum
of 0.28 ms−1), and the minimum occurred in summer. At this depth, the temperature varied
from 8.35 ◦C (in December) to 8.5 ◦C (in March and May) at a depth of 100 m (Figure 3). The
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range of the temperature variations was small because the measurement depth was located
under the CIL core at the top of the main pycnocline. At 1700 m depth, 〈|u|〉 = 0.028 ms−1,
σu = 0.017 ms−1, the average direction was eastward (167◦).
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During winter months, mainly in January–February, strong inertial motions were
distinguished by the rotation of the vector u with near-inertial frequency (Figure 4). At
100 m depth, the inertial orbital motion was of 0.5–1.5 km diameter. At 1700 m depth, the
hodograph orbits were not closed. Instead, the hodographs were arc-shaped with a typical
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horizontal scale of 0.5–0.7 km. Note that the baroclinic Rossby radius for the deep-water
part of the Black Sea could be 15–25 km [48].
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Figure 4. Progressive vector diagram of the currents at 100 m and 1700 m depths of ABS No. 1 from
00:00 20 January 2017 to 03:00 24 January 2017. The data were averaged over 1 h. The horizon-
tal and vertical axes show the distances in longitude and latitude from the starting points of the
data ensembles.

3.2. Rotary Spectra of the Currents

In the power spectra, a peak close to the local inertial frequency (f = 0.058 cph) and
clockwise rotation indicate the frequent presence of NIW at 100 m in the central basin of the
Black Sea (Figure 5a). At frequencies close to the local inertial one, the value of the rotary
coefficient approached 1, which indicates that clockwise rotation dominated at the inertial
frequency, and the velocity vector made an ellipse-like turn (Figure 5b).
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The clockwise power spectra of the current velocity at 100 m for each month are shown
in Figure 6. A distinct peak was found at a frequency of 0.058–0.061 cph (in the range
of periods 17.24–16.39 h) every month. At 100 m depth, the energy peak was highest in
February and lowest in July (inset in Figure 6). The ratio of the peaks in February and in
July was about 8.5.
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In the deep layer at 1700 m, there was also a significant peak near the inertial frequency
(Figure 7), and the anticyclonic velocity component prevailed over the cyclonic. The NIWs
were most energetic in January and weakest in June. The ratio between the local spectral
peak maximum and the local spectral peak minimum was as high as 14.0. A comparison
of the spectra at 100 m and 1700 m shows that the energy level in the upper layer was an
order of magnitude higher than that in the deep layer. In addition, the smaller maximum
at the superinertial frequency 2f was observed in winter (December–February), spring
(March–May), and September.
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3.3. Seasonal Variation of Near-Inertial Waves
3.3.1. Winter Season

At the beginning of the winter season, the intensification of NIWs alternated with
periods of calm at a 100 m depth. Strong intermittence or enhanced temporal variability
of wave packets was observed (Figure 8a). From 1 to 4 December, near-inertial oscilla-
tions weakened, and then modulation occurred, possibly caused by a sharp change in
the near-surface wind direction. A time shift of 36–40 h between the wind action and the
response was noted (Figure 8b). From 8 to 13 December, the NIWs decreased, due to a
stabilizing effect of the southwestern wind blowing for more than 100 h (Figure 8a). The
current speed was reduced, although the hodographs rotation with the inertial frequency
persisted. The next packet of near-inertial motions developed again after 13 December and
continued until 20 December (Figure 8a). During these episodes, 10 crests of inertial waves
passed. This wave packet was preceded by increased speed of the southeastern wind up
to 8 m s−1 on 12–13 December. For this observation ensemble, the maximum correlation be-
tween wind and current vectors was ρτ = 0.53 at the time lag τ = 45–48 h. On 21 December,
the current direction changed. Then the new packet of regular and intense near-inertial
oscillations of an increased period arrived. In the first wave packet in the second part of
December, the period was about 15.81 h. The wave period extended to 17.73 h in the second
wave packet and then turned to 16.94 h in the third packet.
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Figure 8. (a) Top—wind speed U(t) vector plot from the ERA-5 meteorological reanalysis data. The
second plot from the top is the current velocity u(t) at 100 m at ABS No. 1 in December 2016, and
the third plot from the top shows the u- and v-components of the current velocity. Bottom—wind
speed after band-pass filtering for 22–26 h. (b) Top—lagged correlations ρτ between the wind and
current vectors for 1–4, 5–8, and 13–16 December 2016, bottom—the angle ϕ of rotation of the current
velocity vector relative to the wind velocity vector.

