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Abstract: The water mass in the East China Sea (ECS) shelf has a complicated three-dimensional
(3D) hydrologic structure. However, previous studies mostly concentrated on the sea surface based
on the sparse in situ and incomplete satellite-derived observations. Therefore, the 3D interpolation
technology was introduced for the reconstruction of hydrologic structure in the ECS shelf using in
situ temperature and salinity observations in the summer and autumn of 2010 to 2011. Considering
the high accuracy and good fitness of the radial basis function (RBF) methods, we applied the RBF
methods to the in situ observations to completely reconstruct the 3D hydrologic fields. Other 3D
interpolation methods and 2D methods were also tested for a comparison. The cubic and thin
plate spline RBFs were recommended because their mean absolute error (MAE) in the 10-fold cross-
validation experiments maintained the order of ~10−2. The 3D RBF reconstructions showed a
reasonable 3D hydrologic structure and extra details of the water masses in the ECS shelf. It also
helps evaluate regional satellite-derived sea surface temperature (SST). Comparisons between the
interpolated and satellite-derived SST indicates that the large bias of satellite-derived SST in the
daytime corresponds to weak mixing during low-speed wind and shows seasonal variation.

Keywords: 3D RBF interpolation; cross-validation; temperature and salinity; East China Sea; sea
surface temperature

1. Introduction

The East China Sea (ECS) is one of the largest marginal seas with significant sea–land
interaction in the western Pacific (Figure 1). At the Yangtze River mouth, the isobaths of
depth protrude outward in an arc. The distribution of hydrologic factors (temperature,
salinity, etc.) in the ECS is affected by evaporation, precipitation, circulating currents, and
also by the runoff from the Yangtze River into the sea. Previous research has shown that
high-salinity water is located in the mid-shelf with less saline water in the inner shelf,
forming a gradient parallel to the coast [1]. The ECS water mass is affected by the Yellow
Sea circulation in the north, and the Kuroshio and its tributaries, which are manifested
as a saline intrusion along with the warm water from the Taiwan Strait in the south. The
mixture of the currents in the south is known as the Taiwan Warm Current [2–4]. At the
same time, the Yangtze River enters the sea, extends eastward on the surface, and forms a
new type of water by mixing with saline ambient water in the ECS shelf [5]. Overall, the
distribution and properties of water mass in the ECS shelf are affected by these complex
currents [6]. The ECS water mass has attracted extensive attention and there has been lots
of research with slightly distinct results [7,8].
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Figure 1. Geographical location and bathymetry of the ECS shelf. The yellow box is the cruise field 
and the green line is the −200 m isobath. 

With the continuous accumulation of data and the improvement of research technol-
ogy, we have gained a deeper understanding of the ECS water mass. Most researchers 
mainly deal with the in situ and satellite-derived observations that could provide an ac-
curate measurement of the sea surface conditions. For instance, Qiu et al. [9] used the in 
situ observations along with consecutive satellite data to investigate the fluctuations of 
the Kuroshio front in the ECS, Chang et al. [10] studied the wintertime variations of SST 
fronts in the Taiwan Strait using 10-year satellite SST images, and Yin and Huang [11] 
used satellite data of sea surface temperature (SST) to explore the short-term variation of 
the surface upwelling off northeastern Taiwan. Moreover, researchers also used various 
in situ and satellite observations to study deeper mechanisms in other areas under differ-
ent ocean conditions. The variability and origin of surface chlorophyll-a concentration un-
der different climate conditions in the Malacca Strait, the South Java Coast, the Southern 
California Bight, the Indonesian Maritime Continent, and the South China Sea were stud-
ied using multiple remote sensing observation platforms and Argo observations [12–16]. 
Isa et al. [17] used the Advanced Very High-Resolution Radiometer SST in the Malacca 
Strait to study the long-term trends and impacts of the El Southern/Oscillation and Indian 
Ocean Dipole. Mandal et al. [18] used different kinds of data (e.g., Argos and satellite 
datasets) to evaluate different phases of the cyclonic storm ROANU along the western Bay 
of Bengal. 

Various data play an important role in explaining different ocean phenomena and 
studying the changes in different scenarios. However, affected by the conditions in the 
real sea, the observed data are often not satisfactory. For example, the satellite datasets 
could only provide effective surface data and there also exist missing pixels due to the 
cloud cover and coastline interference. Interpolation technology is often used to help 

Figure 1. Geographical location and bathymetry of the ECS shelf. The yellow box is the cruise field
and the green line is the −200 m isobath.

