Characterization of the Morphological Behavior of a Sand Spit Using UAVs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Waves and Alongshore Sediment Transport Characterization
2.3. Morphological Measurements
3. Results
3.1. Description of Wave Conditions
3.2. Qualitative Description of the Sand Spit in Its Early Stages
3.3. Seabreeze-Dominated Period
3.4. Extreme Event Period or Norte Season
4. Discussion
4.1. Main Drivers of Spit Morphology
- (a)
- Formation: The formation conditions are shown in Table 1. The east breakwater of the port of Sisal imposes a discontinuity in the coastline which retains sediments, particularly from March to November (outside the norte season) when NE sea breeze waves dominate. Once the eastern breakwater was saturated (i.e., the eastern beach reached its tip) on 17 June, the magnitude of the littoral transport deposited in the port’s navigation channel increased and rapidly formed a coherent sand structure.
- (b)
- Growth: The spit grew in length and width under different conditions. The spit elongated faster with larger LST rates, responding to waves coming from ENE/NE. This occurred because the littoral transport fed the spit, and the breakwater reduced the energy of waves that could produce diffusion. The width increased with longer wave periods under moderate wave energy because a moderate increment in runup had the capacity to transport sand to the spit top. Furthermore, the morphological response of the spit not only depended on waves but also on the previous morphological state (e.g., if the spit is starting to form, or if it is consolidated). Some aspects that help us to determine the spit resistance are spit elevation and width. For example, the first cold front (5 November 2018) did not damage the structure. On the contrary, the spit grew in length and width, mainly because the previous morphological state of the spit was consolidated (spit height over 0.65 m), meaning that the energy threshold to breach the spit needed to be higher (HS > 1.2 m).
- (c)
- Migration: Figure 8 shows the position and displacement of the spit throughout the study. Displacements in X are small (less than 10 m) except after a breaching/destruction event. The relatively stable X position throughout the study period suggests that the input sediment is well distributed along the spit. The Y displacement is mostly onshore and is related to overwash events during high tide. The largest onshore migrations (periods 5 to 7) are related to an inversion in the direction of the longshore wave energy and a slight increase in the wave height magnitude (see Table 1, grey columns, where wave conditions were calculated for when the spit was below the MSL, i.e., during overwash). During destruction events, the apparent migration is offshore; is due to spit breaching, with the tip of the spit being detached and eroded by the waves (moving the sediment below sea level) and the attached zone of the spit retaining more sediment due to the protection provided by the breakwater, which causes the center of mass to move northeast.
- (d)
- Multiple spit interactions (merging): The formation of a second spit can first be observed in the orthomosaic of 15 August, and two spits can be seen until 28 September (Figure 3). The next survey (27 August) shows that the older spit migrated onshore and the new spit grew. The first spit cannot be detected by the DEM because it is underwater. After 27 August, its position remains stable, while the second spit migrates gradually onshore. This occurs because the new spit absorbs the wave energy, protecting the spit vestige. The growth rate of the spit is accelerated by a merging process until the merging is completed on 12 October.
- (e)
- Breaching: Breaching is the result of the increase in wave energy and the sea level surge during nortes (see period 8 in Table 1). The mean wave height in the break zone was 0.88 m, with a corresponding direction of Db ~−7.35°. From Table 1 (grey columns) we observe that the time during which the spit is submerged in this period is 66% (i.e., 7.21 out of 10.92 days). Main changes are observed in the center of the spit, where a breach occurs (Figure 5). Maximum height is observed near the sheltered region (east jetty), while the center of the spit was below our measurement range, and at the same moment over 50% of the total area measured was near our lowest elevation (Z ~−0.20 m).