An intensification of NIWs was observed on 6–10 January 2017 (Appendix A,
Figure A1). This amplification was preceded by a sharp increase in the north wind speed.
Another intense NIW packet was observed on 11–16 January, when five waves were
recorded. Starting from 17 January, a well-defined sequence of 13 waves with a period
of 16.79 h arrived. The wave amplitude gradually decreased by 25 January. The correla-
tion maxima between the wind and current velocity vectors for 12–16 January and 20–24
January were ρτ = 0.43 and ρτ = 0.44, with time lags of 30–37 and 30–43 h, respectively.
The rotation angle between the current velocity and wind vector ϕ varied from −165◦–170◦

to 160◦–180◦.
As noted above, persistent long-term forcing by intense wind could suppress in-

ertial oscillations, such as those observed in February 2017 (Figure 9). There were no
inertial oscillations during the period of the northeastern wind on 8–14 February. The
intensification of inertial fluctuations happened again after 14 February and could be
observed for almost 14 days. These oscillations could originate due to changes in the
strength and direction of the wind. The packet of 15 inertial internal waves was recorded
during this period, reaching the maximum amplitude on 18–19 February. During the
passage of the NIW packets, positive correlations were noted between the wind and current
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velocity vector at τ = 31–36 h. Notably, NIWs were developed during the prevailing
southeasterly. The intensification of NIWs peaked after 5–6 periods, and then a slow decay
followed (Figure 9). The inertial fluctuations dissipated after the wind direction changed to
the northeastern.
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Figure 9. (a) Top—wind speed U(t) vector plot from the ERA-5 meteorological reanalysis data. The
second plot from the top is the current velocity u(t) at 100 m at ABS No. 1 in February 2017, and the
third plot from the top shows the u- and v-components of the current velocity. Bottom—wind speed
after band-pass filtering for 22–26 h. (b) Top—lagged correlations ρτ between the wind and current
vectors for 16–20 and 21–25 February 2017, bottom—the angle ϕ of rotation of the current velocity
vector relative to the wind velocity vector.

3.3.2. Spring–Summer Period

In the spring–summer period of 2017, the NIW energy was getting lower than that in
the winter season (Figures 6 and 7). NIWs were observed more clearly in the current speed
data, and the velocity hodographs underwent significant changes. In March, there were
certain periods of intensification of inertial oscillations with a maximum after 27 March
(Figure A2). The wind was usually weak 3 m s−1 or less increasing to 8 m s−1 on some days.
The most intense NIWs were observed just after such an intensification of the wind forcing.
The maximum correlation between the surface wind and current vectors was relatively low
ρτ = 0.44 with a time lag τ = 31–45 h.

In the summer conditions of June 2017 (Figure 10), the NIW energy at 100 m depth
was at the annual minimum. Four short packets of NIWs appeared during this month.
Each event consisted of 3–7 oscillations. At the beginning of June, the strong NIWs
(|u| ≈ 0.2 m s−1) were of a period 16.33 h. Later the current speed in the NIWs dimin-
ished to 0.05–0.10 m s−1. In June, the values of ρτ were insignificant; only on 16–20 June,
ρτ = 0.44 at τ = 38–48 h (Figure 10b).
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Figure 10. (a) Top—wind speed U(t) vector plot from the ERA-5 meteorological reanalysis data. The
second plot from the top is the current velocity u(t) at 100 m at ABS No. 1 in June 2017, and the
third plot from the top shows the u- and v-components of the current velocity. Bottom—wind speed
after band-pass filtering for 22–26 h. (b) Top—lagged correlations ρτ between the wind and current
vectors for 16–20 June 2017, bottom—the angle ϕ of rotation of the current velocity vector relative to
the wind velocity vector.

In the warm season as compared with winter conditions, the orbits of near-inertial
motions significantly changed (Figure 11). The hodographs did not close and had the shape
of an arc elongated to the southwest in March and northwest in June, which indicated
the main direction of the water mass transport. The rotation of the hodographs was
insignificant at the 1700 m depth.
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3.3.3. Autumn Season

As shown in above Figures 6 and 7, the energy level at the inertial frequency in Septem-
ber was close to the January values. The inertial oscillations of the velocity components un-
derwent temporal variations in September (Figure 12). Long packets of 3–13 inertial cycles
were observed. In the longer packets, the intensification happened at the 4th–6th oscillation.
The maximum amplitudes of the current velocity fluctuations reached 0.2 m s−1. Then
the NIWs slowly dissipated. The results of the correlation analysis between the wind and
current velocity vectors show significant positive correlations maximum ρτ = 0.52 for
the NIW packets during 1–4 and 16–20 September (Figure 12b) at the time lags τ of 25 h
and 28 h, respectively. In September, meteorological conditions were characterized by a
frequent change in the wind direction with a frequency close to inertial (Figure 12a).
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Figure 12. (a) Top—wind speed U(t) vector plot from the ERA-5 meteorological reanalysis data. The
second plot from the top is the current velocity u(t) at 100 m at ABS No. 1 in September 2017, and the
third plot from the top shows the u- and v-components of the current velocity. Bottom—wind speed
after band-pass filtering for 22–26 h. (b) Top—lagged correlations ρτ between the wind and current
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vector relative to the wind velocity vector.