With the continuous accumulation of data and the improvement of research technology,
we have gained a deeper understanding of the ECS water mass. Most researchers mainly
deal with the in situ and satellite-derived observations that could provide an accurate
measurement of the sea surface conditions. For instance, Qiu et al. [9] used the in situ
observations along with consecutive satellite data to investigate the fluctuations of the
Kuroshio front in the ECS, Chang et al. [10] studied the wintertime variations of SST fronts
in the Taiwan Strait using 10-year satellite SST images, and Yin and Huang [11] used
satellite data of sea surface temperature (SST) to explore the short-term variation of the
surface upwelling off northeastern Taiwan. Moreover, researchers also used various in situ
and satellite observations to study deeper mechanisms in other areas under different ocean
conditions. The variability and origin of surface chlorophyll-a concentration under different
climate conditions in the Malacca Strait, the South Java Coast, the Southern California Bight,
the Indonesian Maritime Continent, and the South China Sea were studied using multiple
remote sensing observation platforms and Argo observations [12–16]. Isa et al. [17] used
the Advanced Very High-Resolution Radiometer SST in the Malacca Strait to study the
long-term trends and impacts of the El Southern/Oscillation and Indian Ocean Dipole.
Mandal et al. [18] used different kinds of data (e.g., Argos and satellite datasets) to evaluate
different phases of the cyclonic storm ROANU along the western Bay of Bengal.

Various data play an important role in explaining different ocean phenomena and
studying the changes in different scenarios. However, affected by the conditions in the real
sea, the observed data are often not satisfactory. For example, the satellite datasets could
only provide effective surface data and there also exist missing pixels due to the cloud
cover and coastline interference. Interpolation technology is often used to help make up
for their defects [19]. The two-dimensional (2D) interpolation schemes are usually used for
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the reconstruction of sea surface data such as the Forel–Ule index [20]. In this paper, the
conductivity-temperature-depth (CTD) data are used for a complete three-dimensional (3D)
reconstruction of the hydrologic factors in the ECS shelf. Due to the inherent limitation of
the cruise surveys, the temperature and salinity data measured by the ship-based CTD are
sparse and discrete, raising a need for interpolation. We could reconstruct the data of each
layer through 2D interpolation, but unfortunately, there are only a few in situ observations
in one layer. In this situation, the 2D interpolation could not provide a satisfactory result.
In addition, the topography variability of the ECS shelf leads to the uneven distribution of
in situ observations in each layer, that is, the number of measured points in the shallow
water is larger than that in the deep part so that the 2D interpolation would perform
differently at different depths. Under these circumstances, accurate interpolation results
could not be accessible. For the coherent 3D temperature and salinity fields in the ECS,
the 2D interpolation results without considering the vertical information in the calculation
could hardly reflect the geophysical distribution and complicated phenomena. Hence, for a
higher spatial resolution, more accurate interpolation results, and less computational cost,
we propose the 3D interpolation scheme. So far, many 3D interpolation methods have been
tested in a relatively comprehensive way in the reconstruction of the diapycnal diffusivity
in the South China Sea [21]. However, the 3D interpolation methods are not widely used in
oceanography yet.

In addition, the 3D interpolation could provide a more accurate result in surface data
reconstruction. SST is a significant index to investigate large-scale phenomena and local
variability and hence is important for the studies in the ECS shelf affected by complex
monsoon conditions. The satellite-derived SST datasets have been verified in a wide
range of waters, such as the western North Pacific, the South China Sea, and the north
Persian Gulf [22–24]. Spatially interpolating the in situ observations onto the grids of
satellite measurements could provide more reliable matchups to assess the performance of
satellite-derived SST. Therefore, spatial interpolation techniques are essential for estimating
hydrologic variables for unsampled locations. The 3D interpolation methods can integrate
the information of vertical direction, which has obvious advantages compared with the
2D interpolation methods. Therefore, it is more convincing for using the 3D interpolation
results to evaluate satellite-derived SST.

