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Abstract: Aiming at the difficult problem of motion control of robotic manta with pectoral fin
flexible deformation, this paper proposes a control scheme that combines the bioinspired Central
Pattern Generator (CPG) and T-S Fuzzy neural network (NN)-based control. An improved CPG
drive network is presented for the multi-stage fin structure of the robotic manta. Considering the
unknown dynamics and the external environmental disturbances, a sensor-based classic T-S Fuzzy
NN controller is designed for heading and depth control. Finally, a pool test demonstrates the
effectiveness and robustness of the proposed controller: the robotic manta can track the depth and
heading with an error of 6 cm and +6°, satisfying accuracy requirements.

Keywords: robotic manta; central pattern generator; T-S Fuzzy control; depth and heading tracking

1. Introduction

Over previous decades, with the expansion of the application range of vehicles, the
requirements for the mobility and maneuverability of vehicles are getting higher and higher.
Although there has been a great development in traditional underwater vehicles [1,2],
most of them are rotary body structures with axial thrusters. The theoretical research
and applications of such underwater vehicles have been mature, but they have some
limitations [3,4], such as low stealth and low maneuverability. Thus, the bionic vehicle has
become a popular research trend, and its excellent motion capability makes it suitable for
more application situations [5,6]. The manta ray is an example of a bionic vehicle to imitate
using the MPF propulsion method. With this method, a manta ray can achieve a variety
of motion modes such as forward, turning, and a horizontal roll by pectoral fin alone.
Compared with the Body and/or Caudal Fin (BCF) propulsion method, the Median and/or
Paired Fin (MPF) propulsion method makes the vehicles more stable when swimming and
can be used as a more flexible and stable platform for carrying equipment [7].

Bionic vehicles require the drive of the bionic propulsion mechanisms for their motion.
The main methods for driving bionic propulsion mechanisms are kinematic model-based
methods, kinetic model-based methods, and Central Pattern Generators (CPG)-based
methods [8]. The CPG model-based approach [9-15] is increasingly used for the actuation of
bionic underwater vehicles because it is stable, reliable, and does not require cadence signal
feedback, which has a better biological significance. The model’s numerous parameters
allow it to simulate complex rhythmic signals, leading to complex gait outputs, and it
is well suited for distributed control and multi-drive control and is highly adaptable to
the environment. Wang et al. [16] built a CPG network for a multiarticulate machine
fish to achieve multimodal 3D motion and demonstrated computationally that the CPG
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network has better stability than the conventional sinusoidal drive method in maintaining
rhythmic motion. Wu [17] used a modified Hopf-based CPG model that allows free
adjustment of the phase relationship between outputs to generate rhythmic signals for
multimodal swimming and successfully drove a robotic fish to perform various motor
actions such as forward swimming, backward swimming, turning, diving, surfacing, etc.
Cao et al. [18] improved the CPG model based on a phase oscillator by introducing spatially
asymmetric equations with temporally asymmetric equations to complete the driving of a
multi-fin strip pectoral fin structure. Wang et al. [19] used the CPG model to control the
swimming pattern of a robotic dolphin, which effectively ensured a smooth transition of the
motion when the control signal produced a change. By driving the propulsion mechanism,
the bionic underwater vehicle can produce a variety of motion states, such as forward
swimming, turning, etc. Although the above literature mostly uses CPG drivers, they are
mainly focused on achieving the generation of coordinated motion signals. In practical
applications, precise control of their motion states is usually required, and the addition of
the controller is necessary. Furthermore, there is still a lot of work to do to design a robust
controller [19,20] for attitude control of a robotic manta to deal with external disturbances.