4.2. Importance of Morphological Monitoring in the Yucatan Harbors/Inlets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowell, P.J.; Thom, B.G.; van de Plassche, O. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Carter, R.W.G., Woodroffe, C.D.E., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 33–86. [Google Scholar]
- Coco, G.; Murray, A.B. Patterns in the sand: From forcing templates to self-organization. Geomorphology 2007, 91, 271–290. [Google Scholar] [CrossRef]
- Kraus, N.C.; ASCE, M. Analytical Model of Spit Evolution at Inlets. Proc. Coast. Sediments 1999, 3, 1739–1754. [Google Scholar]
- Serizawa, M.; Uda, T.; Miyahara, S. Prediction of Formation of Recurved Sand Spit Using Bg Model. Coast. Eng. Proc. 2019, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Riggs, S.R.; Cleary, W.J.; Snyder, S.W. Influence of inherited geologic framework on barrier shoreface morphology and dynamics. Mar. Geol. 1995, 126, 213–234. [Google Scholar] [CrossRef]
- Evans, O.F. The Origin of Spits, Bars, and Related Structures. J. Geol. 1942, 50, 846–865. [Google Scholar] [CrossRef]
- Allard, J.; Bertin, X.; Chaumillon, E.; Pouget, F. Sand spit rhythmic development: A potential record of wave climate variations? Arçay Spit, western coast of France. Mar. Geol. 2008, 253, 107–131. [Google Scholar] [CrossRef]
- Escudero, M.; Silva, R.; Hesp, P.A.; Mendoza, E. Morphological evolution of the sandspit at Tortugueros Beach, Mexico. Mar. Geol. 2019, 407, 16–31. [Google Scholar] [CrossRef]
- Murray, A.B.; Ashton, A.; Arnoult, O. Large-scale morphodynamic consequences of an instability in alongshore transport. In Proceedings of the 2nd IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, 10–14 September 2001; pp. 355–364. [Google Scholar]
- Ashton, A.D.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. J. Geophys. Res. Earth Surf. 2006, 111, F04012. [Google Scholar] [CrossRef] [Green Version]
- Ashton, A.D.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J. Geophys. Res. Earth Surf. 2006, 111, F04011. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, D.M.; Penland, S.; Nummedal, D. Control of Barrier Island Shape by Inlet Sediment Bypassing: East Frisian Islands, West Germany. Mar. Geol. 1984, 60, 355–376. [Google Scholar] [CrossRef]
- Robin, N.; Levoy, F.; Anthony, E.J.; Monfort, O.; France, C. Sand spit dynamics in a large tidal-range environment: Insight from multiple LiDAR, UAV and hydrodynamic measurements on multiple spit hook development, breaching, reconstruction, and shoreline changes. Earth Surf. Process. Landf. 2020, 45, 2706–2726. [Google Scholar] [CrossRef]
- Inman, D.L.; Dolan, R. The Outer Banks of North Carolina: Budget of Sediment and Inlet Dynamics along a Migrating Barrier System. J. Coast. Res. 1989, 5, 193–237. [Google Scholar]
- Talavera, L.; Río, L.D.; Benavente, J.; Barbero, L.; López-Ramírez, J.A. UAS & SfM-based approach to Monitor Overwash Dynamics and Beach Evolution in a Sandy Spit. J. Coast. Res. 2018, 85, 221–225. [Google Scholar]
- Talavera, L.; Del Río, L.; Benavente, J. UAS-based High-resolution Record of the Response of a Seminatural Sandy Spit to a Severe Storm. J. Coast. Res. 2020, 95, 679–683. [Google Scholar] [CrossRef]
- Wiegel, R.L. Sand Bypassing at Santa Barbara, California. J. Waterw. Harb. Div. 1959, 85, 1–30. [Google Scholar] [CrossRef]
- Komar, P.D.; Moore, J.R. CRC Handbook of Coastal Processes and Erosion; CRC Press: Boca Raton, FL, USA, 1983. [Google Scholar]
- Ogawa, Y.; Fujita, Y.; Shuto, N. Change in the Cross-Sectional Area and Topography At River Mouth. Coast. Eng. Japan 1984, 27, 233–247. [Google Scholar] [CrossRef]