3.4. The Seasonal Variability of the Blue-Shift in the Near-Inertial Frequency

The spectral analysis revealed the blue-shift frequency of NIWs (see Section 3.2 above).
This was confirmed by visual identification of the NIW periods, which showed that the
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average periods were mainly shorter than the inertial ones (Table 1). The shortest periods
varied from 14.8 h in January to 15.3 h in August, while the largest varied more broadly
from 19.25 h to 20.8 h in April. The monthly average periods were almost the same as the
local inertial period in March and April. In May and June, the observed NIW’s periods
became shorter ~16.6 h. In July and September, these were nearly 16.8 h and later in
December, they shortened again to 16.6 h. In terms of frequency, the monthly average shift
was in the range from 1.002f to 1.038f, i.e., 0.2–3.8%. The high temporal intermittency was a
remarkable feature of NIWs. The modulation time scale increased in winter (~11.3 days in
December, 10.5 days in February) and shortened in the spring–summer period (1.4 days
in May, 1.3 days in August). The maximum number of NIWs was observed in December
and September (39 and 34 fluctuations, respectively), and the minimum, in June and July
(21 and 25 fluctuations, respectively). The intermittency was at maximum of 87% in
December and at minimum of 48% in June.

Table 1. Near-inertial waves at 100 m depth for individual months, 2016–2017.

Month

Total Number
of Waves and
Wave Packets

Modulation Time
Scale of the NIW

Packet, Days

Period of Waves, h
Average Near-Inertial

Frequency Relative to Local
Inertial Frequency f, cph Intermittency,

%
Waves Packets min max Average From NIW

Period
From Rotary

Spectra

Dec. 39 5 2.2–11.3 15.0 19.3 16.6 1.038f 1.043f 87

Jan. 30 4 3.5–9.0 14.8 19.5 16.9 1.017f 1.043f 68

Feb. 27 2 8.2, 10.5 15.0 19.5 16.7 1.032f 1.044f 67

Mar. 32 5 2.1–6.3 15.0 20.2 17.0 1.014f 1.020f 73

Apr. 28 4 2.8–8.3 15.2 20.8 17.2 1.002f 1.006f 66

May 26 6 1.4–4.9 15.0 20.0 16.5 1.032f 1.043f 56

June 21 4 2.0–4.8 15.0 19.8 16.6 1.038f 1.031f 48

July 25 4 2.0–9.1 15.0 19.7 16.8 1.026f 1.032f 58

Aug. 27 4 1.3–9.0 15.3 19.0 16.6 1.038f 1.043f 61

Sep. 34 5 2.1–9.3 15.2 19.3 16.8 1.026f 1.006f 79

The thermohaline stratification was modified in spring and autumn. These transfor-
mations occurred with delay from the astronomical seasons. For example, the stratification
was not yet of a winter type in December. It was established in January and persisted until
the end of April. During this period, the modulation time scales of NIWs were the longest.
The seasonal pycnocline began to develop in May, and the strongest shifts of near-inertial
frequency and shortest modulation time scales were observed. Also from the spectral
analysis, it was found that during transitional seasons, the power spectra peaks were also
found at frequency ~2f. The overtones of inertial oscillation could be associated with the
observed shortness of the NIW packets.

4. Discussion

The rotary spectral analysis of the velocity vectors revealed a peak at the inertial
frequency with clockwise rotation. These features indicate the predominant influence of
inertial oscillations in the study area. Similar results for the deep-water part of the Black
Sea were obtained previously based on a short time series of observation data [14]. The
power spectra maxima were basically shifted toward frequencies higher than the local
inertial frequency. The analysis of the current measurement data in the Black Sea showed a
frequency shift of 1.002f –1.038f (0.2–3.8%). The power spectra analyses indicated relatively
broader peaks. An apparent reason for this was the phase modulation of NIWs. However,
both the spectral estimates and ad-hoc intuitive analysis showed the tendency of increase
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in the NIW’s period during the most stable vertical stratification in the sea. The blue-shift
of the inertial motions was often observed in the World Ocean [29]. The blue-shift was
observed in many areas of the World Ocean, for example, in the South China Sea [32],
where the meandering of the Kuroshio Current caused this shift. A frequency shift of NIWs
to the low-frequency band (“red-shift”) was also noted, which could be associated with
the Doppler shift in the flow [49] or by negative background vorticity, such as mesoscale
eddy [49,50].