Depth and heading tracking, as one of the basic functions of bionic underwater vehicles,
are essential parts of the study of bionic underwater vehicle control. Morgansen et al. [21] used
a Proportion-Integration-Differentiation (PID) control method to achieve navigation control
by tail fin swing deviation while the pectoral and caudal fins were linked to change the
pitch angle to achieve depth control. Considering the nonlinear model in depth control and
the volume change of the rubber skin caused by water pressure, Shen et al. [22] designed a
fuzzy PID controller to achieve depth control by adjusting the internal slider of the bionic
dolphin robot. Yu et al. [23] designed a hybrid depth controller combining a sliding mode
control and fuzzy control and verified the effectiveness of the controller through constant
depth and depth switching experiments. Wei et al. [24] proposed a method based on
an active disturbance suppression controller and fuzzy control strategy, which enabled a
bionic squid to complete the fixed depth and fast ascent or dive by modifying the wave fin
parameters on both sides. Yuan et al. [25] proposed a Back Propagation (BP) neural network
controller based on a sliding mode observer to control the yaw angle of a dolphin-like
robot fish, but only simulation results were given. However, the above literature is not
based on CPG performing the closed-loop control for robotic manta possessing the flexible
pectoral fin propulsion mode. In addition, accurate mathematical models of robotic manta
are difficult to obtain, which poses a challenge to control. Gong et al. [26] proposed a
CPG-based fuzzy control method based on the practical need for research on the control of
the rolling motion of a pectoral fin swing propelled robotic fish. Cao Y. et al. [18] proposed
a fuzzy controller based on an improved CPG model to accomplish the depth and heading
control of a manta ray mimic vehicle. Yet, the method of Gong and Cao relies on expert
experience, and the research of taking the uncertainties of the model dynamic into account
has not been started.

Hence, on the basis of the foregoing discussions, the main contributions of this work
are summarized to introduce a control strategy for robotic manta compared with previous
works: A classic T-S fuzzy neural network (NN) controller integrated with an improved
CPG-driven network is designed to deal with the model unknown dynamics and the
external environmental disturbances. The dynamic control performance is validated by
comprehensive pool tests.

The following sections of this paper are described below. Section 2 describes the
design of the robotic manta. The improved CPG model and T-S fuzzy neural network-
based controller are given in Section 3, and Section 4 presents two sets of experiments, one
for depth control and the other for heading control. Section 5 discusses the results and the
outlook for future work.
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2. The Design of the Robotic Manta
2.1. Overview of Mechanical Structure and Electronic Design

According to the shape characteristics of the real manta ray, the scaled-down model
of the real manta ray is modified. Keeping the main body curve, pectoral fin curve, and
caudal fin of the scaled-down model, the shape structure of the robotic manta is designed.

The prototype can be divided into four parts: the main body, pectoral fin, caudal fin,
and skin. The main body is 3D printed by nylon laser sintering, which has the advantages
of small mass and low cost. The pectoral and caudal fins are mainly composed of servo
motors and skeletons. The pectoral fin of the prototype adopts a distributed multi-stage
skeleton structure, and each skeleton is driven by a servo motor. The caudal fin consists of
a caudal fin skeleton with a servo motor. The skeletons are cut from carbon fiber sheets
of different thicknesses. The skin is made of soft silicone casting, which is installed on the
skeletons to form a complete pectoral fin surface and a three-dimensional caudal fin form,
replacing the muscles and skin of real creatures. The structure specifications of the robotic
manta are presented in Figure 1.

B ; S

Third Pectoral fin skeleton
Electrical Boards

Silicone Skin

Ellipse2 Battery

Pressure sensor Servo motor

Figure 1. The structure of robotic manta. (A) The structure and electronics distribution of robotic
manta. (B) Silicone pectoral and caudal fins. (C) Prototype of robotic manta.

The hardware of the control system adopts a modular design to enhance the portability
of the hardware system. When a module fails, it is easy to repair. As illustrated in
Figure 2, the control system hardware structure of the robotic manta is composed of five
parts: a microcontroller, actuator module, sensor module, power module, and Radio
Frequency (Radio Frequency) wireless module. The microcontroller receives information
from the sensor module and RF module, runs control algorithms, generates a CPG signal,
and computes the control value. The sensor module measures the depth and attitude
information. The actuator module consists of seven servos and achieves the motion control
of a robotic manta. The main role of the RF wireless module is to transmit the parameters
and commands from the remote host system. All the modules are integrated into the
electronic compartment of the main body of the vehicle. The PC is also an important module
for human-computer interaction which can modify parameters, delegate commands, and
receive the status data returned from the robotic manta. The technical specifications of the
robotic manta are presented in Table 1.
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Figure 2. The control system hardware structure. (A) Electronic composition. (B) Picture of the
control system.

Table 1. The technical specifications of the robotic manta.