- Tanaka, H.; Takahashi, F.; Takahashi, A. Complete Closure of The Nanakita River Mouth in 1994. Coast. Eng. 1996, 4545–4556. [Google Scholar]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Duy, D.V.; Tanaka, H.; Mitobe, Y.; Anh, N.Q.D.; Viet, N.T. Sand Spit Elongation and Sediment Balance at Cua Lo Inlet in Central Vietnam. J. Coast. Res. 2018, 81, 32. [Google Scholar]
- Sasaki, Y.; Sato, S. Morphology Changes of Sand Spit Around the Tenryu River Mouth Due To Floods Accompanied with Overtopping Waves. In Coastal Sediments 2015; World Scientific Publishing Co.: Toh Tuck Link, Singapore, 2015; pp. 1–14. [Google Scholar]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Franklin, G.L.; Medellín, G.; Appendini, C.M.; Gómez, J.A.; Torres-Freyermuth, A.; López González, J.; Ruiz-Salcines, P. Impact of port development on the northern Yucatan Peninsula coastline. Reg. Stud. Mar. Sci. 2021, 45, 101835. [Google Scholar] [CrossRef]
- Enriquez, C.; Mariño-Tapia, I.J.; Herrera-Silveira, J.A. Dispersion in the Yucatan coastal zone: Implications for red tide events. Cont. Shelf Res. 2010, 30, 127–137. [Google Scholar] [CrossRef]
- Appendini, C.M.; Salles, P.; Tonatiuh Mendoza, E.; López, J.; Torres-Freyermuth, A. Longshore Sediment Transport on the Northern Coast of the Yucatan Peninsula. J. Coast. Res. 2012, 28, 1404–1417. [Google Scholar] [CrossRef]
- Torres-Freyermuth, A.; Puleo, J.A.; DiCosmo, N.; Allende-Arandía, M.E.; Chardón-Maldonado, P.; López, J.; Figueroa-Espinoza, B.; de Alegria-Arzaburu, A.R.; Figlus, J.; Roberts Briggs, T.M.; et al. Nearshore circulation on a sea breeze dominated beach during intense wind events. Cont. Shelf Res. 2017, 151, 40–52. [Google Scholar] [CrossRef]
- Tenorio-Fernandez, L.; Gomez-Valdes, J.; Marino-Tapia, I.; Enriquez, C.; Valle-Levinson, A.; Parra, S.M. Tidal dynamics in a frictionally dominated tropical lagoon. Cont. Shelf Res. 2016, 114, 16–28. [Google Scholar] [CrossRef]
- Pacheco-Castro, R.; Salles, P.; Canul-Macario, C.; Paladio-Hernandez, A. On the understanding of the hydrodynamics and the causes of saltwater intrusion on lagoon tidal springs. Water 2021, 13, 3431. [Google Scholar] [CrossRef]
- Santoyo Palacios, B.A. Technical Report: Esbozo Monográfico de Sisal, Yucatán; LANRESC: Yucatán, México, 2017. [Google Scholar]
- Wellmann, N. Analysis of Near-Shore Sediment Samples from Sisal Beach (Mexico) Comparing Effects of Sea Breeze and el Norte Events. Ph.D. Thesis, Wirtschaft und Kultur Leipzig, Stuttgart, Germany, 2014. [Google Scholar]
- Medellín, G.; Torres-Freyermuth, A. Morphodynamics along a micro-tidal sea breeze dominated beach in the vicinity of coastal structures. Mar. Geol. 2019, 417, 106013. [Google Scholar] [CrossRef]
- Medellín, G.; Torres-Freyermuth, A.; Tomasicchio, G.R.; Francone, A.; Tereszkiewicz, P.A.; Lusito, L.; Palemón-Arcos, L.; López, J. Field and numerical study of resistance and resilience on a sea breeze dominated beach in Yucatan (Mexico). Water 2018, 10, 1806. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Hidalgo, J.; de Buen Kalman, R.; Romero-Centeno, R.; Hernández Maguey, F. Tendencias del nivel del mar en las costas mexicanas. Vulnerabilidad las Zonas Costeras Mexicanas Ante el Cambio Climático; Semarnat-INE, UNAM-ICMyL, Universidad Autónoma de Campeche: Campeche, México, 2010; pp. 249–267. [Google Scholar]
- Zavala-Hidalgo, J.; Morey, S.L.; O’Brien, J.J. Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J. Geophys. Res. 2003, 108, 3389. [Google Scholar] [CrossRef]
- Modesto, O.F.; Ernesto, A.V. Software MARV 1.0. 2015. Tidal Prediction in Mexico. Available online: http://predmar.cicese.mx/ (accessed on 15 August 2020).