Based on our data analysis, the peaks of the power spectra of NIWs were more
pronounced in September–February. Noteworthy that according to the results of global
observations at moored stations, the energy of NIWs in the Northern Hemisphere middle
latitudes also varies with season, with a maximum in winter [7].

There could be several reasons for the blue-shift in the NIW frequency in the Black Sea
study site. The seasonal variation in the wind stress over the Black Sea could be character-
ized by an increase in cyclonic vorticity in winter, which peaked in February [51], while in
summer, the atmospheric forcing change most likely resulted in the anticyclonic vorticity
of the wind stress. The seasonal variation of atmospheric forcing contributed to the inten-
sification of the Rim Current (cyclonic vorticity) in winter and its weakening in summer.
In turn, the Rim Current instability could serve as a source of generation of NIWs [14].
The horizontal vorticity of the background currents affected inertial oscillations [52]. If
the background vorticity was cyclonic (anticyclonic), then the frequency of inertial oscilla-
tions increased (decreased). Previous observations showed a strong impact of mesoscale
vorticity on the NIW propagation in the ocean [53,54]. The observed variation in the
blue-shift magnitude could be due to the change of the background flow and the develop-
ment of mesoscale anticyclones [55]. In particular, the Rim Current weakens during the
spring–summer period [55,56]. The seasonal change of the Rim Current was shown by the
Black Sea Forecasting System ocean model, which assimilated near real time, in-situ and
satellite observational products [57]. The seasonal variation of the mesoscale eddies was
discussed in [55,58], in particular, the maximum anticyclone eddies were shown to appear
often during summer in the Black Sea.

Analysis of the velocity data at 100 m depth and the near-surface wind suggested
that the development of inertial motions was prompted by an increase in the wind speed
magnitude over the study area, regardless of its direction. Furthermore, at 100 m depth, the
NIW packets occur with a time lag of 25–45 h with respect to the wind forcing. Significant
correlations were usually obtained for the winter and autumn seasons when the winds were
much stronger. In the spring–summer period, there were practically no stable correlations
(except for a few events). This could be associated with the formation of a barrier layer
involving a seasonal pycnocline above the main pycnocline [14,33]. Perhaps, more intense
inertial motions could develop at shallower depths in the seasonal pycnocline in the
summer, similar to those reported for the Gulf of Lion in the Mediterranean Sea [59].
However, the wind reanalysis sometimes did not accurately represent actual wind over the
deep part of the basin.

In analytical solutions, Ref. [60] noticed that the amplitude of inertial motions increases
during the passage of atmospheric storm and later slowly decreases. Sometimes the storm
results in rapid decay of the inertial oscillations that existed before it. Recently, similar
results were obtained using the general ocean circulation models [61]. The inertial motions
were generated as a sea response to a sharp change in wind speed. Under the steady wind,
the ocean current speed in the inertial motions gradually weakened [60,61]. However,
studies only dealt with variability at the 30 m depth and argued that inertial motions
decay with the depth and are unlikely to appear at greater depths [61]. Our observations
demonstrated strong near-inertial oscillations at a depth of 100 m. There was also a
correlation between the direction of the wind and the generation of the NIWs. Based on the
data analysis, Ref. [62] argued that high-frequency fluctuations in the wind speed enhance
inertial oscillations of the currents in the upper ocean layer. According to our data, such
intensification occurred in September when the sea current velocity rotated in accord with
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changes in the direction of sea surface wind. This feature of wind forcing most likely
leads to resonant excitation of inertial oscillations of ocean currents, e.g., the generation of
inertial motions, as discussed in [63]. In particular, the highest resonant response to the
effect of wind occurs when the wind rotates along with inertial oscillations. In this case,
the frequency of the wind action must be close to the local effective Coriolis frequency to
generate the near-inertial motions.