Items Specification
Dimension (L x W x H) 600 mm x 800 mm x 150 mm
Mass 8.00 kg
Actuator mode DC servomotors
Battery 7.4-VDC 1500-mAH Ni-H
Micro-controller STM32F103ZET6
Inertial measurement unit SBG ELLIPSE2
Sensors Pressure sensor, Laser sensors
Control mode Radio control (433 MHz)

2.2. Basic Forms for the Movement of the Pectoral and Caudal Fins

The main source of power for a conventional vehicle is a propeller structure or a heavy
buoyancy system, but the robotic manta does not have either of these mechanisms. Its
main power source is the pectoral fin structure. There is a complex wave transmission
during the pectoral fin flutter, but it can be briefly decomposed into a propulsion wave
along the chordal direction and a propulsion wave along the spreading direction. The
fluctuations in the spreading direction are reflected in the sine wave-like trajectory of end
points of pectoral fin skeletons. The fluctuation in the chordal direction is reflected as
the phase difference between the sine wave-like trajectories of end points of pectoral fin
skeletons. As shown in Figure 3, different skeletons are driven by a servo which can realize
the fluctuation transmission in both directions.
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String propulsion wave

A Front view

Figure 3. The principle of basic motion. (A) The movements of pectoral and caudal fins. (B,C) The
instructions of bias angle, wherei =1,2,...,6.

The position of each servo is fixed, and the servos are connected to the skeletons
through adapters, respectively. The mechanism of the left pectoral fin and the right pectoral
fin are in the same principle and are in a mirror image relationship. Taking the left pectoral
fin during an upstroke motion as an example, at the time t = 0, the pectoral fin starts to
move. At the time ¢ = f1, the state shown in Figure 3A is reached, and the motion can be
expressed by the equation

h] = X] + Hlsin(wlt)
hy = Xp + Hpsin(wat + Ap1p)
hy = X3+ H3Si1’l(£d3t + Apys)

0, = arcsin—1—1 =X 1 1)
0, = arcsin—2-—=-2 b= Xy

h3—X3
03 = arcsin =73 l

where hy, hy, and h3 denote the vertical distance between the endpoint of each skeleton
and the reference plane, X1, X5, and X3 are the biases of the motion symmetry axis of the
first, second, and third skeletons, H;, Hy, and Hj are the maximum vertical distance from
the axis of motion symmetry of the first, second, and third skeletons, wj, w», and ws are
the angular velocities of each skeleton rotation, Agy; is the phase difference between the
first and second skeletons, Agy3 can be deduced the same way, /1, I, and I3 denote the
length of each skeleton, 6;, 6>, and 63 denote the angle between each skeleton and the
reference plane, and f is the time.

Following the same principle, the motion of the right pectoral fin can be expressed by
the equation
hy = Xy + Hysin(wat + Ap1a)
hs = X5 + Hssin(wst + A@ys)
he = Xe + Hesin(wet + Agse)

04 = arcsin h“l;X‘* @)
05 = arcsin-2—-2 hs—X5 15
O = arcsmhliﬁx6



J. Mar. Sci. Eng. 2022, 10, 758 60f 17

The motion of the caudal fin is similar to the pectoral fin

h7<t) = X7+ H7Si11(6()7t) 3
07(t) = arcsin%;X7 @)

where 7 denotes the vertical distance between the endpoint of the caudal fin skeleton and
the reference plane, X7 is the biases of the motion symmetry axis of the caudal fin skeleton,
Hy is the maximum vertical distance from the axis of motion symmetry of the caudal fin
skeleton, w7 is the angular velocities of each skeleton rotation, /7 denotes the length of
the caudal fin skeleton, and 07 denotes the angle between the caudal fin skeleton and the
reference plane.

Assumption 1. Due to the existence of the centripetal restoring moment, the pitch angle fulfills
lot)| < /2, vt > 0.

Remark 1. The dynamic model of an underwater robotic manta is different from rigid body structure
underwater vehicles and difficult to build, but they have some similar characteristics to an inertia
matrix, Coriolis matrix, and hydrodynamic damping matrix, which can be referred to [27].