- Figueroa-Espinoza, B.; Salles, P.; Zavala-Hidalgo, J. On the wind power potential in the northwest of the Yucatan Peninsula in Mexico. Atmosfera 2014, 27, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Kurczyn, J.A.; Appendini, C.M.; Beier, E.; Sosa-López, A.; López-González, J.; Posada-Vanegas, G. Oceanic and atmospheric impact of central American cold surges (Nortes) in the Gulf of Mexico. Int. J. Climatol. 2020, 41, E1450–E1468. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, J.; Dominguez Sandoval, M.F. Caracterizacion de oleaje frente a la costa de Sisal Yucatán. In Caracterización Multidisciplinaria de la Zona Costera de Sisal, Yucatán; Laboratorio Nacional de Resiliencia Costera: Hunucmá, Mexico, 2017; pp. 30–39. [Google Scholar]
- Torres-Freyermuth, A.; Medellín, G.; Mendoza, E.T.; Ojeda, E.; Salles, P. Morphodynamic response to low-crested detached breakwaters on a sea breeze-dominated coast. Water 2019, 11, 635. [Google Scholar] [CrossRef] [Green Version]
- United States. Army Corps of Engineers, Coastal Engineering Manual—Part III. Coast. Eng. Man. 2008, EM 1100-2-1100, 1–62. [Google Scholar]
- Pix4D. Software: Pix4Dmapper. 2017. Available online: https://www.pix4d.com/download-software (accessed on 4 December 2018).
- Bertin, X.; de Bakker, A.; van Dongeren, A.; Coco, G.; André, G.; Ardhuin, F.; Bonneton, P.; Bouchette, F.; Castelle, B.; Crawford, W.C.; et al. Infragravity waves: From driving mechanisms to impacts. Earth-Sci. Rev. 2018, 177, 774–799. [Google Scholar] [CrossRef] [Green Version]
- Bertin, X.; Mendes, D.; Martins, K.; Fortunato, A.B.; Lavaud, L. The Closure of a Shallow Tidal Inlet Promoted by Infragravity Waves. Geophys. Res. Lett. 2019, 46, 6804–6810. [Google Scholar] [CrossRef]
- Mendes, D.; Fortunato, A.B.; Bertin, X.; Martins, K.; Lavaud, L.; Nobre Silva, A.; Pires-Silva, A.A.; Coulombier, T.; Pinto, J.P. Importance of infragravity waves in a wave-dominated inlet under storm conditions. Cont. Shelf Res. 2020, 192, 104026. [Google Scholar] [CrossRef]
- Melito, L.; Postacchini, M.; Sheremet, A.; Calantoni, J.; Zitti, G.; Darvini, G.; Penna, P.; Brocchini, M. Hydrodynamics at a microtidal inlet: Analysis of propagation of the main wave components. Estuar. Coast. Shelf Sci. 2020, 235, 106603. [Google Scholar] [CrossRef]
- Donnelly, C.; Kraus, N.; Larson, M. State of knowledge on measurement and modeling of coastal overwash. J. Coast. Res. 2006, 22, 965–991. [Google Scholar] [CrossRef]
- Parnell, K.E.; Hosking, P.L.; McLean, R.F.; Nichol, S.L. Multidecadal Shoreline Monitoring at Parengarenga, Northern New Zealand: From Dumpy Level to LiDAR. J. Coast. Res. 2020, 101, 165. [Google Scholar] [CrossRef]
- Callaghan, D.; Nielsen, P.; Zyserman, J.A.; Braker, I. Morphological Model for a Fixed Sand Bypass System. In Coastal Engineering 2002: Solving Coastal Conundrums, Proceedings of the 28th International Conference, Cardiff, UK, 7–12 July 2002; World Scientific Pub. Co.: Singapore, 2003; pp. 3845–3857. [Google Scholar]