In terms of multidimensional scattered data completion, there are several methods
available. The inverse distance weighted (IDW) method [25], the Chebyshev polynomials
fitting (CPF) method [26], and the radial basis functions (RBF) method [27] have been
widely used in many fields. Especially as an effective interpolation method of the high
dimensional interpolation, the accuracy of the RBF methods is determined by the matching
degree between the distribution of in situ observations and the type of RBF. The real
distribution is hard to obtain, and therefore, we apply the 10-fold random cross-validation
experiments [28] to choose the optimum interpolation method to interpolate the in situ
observations. The main purpose of the paper is to select the appropriate interpolation
scheme, obtain the complete 3D spatial hydraulic structure in the ECS shelf, analyze its
water mass composition, and evaluate the satellite-derived SST.

The paper is organized as follows. The data are described in detail in Section 2. In
Section 3, the 3D RBF interpolation method is introduced and compared with several other
interpolation methods. The reconstruction results, analysis of the results and evaluation of
satellite-derived SST are shown in Section 4 while Section 5 gives the summary.

2. Data
2.1. In Situ Observations

Historical hydrologic data used in this study were collected from four field surveys
during the summer and autumn in 2010 and 2011. Figure 2 shows that some stations
are close to each other. However, distinct scattered points are needed to obtain a unique
interplant when using the RBF method. Consequently, for the pair of stations between
which the distance is smaller than ~20 km, we will screen out one of them from the data set.



J. Mar. Sci. Eng. 2022, 10, 877 4 of 20

The detailed cruise period and the number of stations used in the paper are listed in Table 1.
Temperature and salinity data were measured by the ship-based CTD (SBE911). The in
situ observations cover the ECS shelf around 25◦ N–32◦ N, 120◦ E–126◦ E. The horizontal
distribution of the stations is shown in Figure 2, which shows that the stations are mostly
located at a depth shallower than −200 m. The data recorded within one month are used
as a proxy of the corresponding season: June for summer, and October and November for
autumn.
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Figure 2. Processed cruises station distributions in the ECS shelf. The red dots show the locations of
stations, and the black lines present the −50 m, −100 m, −200 m, −500 m, −1000 m, and −2000 m
isobaths. (a) Summer (June) 2010; (b) Summer (June) 2011; (c) Autumn (November) 2010; and
(d) Autumn (October) 2011.

Table 1. The number of the stations and observations included in the paper.

Period Stations Observations

12 June 2010–20 June 2010 44 2515
1 Nov 2010–10 Nov 2010 45 2570

12 June 2011–25 June 2011 65 4931
12 Oct 2011–28 Oct 2011 67 4037

2.2. MODIS SST Data

We use the satellite-derived SST from the Moderate-resolution Image Spectroradiome-
ter (MODIS) on board Auqa that could cover the global earth in one to two days. The
in situ observations are used as a proxy to represent one season, and we also use the
monthly data in 2010 and 2011 from the product with thermal-infrared (derived from bands
31–32, i.e., 10.8–12.3 µm) SST. We use the MODIS SST Level 3 product in daytime that is
produced by the NASA Goddard Space Flight Center’ s Ocean Data Processing System
(https://oceancolor.gsfc.nasa.gov/, (accessed on 15 April 2022)).

https://oceancolor.gsfc.nasa.gov/
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3. Methodology

Interpolation methods are in great demand in the fields of oceanography and meteo-
rology. Several widely used methods are applied to reconstruct the integrated hydrologic
structure. Our experiment is only aimed at interpolating the data spatially for different
seasons separately. The 2D interpolation methods are also tested as comparison. The results
are shown in Section 3.3, which show the best RBF for reconstruction, while the 3D IDW
and CPF methods are implemented as comparison. The formula of the 3D IDW method
and the 3D CPF method (Equations (5) and (6)) are similar to Guo et al. [21].

3.1. The RBF Method

The radial basis functions (RBF) method is a precise interpolation method and will
be applied to this multivariate scattered data interpolation problem. The RBF method is
effective and relatively accurate when dealing with unevenly and sparsely distributed
n-dimensional observations [29]. It is presented as the following form (n = 3 in our paper):

f (
→
V) = ∑N

i=1 ci ϕ

(∣∣∣∣|→V − →Vi|
∣∣∣∣)+ α1 + α2xi + α3yi + α4zi, 1 ≤ i ≤ N. (1)

where N is the number of data points, x, y, and z represent horizontal coordinates and

vertical coordinates, respectively,
→
V = (x, y, z)T is the input vector, ||·|| is set as the Eu-

clidean norm in our paper, f : R3 → R means the temperature or salinity distribution
field, ϕ is the RBF, and [c1, c2, · · · , cN , α1, α2, α3, α4]

T are the coefficients. The coefficients
could be obtained by solving linear algebraic equations (Equation (2)) [30] with the in situ
observations s = [s1, s2, · · · , sN ]

T :(
c
α

)
=

(
A P
PT 0

)−1(s
0

)
(2)

where A ∈ RN×N , Aij = ϕ(||
→
Vj −

→
Vi||), and

c =


c1
c2

...
cN

, α =


α1
α2
α3
α4

, P =


1 x1 y1 z1
1 x2 y2 z2
...