3. Methods
3.1. Design of CPG-Driven Network

The video analysis of the swimming of real manta rays shows, that the motion trajec-
tory of the wingtip points of the pectoral fins is a sinusoidal-like wave [28]. The frequency,
amplitude, and phase difference of the pectoral fin oscillation have obvious regular charac-
teristics. Considering that the robotic manta uses multiple motors to drive the skeletons,
and each skeleton has a symmetric motion relationship or phase difference motion re-
lationship, the CPG-based method is proposed to drive the motion of the pectoral fin
structure.

The standard phase oscillator model has clear phase difference, amplitude, and fre-
quency parameters. The mathematical description of the standard phase oscillator model
consists of three equations, namely the phase, amplitude, and output equations.

¢; = 27tf; + Lwjjsin(@; — ¢; — Agyj)

j
a; = kaj (%(Ai —aj) — /li) @
0; = Ai(1+ cos(g;))

where ¢; denotes the phase of cell i, ¢; denotes the phase of cell j, f; denotes the frequency
of cell i, and f; = 5%, w; denotes the rotation velocity, w;; denotes the coupling weight of
cell j to cell i, Ag;; denotes the expected value of the phase difference between cell i and
cell j, a; denotes the amplitude, k,; denotes the constant of cell i which affects the rate of
amplitude convergence, and k;; > 0, A; denotes the expected amplitude of cell i, and 6;
denotes the output value of the model.

However, the standard phase oscillator model is not sufficient for the imitation of
the pectoral fin motion characteristics of real manta ray creatures. Therefore, the standard
oscillator model needs to be improved.

To imitate the characteristics of different amplitudes of upstroke and downstroke
during the pectoral fin flap of real manta ray creatures, a bias term is introduced on
the basis of the original model. The role of the bias term is to realize the upstroke and
downstroke with different amplitudes. Specifically, the pectoral fins of the robotic manta
can be biased upward to generate more lift; the caudal fin can be set to zero amplitude,
using bias alone for better depth tracking.

In this paper, the inconsistent up and down amplitude of the real manta ray pectoral fin
flutter is defined as shown in Figure 3. The movement of the pectoral fin flutter amplitude
symmetry axis around the x;, axis in the oyz plane under the carrier coordinate system and
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the angle between the symmetry axis position change formed and the y axis is the bias
angle. The symmetry axis 1 is changed from the position overlapping with the y axis to the
position of the symmetry axis 2, as shown in Figure 3B,C.

The output equation with the bias term added is

0; = x; + A;sin(¢;) ®)

where x; denotes the bias of skeletons of cell i.

The robotic manta propulsion system consists of seven motors, one of which drives
the caudal fin, and the rest form the CPG-driven network as oscillator units. Since robotic
manta pectoral fin movements are dominated by the first skeleton on the left and right
sides, we adopted the connection form shown in Figure 4A. Oscillator units 1 through
7 output PWM signals to control the skeletons, respectively. To reduce the complexity
of the driver, the initial parameters of the oscillator are set in Table 2. The output of the
CPG-driven network is shown in Figure 4B.

B : ‘ ;
cell1 cell3 cells
cell2

cell7 |

601

cell4 cellé

amplitude °)

7
<
|
=201
-40F

60 I 1 I I I I

time (s)

Figure 4. The connection form and output curve of the CPG-driven network. (A) The connection
form of the CPG-driven network. (B) The curve of the CPG-driven network output.

Table 2. The parameters of the CPG-driven network.

Items Value (t=05s) Value (t=2.55s) Unit
Al = Ay = Az = Ay = A5 = Ag 40 40 °
Ay 0 0 °

h=h=pg=fi=f=fe=f 04 04 Hz

Ag1p = Agpo3 0 30 °
Agyy 0 0 °
Agys = Agsg 0 30 °
X1 =X =X3=X4 = X5 = Xg 10 10 °
X7 -35 —55 °
kai 20 20 -
w,‘]‘ 2 2 -

3.2. Design of T-S Based Fuzzy Neural Network Controller

The Takagi-Sugeno (T-S) fuzzy model is a special fuzzy logic model suitable for ap-
plication to systems that are locally linearized and capable of segmental control [29-33].
Compared with the Mandani fuzzy model, its output values are specific, eliminating
the clarification step, and therefore more conducive to the quantitative study of the sys-
tem [34,35]. Combining the T-S fuzzy model with BP neural network can reduce the
workload of manual parameter identification to some extent and can also take advantage
of the strengths of both methods.
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The precise mathematical model of the robotic manta is difficult to establish, and the
control effect exerted by the unique propulsion method on the vehicle needs further study.
The T-S fuzzy neural network-based control method is not very sensitive to the model, so
this method is used for the controller design of the manta ray imitation vehicle. In this
paper, we decouple the depth and heading control of the robotic manta and design the
depth and heading tracking controller based on a T-S fuzzy neural network, respectively.