- Murray, R.J.; Brodie, R.P.J.; Porter, M.; Robinson, D.A. Tweed River Sand Bypass: Concepts and Progress. In Coastal Engineering 1996; ASCE: Reston, VA, USA, 1996; pp. 4390–4396. [Google Scholar]
Period | EP a (Days) | OP b (Days) | Hb (m) | TPB (s) | θWB (°) | CLWF c (103 W/m) | CCWF d (103 W/m) | CLST e (103 m3) | Area (m2) | Len. (m) | Vol. (m3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EP | OP | EP | OP | EP | OP | EP | OP | EP | OP | EP | OP | ||||||
f | 30.00 | 0.55 | 4.52 | 11.05 | 241.40 | 632.60 | 178.60 | ||||||||||
g | 31.58 | 0.41 | 0.41 | 3.69 | 3.69 | 10.95 | 10.95 | 132.30 | 132.30 | 348.80 | 348.80 | 97.90 | 97.90 | 596 | 55 | 135 | |
1 | 13.88 | 6.83 | 0.49 | 0.51 | 3.85 | 3.73 | 7.98 | 2.33 | 178.90 | 11.00 | 662.40 | 136.10 | 132.40 | 8.20 | 241 | 70 | 34 |
2 | 12.08 | 7.50 | 0.37 | 0.37 | 3.53 | 3.53 | 8.31 | 2.46 | 81.30 | 5.20 | 286.00 | 61.00 | 60.10 | 3.90 | 388 | 47 | 91 |
3 | 17.08 | 12.92 | 0.43 | 0.48 | 3.76 | 3.72 | 8.40 | 2.32 | 171.10 | 9.70 | 593.00 | 119.00 | 126.60 | 7.20 | 639 | 66 | 199 |
4 | 14.82 | 9.75 | 0.42 | 0.50 | 3.62 | 3.48 | 10.60 | 4.23 | 187.30 | 8.00 | 515.40 | 54.30 | 138.60 | 5.90 | 1329 | 98 | 453 |
5 | 14.05 | 8.79 | 0.62 | 0.63 | 6.24 | 4.61 | 3.46 | −1.11 | 133.40 | −15.00 | 1138.60 | 390.90 | 98.70 | −11.10 | 1500 | 103 | 582 |
6 | 17.95 | 12.04 | 0.66 | 0.64 | 4.37 | 4.21 | 8.41 | −2.14 | 492.80 | −22.20 | 1741.00 | 314.20 | 364.70 | −16.40 | 1923 | 129 | 977 |
7 | 11.00 | 1.58 | 0.63 | 0.61 | 5.30 | 3.96 | 4.00 | −1.62 | 139.90 | −0.30 | 1058.90 | 6.30 | 103.60 | −0.30 | 2118 | 140 | 1141 |
8 | 10.92 | 7.21 | 0.88 | 0.93 | 9.53 | 6.70 | −7.35 | −11.3 | −954.70 | −500.46 | 3747.30 | 1294.60 | −706.60 | −370.40 | 1156 | 127 | 298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paladio-Hernandez, A.; Salles, P.; Arriaga, J.; López-González, J. Characterization of the Morphological Behavior of a Sand Spit Using UAVs. J. Mar. Sci. Eng. 2022, 10, 600. https://doi.org/10.3390/jmse10050600
Paladio-Hernandez A, Salles P, Arriaga J, López-González J. Characterization of the Morphological Behavior of a Sand Spit Using UAVs. Journal of Marine Science and Engineering. 2022; 10(5):600. https://doi.org/10.3390/jmse10050600
Chicago/Turabian StylePaladio-Hernandez, Alejandro, Paulo Salles, Jaime Arriaga, and José López-González. 2022. "Characterization of the Morphological Behavior of a Sand Spit Using UAVs" Journal of Marine Science and Engineering 10, no. 5: 600. https://doi.org/10.3390/jmse10050600
APA StylePaladio-Hernandez, A., Salles, P., Arriaga, J., & López-González, J. (2022). Characterization of the Morphological Behavior of a Sand Spit Using UAVs. Journal of Marine Science and Engineering, 10(5), 600. https://doi.org/10.3390/jmse10050600