...
...

...
1 xN yN zN

. (3)

One of the most attractive advantages of the RBF method is the uniqueness of the
interpolant under rather mild conditions. The Equation (2) could be simplified as cA−1 = s
for some kinds of RBFs, since the RBF method yields the unique interpolant if and only
if the matrix A is non-singular. It could guarantee the uniqueness if the RBFs are chosen
as Gaussian, multiquadric, or linear functions. While using the thin plate spline and the
cubic function, the uniqueness needs to be satisfied by either changing cA−1 = s to the
Equation (2) or giving stronger restrictions to the datasets [30]. In practical application, the
latter could be rarely realized. As a result, the last four terms of the coefficients vector are
added to guarantee the uniqueness of the interpolant of all the RBFs used in this paper [31].
Moreover, their effectiveness in the scattered data interpolation depends on their easily
adjustable smoothness and powerful convergence properties [32].

However, the interpolation results are under the influence of the types of RBFs, since
the RBFs indicate different trends. Hence, there exists a risk that an improper RBF is
chosen. The RBFs mentioned above are listed as: (1) ϕ(d) = d (linear), (2) ϕ(d) = d3

(cubic), (3) ϕ(d) = d2 ln(d) (thin plate spline), (4) ϕ(d) =
√

1 + d2/ε2 (multiquadratic), and
(5) ϕ(d) = e−d2/2ε2

(Gaussian), where d is the distance (Euclidean distance or other dis-
tances) between two points, and ε represents the reciprocal of the critical radius for multi-
quadratic and Gaussian functions and is set as approximate average distance between two
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adjacent nodes in our test (shown in Equation (4)). Generally, these RBFs correspond to
the linear, cubic, and almost quadratic, as well as exponential decay trends [29]. Due to
the stable features of the temperature and salinity fields, the RBF (1) to (4) are tested in our
paper.

ε = 3
√
(xmax − xmin)(ymax − ymin)(zmax − zmin)/N (4)

The basis for choice is the prior knowledge of the data set (the real distribution of
temperature and salinity) that could not be obtained beforehand. Therefore, we carry out
the 10-fold random cross-validation experiments to decide which RBF is the optimum for
our reconstruction. To accomplish the numerical test, the data set is randomly divided
by record. All the in situ observations are divided into 10 disjoint subsets randomly, each
containing 1/10 of the data. We randomly select one group every time for one calculation
process. The picked group is set as a test set while the remaining groups are used for
interpolation. The calculation error of the interpolation will indicate the effect of different
methods. The 10-fold cross-validation experiments are repeated 10 times to make sure the
stability and accuracy of the results and other interpolation methods will also be tested in
this way.

3.2. The 3D IDW Method and the 3D CPF Method

The 3D IDW method is one of the most common interpolation methods in data analysis.
The surrounding points contribute different weights to the interpolated point, which are
inversely proportional to the distances between the interpolated points and surrounding
points. The formula is presented as follows:

f
(→

V
)
=

∑N
i=1

si

||
→
V−

→
Vi ||

γ

∑N
i=1

1

||
→
V−

→
Vi ||

γ

, (5)

where γ = 2,
→
V is a 3D vector and ||·|| is still the Euclidean norm.

The 3D CPF method is another popular fitting method using the orthogonal polyno-
mials and the formula is shown in Equation (6).

f
(→

V
)
= ∑Mmax

m=0 ∑Pmax
p=0 ∑Qmax

q=0 βm,p,q·Am(x)·Bp(y)·Cq(z) (6)

where


x = 2x−xmax−xmin

xmax−xmin
,

y = 2y−ymax−ymin
ymax−ymin

,

z = 2z−zmax−zmin
zmax−zmin

,


Am(x) = cos(m·arccos(x)),
Bp(y) = cos(p·arccos(y)),
Cq(z) = cos(q·arccos(z)),

and Mmax, Pmax, Qmax are the

highest order of polynomials in all directions, respectively, which are set as 10 in our
tests. βm,p,q are the coefficients that could be solved by the least square methods.