The control input of the difference between the left and right pectoral fin phase
difference is related to the heading deviation and the rate of change of heading, defined by
the difference of the phase difference & = A@1, — A@ss, according to which the following
abstract equation is established

x = Flp(lpeﬂ’) (6)

where Fy(-) is an abstract function; 1. = 1 — 4, 1. is the heading error, 1 is the current
heading angle, ¢ is the desired angle, and r is the rotated rate of heading.

The control input of the caudal fin angle is related to the depth difference and the
depth change rate, according to which the following abstract equation is established

,B =F (Ze/ Uz) (7)

where F; (-) is an abstract function; z, = z — z,, z. is the depth error, z is the current depth,
z,4 is the desired depth, and v, is the vertical velocity of depth.

The main workload of the T-S fuzzy neural network-based controller design is the
need for parameter identification based on the input-output data, and the identification is
performed on the basis that sufficient data have been acquired. We first studied the motion
characteristics of the robotic manta through experiments [36-38] and constructed a data set
by classifying, processing, and calculating the acquired data. Then, the data set was used to
train the network. The depth dataset takes the depth error and vertical velocity of depth as
input and the caudal fin angle as output; the flow chart is shown in Figure 5A. The heading
dataset takes the heading error and rotated rate of heading as input and the difference
between left and right pectoral fin phase difference as output, as shown in Figure 5B.

It is obvious that this system is a Multi-Input Single-Output (MISO) system. The rules
of output based on the T-S type fuzzy model are

Ry: if x1is A and xp is A}, thenyy, = plx; +phxa+pb p=12,...... ,95v=1,2,3

where R, represents the fuzzy rule; x; and x; represent the inputs; A} and A} represent
fuzzy sets of rule Ry; y, represent the output of rule R;; and py, pY, and p; represent the
constants reflecting system characteristics.

When performing heading tracking, the input universe is x; = 1, € [—180, 180] and
xp = r € [=30, 30|, the output universe is Y = a € [—60, 60]. When performing depth
tracking, the input universe is x; = z, € [—50, 50] and x; = v, € [—10, 10], the output
universe is Y = B € [—-50, 50]. Each input theoretical universe is divided into three fuzzy
subsets. Each fuzzy subset is matched with an affiliation function.

The structure of the T-S fuzzy neural network is shown in Figure 5C. The five-layer
network structure consists of input, fuzzification, fuzzy inference, normalization, and
output layers. Depending on the fuzzy control model utilized, the corresponding number
of network layers is designed. The number of nodes in the first layer corresponds to
the number of inputs. The number of nodes in the second layer is the sum of the fuzzy
partitions of the inputs. The number of nodes in the third and fourth layers corresponds to
the number of rules. The number of nodes in the fifth layer is the number of outputs.
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Figure 5. The methods of CPG and T-S Fuzzy neural network-based Control of a Robotic Manta
for depth and heading tracking. (A) The flow chart of controller design. (B) Schematic diagram

of the datasets. (C) T-S fuzzy neural network structure diagram. (D) The control structure of the
robotic manta.

The first layer consists of an input layer with two nodes. The inputs are directly
connected to each node. Transferring input values to the nodes is its purpose.

The second layer consists of a fuzzification layer with six nodes. A fuzzy linguistic
variable value is represented by a node. Its purpose is to calculate the subordination degree
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of each input belonging to the fuzzy set of each linguistic variable value. A Gaussian
function is chosen for the subordination function

—(xm—cmn)?

u'=e 2w m=1,23n=1.2 ®)

where # is the number of inputs; m is the number of fuzzy partitions x;; ¢, is the center
value of the affiliation function; 0y, is the width of the affiliation function; and u]) is the
affiliation value of each input belonging to the fuzzy set of values of each linguistic variable.