Unfortunately, there is not enough data to quantitatively relate the moments of gen-
eration of inertial internal waves packets at a depth of 100 m (and even more so at 265 m)
with the variability of the near-surface wind. It can be suggested that the observed waves
generated owing to the wind intensification propagate throughout the entire water col-
umn. These are most likely vertical standing waves, similar to those found previously in
the Black Sea [13]. The inertial motion generation could be a result of a combination of
forcing factors, such as the wind strength, the mean current speed, and the ocean eddy
activity at the observation site. As noted by [64], the variety of mechanisms of genera-
tion and levels of excitation of IWs make any attempts to interpret the properties of the
spectrum of oceanic IWs within the assumption of a single mechanism meaningless. In
addition, it is not easy to substantiate the possible generation of the observed internal
waves with available data on the deep-water depth only. It is necessary to have data on the
sea current speed and temperature throughout the water column, which requires particular
experimental study.

5. Conclusions

The observations from 2016–2017 analyzed above were unique, since they were based
on more than 10-month-long measurements with a high sampling rate in the CIL layer of
the main pycnocline and at a depth of 1700 m, i.e., 100 m above the sea bottom. This study
made it possible to supplement the existing knowledge about NIWs in the Black Sea and
reveal their seasonal variability in its deep-water part.

The analysis showed that NIWs dominate over the internal-wave continuum of
0.01 cph < ω < 2 cph in the Black Sea. The horizontal scales of the inertial rotation
can be as large as 0.5–1.5 km and 0.5–0.7 km at 100 m and 1700 m depths, respectively.
During the autumn–winter period, pronounced rotation of the current velocity vectors was
observed. The hodographs appeared as ellipses with closed orbits. In the spring, inertial
motions became infrequent and weak so that the hodographs of inertial currents strongly
elongated in a slow current direction of subinertial time scales. An analysis of wind activity
and the intensification of inertial motions suggested that each period of generation of
internal waves was preceded by a change in wind speed and direction.

The maximum NIW energy occurred in the winter and the minimum in the summer.
The blue-shift of the NIW’s frequency was in the range 1.002f –1.038f. The shift tended to be
more significant in the summer season. The NIWs occurred more frequently in the months
of transient weather in March and September, also in December and January, when the
wind forcing was the strongest. During the winter, intermittency of the NIWs was 67–87%,
and long packets consisting of up to 11–16 near-inertial oscillations were observed at a
depth of 100 m. In the winter, the NIW’s packets had the longest modulation time scale,
so the current speed grew during initial 3–6 fluctuations, i.e., by the mid of a wave packet.
The duration of the longest NIW’s packet was close to the time scale of ~10 days, which is
expected to be consistent with the frontal-geostrophic adjustment [65]. By contrast, short
packets of 1.3–9 oscillations were typical for the summer. The relatively short time scales
may indicate that the ocean fronts are rare at the intermediate depths in the central part of
the Black Sea in the summer.

The preliminary results we presented look promising and raise new questions. For
future investigations to identify the space-time propagation of the NIWs, it is necessary
to obtain data from several points and for the entire water column. This could be a
challenge for the problems of internal wave propagation and generation, which remain
open for the Black Sea. Further progress requires continuing such investigations using the
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slab model [4,66] to directly calculate the near-inertial energy flux input into the sea by
the wind.
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oscillations in the central part of the Black Sea (see the main body of this paper above), 
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Appendix B

Near-Inertial Fluctuations of the Deep Sea Temperature in the Northeastern Part of the Black Sea Basin

The RBR Duet instrument for observations of temperature and pressure was deployed
at 265 m, i.e., much deeper than the main pycnocline in the northeastern Black Sea basin,
from 18 December 2017 to 4 December 2018. At this depth, temperature T and pressure P
fluctuations with a time scale close to the inertial period were also identified. Figure A3
shows an excerpt of the record for January 2018. The most intense fluctuations were
observed on 12–18 January. Over the near-inertial period, the temperature T changed by
only 0.02 ◦C, and the pressure sensor readings changed up to 1 dbar due to the wave
passage. In such a way, oscillations with a near-inertial period were observed every month.
The fluctuations were within 0.01–0.015 ◦C, and the pressure amplitude did not exceed
1.5 dbar. Notice that inertial oscillations were clear-cut mostly in autumn and winter and
almost decayed in summer.

The estimates of the power spectra of the time series T(t) for each month show the
peak at a near-inertial frequency of 0.059–0.06 cph (16.95–16.67 h) (Figure A4). At this
mooring site, the local inertial frequency f was 0.057 cph (17.54 h). Alike the sea current
oscillations in the central part of the Black Sea (see the main body of this paper above),
the analysis of the temperature variability also revealed the seasonal intensification of
near-inertial fluctuations in December–January and, surprisingly, in June. The ratio of the
maximum and minimum spectral energy of near-inertial oscillations was ~9.5. In the spring
and autumn seasons, the power of near-inertial fluctuations was approximately the same.
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