The third layer consists of a fuzzy inference layer with nine nodes. A node represents
a fuzzy rule. Its purpose is to match the antecedents of fuzzy rules and compute the
applicability of each rule

qu =uj'uy p=12,...,9,m=1,23 9)

The fourth layer consists of a normalization layer with nine nodes. A node is connected
to each of the third layer nodes, correspondingly, and represents a normalized value. Its
purpose is to perform normalization calculations

9
qu = ‘ht/ 2 qs (10)
s=1

The fifth layer consists of an output layer with one node. The node represents an
explicit output and its purpose is to perform clarification calculations

9
Y =) yis (11)
s=1

where Y is the total output of the system.

The T-S fuzzy neural network structure is a combination of the T-S type fuzzy model
and multilayer feedforward neural network, which adopts an error back propagation
learning algorithm. This algorithm uses the total error of the network to adjust the weights
to minimize the total error of the network, which is a process of error back propagation
while correcting the weights. The center of mass and width of the affiliation function of
each node in the fuzzification layer and the coefficient of the rule output are the parameters
to be learned in the T-S fuzzy neural network. The error loss function can be described as

E=o(ya—Y) (12)

where y; denotes the desired output and Y denotes the actual output.
Then, it can be deduced that the learning algorithm for parameters c;;,,, Oyn, and pf,' is

Con(k+1) = cmn (k) = Azt m =1,2,3; n = 1,2
Omn (k + 1) Omn (k) /\aéE
ph(k+1) = pl (k) — a;,u—l,z,s;y=1,2,...,9

(13)

where A > 0 is the learning rate. At the end of the training, the above parameters are fixed.

We input the two data sets into the network separately for training. Taking the depth
data as an example, the error curve of training 250 is shown in Figure 6A. The output curve
of training 50 times is steeper than that of training 250 times.



J. Mar. Sci. Eng. 2022, 10, 758 11 of 17

A 1.045 : - B 1.644

!—Traiﬁing Error

— Testing Error

1.642
1.04
1.64

1.035 - 163

1.636

Error
Error

1031 1.634

1.632
1.025

1.63

Trained 250 times

1.02

. . L 1628 . . L
0 50 100 150 200 250 0 50 100 150 200 250

Epoch Number Epoch Number
Figure 6. The error of training. (A) The curve of training error. (B) The curve of testing error.

4. Experiments

The improved CPG model and the controller are applied to the prototype of the robotic
manta, and the effectiveness of the method is verified by experiments. The test was con-
ducted in the general transparent water pool lab of Northwestern Polytechnical University
in 2021. The pool is shown in Figure 7, its dimensions are 12m x 4 m x 3 m. The test
robotic manta is controlled by pectoral and caudal fins. The mechanical structure and elec-
tronic selection of the prototype are described carefully in Section 2. The computer software
is written in C++ builder. Control programs are written in C language. The experiments
are divided into two sets, a set of depth tracking and a set of heading depth tracking.

Camera

Glass wall

4m

Figure 7. The transparent water pool. (A) The actual view of the pool. (B) The composition of the
experimental system.

4.1. Depth Control Experiments

Depth control ability is an essential ability for underwater vehicles to perform tasks.
The controller should ensure that the robotic manta can swim steadily at a certain depth
underwater. Therefore, the basis of closed-loop control should be to ensure that the robotic
manta can swim steadily at a certain depth underwater.

The specific process of the experiment is as follows: The PC sets and sends the target
depth and related parameters, and the control system receives it. The depth information
is fed back by the pressure sensor, and the depth error and the vertical velocity of depth
are obtained through the processing of the single-chip microcomputer on the main control
module, and the control value is calculated by the TS fuzzy neural network controller.
The caudal fin changes the bias angle to adjust the pitch angle, thereby changing the
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depth of the robotic manta. The depth tracking experiments will be carried out from three
aspects: a certain depth tracking experiment, a switching desire depth experiment, and an
anti-interference experiment.

To verify the training effectiveness of the proposed controller, the first experiments
were conducted. In this experiment, the robotic manta was controlled to track a specified
depth, and the neural network was trained 250 times. The initial state of the robotic manta
was floating on the water surface. The simplified parameters were set by PC, then the task
was launched. The depth tracking stabilized and the depth was close to the desired depth,
as shown in Figure 8A. From the data curve in Figure 8B, we can see that the initial water
depth of the manta ray imitation underwater vehicle was 15 cm underwater, and the target
depth was 50 cm; the target depth was reached in 3.6 s after the start of the task and it has
no obvious overshoot phenomenon. The overshoot amount was 10 cm. The maximum
pitch angle of the former was 22° and the vehicle can adjust to near 0° in time to maintain
the current depth. Compared to the neural network that has only been trained 50 times, the
vehicle reached the desired depth faster, with less overshoot, and better stability of pitch
angle. It confirms the effectiveness of the training.

Meanwhile, we designed comparative experiments to verify the performance of the
standard Mandani fuzzy method with the T-S fuzzy NN method. The relevant parameter
settings of the Mandani fuzzy method are from [19]. The comparison results are illustrated
in Figure 8C and indicate that both methods can quickly approximate the desired depth.
The Mandani fuzzy controller took about 4.5 s to reach the desired depth, while the T-S
fuzzy NN controller took about 5.0 s to reach the desired depth. However, after reaching
the steady-state, the maximum depth error of the Mandani fuzzy was 9 cm, while the
maximum depth error of the T-S Fuzzy NN method was 6 cm. For better quantitative
analysis, we selected four relatively stable periods and calculated the root mean square
error (RMSE) of the Mandani fuzzy method and T-S Fuzzy NN method. It was calculated
that the RMSE of the Mandani fuzzy method was 4.01 and the RMSE of the T-S Fuzzy NN
method was 2.55. Obviously, the proposed controller has better performance.

Then, to verify the consistency and stability of the controller, the robotic manta was
controlled to track to two specified depths and it was repeated three times. In these repeated
experiments, the neural network was trained 250 times. In each experiment, we selected
four relatively stable periods and calculated the maximum error, mean error, and standard
deviation for each segment as shown in Table 3. The data show that the maximum error
was 6, and the mean errors were all within 3. The corresponding standard deviations were
2.89,3.12, 3.36, 2.21, 2.54, and 2.46. The experimental errors were acceptable, which verified
the viability, consistency, and stability of our method for depth tracking.

To further validate the stability and performance of the method, a second experiment
was conducted. This experiment was divided into the following situations: the desired
depth switched from 70 cm to 30 cm and the desired depth switched from 30 cm to 70 cm.
The initial state of the robotic manta in the first part of the experiment was 8 cm in the
water, when the robotic manta reached the depth of 70 cm and stabilized, the desired depth
was switched to 30 cm. The desired depth was reached after 3 s without obvious overshoot.
The overshoot was 3 cm, and a stable state was reached after 6 s. The error of the stable
state was within 6 cm. The picture of depth change is shown in Figure 8D,E. From the data
curve in Figure 8F, we can see that the initial state of the robotic manta in the second part of
the experiment was 20 cm in the water, when the robotic manta reached the depth of 30 cm
and stabilized, the desired depth was switched to 70 cm. The desired depth was reached
after 5 s, the overshoot was 12 cm. The stable state was reached after 4 s, and the error of
the stable state was within 6 cm. In summary, the robotic manta is capable of switching the
desired depth quickly, reflecting the stability and rapidity of the proposed control method.
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Figure 8. The pictures and curves of depth tracking. (A) The pictures of tracking a specified depth.

(B) The curve of tracking a specified depth. (C) Comparison of the Mandani fuzzy algorithm and T-S
fuzzy NN algorithm. (D) The desired depth switched from 70 cm to 30 cm. (E) The desired depth
switched from 30 cm to 70 cm. (F) The curve of depth switched. (G) The curves of the depth tracking

anti-interference experiments.

Table 3. Error analysis of depth tracking.

Desired Value Max Error Average Error Standard Deviation
6 1.42 2.89
50 6 —0.17 3.12
6 —0.19 3.36
5 1.71 2.21
80 6 1.24 2.54
6 2.57 2.46

To ensure the performance of the proposed controller, depth anti-interference was
conducted. When the robotic manta reached a stable stage, external disturbances were
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added. The curve of the interference applied during depth tracking is shown in Figure 8G.
In this experiment, the disturbance was applied at 3.8-4.8 s and 3.8-5.2 s, respectively. The
maximum depth at the end of jamming was 75 cm for the former and 77 cm for the latter.
The vehicle was able to recover to the set depth at 3 s and 4 s, respectively, with a small
overshoot. After 8 s, the depth reverted to the stable section, and the steady-state error
was still within 6 cm. Thus, the stability and robustness of the proposed controller were
demonstrated. The motion capture system in the literature [39,40] can be used to further
complete the experiment.

4.2. Heading Control Experiments

Due to the asymmetry in the structure of the robotic manta, even if the left and right
pectoral fins flap with the same motion parameters, there will still be a change in the heading
angle. Maintaining a certain direction of continuous navigation is a necessary requirement
for the robotic manta to accomplish its mission. Therefore, the closed-loop control of
the heading is the most important thing for the robotic manta to achieve autonomous
swimming.

To verify the performance and stability of the proposed controller for heading control,
the heading tracking experiment was conducted. It is clearly demonstrated that the robotic
manta does not have obvious heading changes and can keep swimming in the set heading,
as shown in Figure 9A. The initial state of the robotic manta was 7° of heading angle and the
target heading angle was set to 2°, respectively. After 2 s of the mission start, the heading
angle of the vehicle was stable in the set heading without obvious overshoot, and the error
was within 6°. During the heading angle stabilization phase, the heading angular velocities
all fluctuated within 3°/s. The desired depth of the robotic manta was set to 50 cm, and the
error was within 6 cm. This indicates that the vehicle can complete the heading and depth
control to meet the accuracy at the same time, as shown in Figure 9B. This demonstrates
the stability and excellent performance of the controller.

Meanwhile, to verify the repeatability of the experiments and the stability of the
controller, four sets of repeated experiments were conducted. In these repeated experi-
ments, the neural network was trained 250 times. In each experiment, we also selected
four relatively stable periods and calculated the maximum error, mean error, and standard
deviation for each segment as shown in Table 4. The data show that the maximum error
was 5.72, and the mean errors were all within 2. The corresponding standard deviations
were 1.64, 3.09, 2.86, and 0.47. The experimental errors were acceptable, which verified the
validity and stability of our method for heading tracking.

Table 4. Error analysis of heading tracking.

Desired Value MAX Error Average Error Standard Deviation
340 3.65 1.31 1.64
235 -5.72 —0.89 3.09
160 4.51 0.40 2.86
0 1.59 0.61 0.47

Then, to further ensure the performance of the controller, the heading tracking anti-
interference experiment was expanded. When the robotic manta reached the stable stage,
external disturbances were added. The curve of the interference applied during the heading
tracking is shown in Figure 9C,D. In this experiment, the disturbance was applied at
1.5-2.0 s and 1.1-2.0 s, respectively. The maximum heading angle at the end of jamming
was 111° for the former and 145° for the latter. The vehicle was able to recover to the
set depth after 3.9 s and 4.2 s, respectively. In general, the stability and robustness of the
proposed control method were demonstrated.
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Figure 9. The picture and curves of heading tracking. (A) The picture of heading tracking. (B) The
curves of heading tracking. (C) The curves of the first depth tracking anti-interference experiment.
(D) The curves of the second depth tracking anti-interference experiment.

5. Conclusions

In this paper, a CPG-driven network based on a phase oscillator model and a controller
based on the TS fuzzy neural network is designed to track the depth and heading of the
multi-stage fin pectoral fin structure of a robotic manta. The proposed CPG network can set
the amplitude, frequency, phase difference, and the bias of the amplitude. Thus, the pectoral
fins can use the bias to provide more lift and the caudal fin can be kept deflected to a certain
angle to complete depth tracking. The T-S fuzzy neural network-based controller is the
upper layer control of the CPG-driven network, specifically: based on the experimental data,
the depth dataset and heading dataset are constructed, and the training of the established
T-S fuzzy neural network is completed using the corresponding dataset, respectively. The
depth and heading controller are proposed based on the CPG-driven network in which
parameters are acquired by the T-S network. Finally, depth and heading experiments
were conducted in the pool. The experimental results show that the depth control error
was % 6 cm and the heading control error was =+ 6°.

In the future, we will study more high-precision swimming control methods. In order
to achieve speed tracking and further autonomy of the robotic manta, we will actively
integrate multiple types of sensors and build a more complete and powerful control system.
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