3.3. Experimental Results

Different interpolation methods are applied to reconstructing the in situ observations.
In order to quantify their effectiveness, the 10-fold random cross-validation scheme is
carried out, and the criterions are formulated by the mean absolute error (MAE) and the
mean relative error (MRE), which are shown as follows:

MAE =
1
k

k

∑
i=1

∣∣∣ f̃i − fi

∣∣∣, (7)

MRE =
1
k

k

∑
i=1

∣∣∣ f̃i − fi

∣∣∣
fi

(8)
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where f̃i and fi represent the interpolated and measured values, respectively, and k is the
number of points in one test set. We use the Miller projection (a kind of improved cylindrical
map projection) to convert longitude and latitude coordinates into X–Y coordinates in a
plane for interpolation process and the depth coordinates have no change. We calculate
the change rate of each pair of points. The percentage of the pairs whose change rate
is located within a certain range of temperature and salinity calculated for 2011 cruises
is shown in Table 2. More than 50% pairs of points are located within the listed range
in Table 2. This means that the change rate in vertical direction is actually 2–4 orders of
magnitude higher than that in the horizontal direction. However, the value of the distances
between two points is reduced to ∼ 1/

(
5× 106) of the actual distance after the projection

and the “change rates” (the quotations mean the change rate after the Miller projection) is
correspondingly 5× 106 times higher. Therefore, when the calculation process is going on,
the “change rate” in the horizontal direction is ~2–4 orders higher than that in the vertical
direction. Through some tests, the change rates of each dimension are kept consistent as far
as possible so that better results can be obtained. Hence, during the calculation process we
raise the weight of the change rate in the vertical direction by z∗ = z/1000 after tests. z in
Equation (1) is replaced by z∗ while x and y in Equation (1) are the projected coordinates in
the actual interpolation.

Table 2. Percentages of pairs of points whose change rates are within the specific range for tempera-
ture and salinity in horizontal and vertical directions for cruises in 2011.

Change Rate
°C·m−1

(psu·m−1)

Percentage
(Horizontal
Direction)

Change
Rate

°C·m−1

(psu·m−1)

Percentage
(Vertical

Direction)

Summer
Temperature ~10−6 56% ~10−4–10−2 59%

Salinity ~10−6 68% ~10−4–10−2 79%

Autumn
Temperature ~10−6 54% ~10−4–10−2 77%

Salinity ~10−6 68% ~10−4–10−2 73%

We test different cruises with the 10-fold cross-validation experiments and the results
are shown in Figures 3 and 4. Considering that the MAEs of different methods are too low
to distinguish from each other, we present the log10(MAE) to enlarge their differences. Due
to the smaller variation range of salinity in the ECS shelf, the errors of salinity are slightly
lower than that of temperature. We could see obvious advantages of the RBF method. In
most groups, the MAEs of linear, thin plate spline, and cubic RBFs are in the order of ~10−2

in each group and they are always one order of magnitude lower than others (~10−1). In
addition, the MAEs of thin plate spline and the cubic RBF methods are lower than the
linear RBF method in most situations.

MREs (the average of 10 tests) indicate the same conclusion (Tables 3 and 4). The
average MREs are obviously small for the RBF method of the linear, thin plate spline, and
cubic functions. The error can be reduced to ~1 to 2 order of magnitudes lower than other
methods and the thin plate spline and the cubic RBF have the smallest errors. The RBF
methods perform better in terms of accuracy and stability under different conditions. The
experimental results with a different data set of the four cruises support this conclusion
without exception. Furthermore, the use of different target values (temperature and salinity)
do not make any difference about the results.
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Table 3. The average MREs of different interpolation methods with in situ temperature.

3D Interpolation
Method

Temperature (%)

Summer 2010 Summer 2011 Autumn 2010 Autumn 2011

RBF lin 2.14 × 10−1 1.81 × 10−1 7.70 × 10−2 1.15 × 10−1

RBF thp 1.78 × 10−1 1.34 × 10−1 5.40 × 10−2 6.90 × 10−2

RBF cub 1.88 × 10−1 1.34 × 10−1 5.20 × 10−2 6.70 × 10−2

RBF mult 1.00 1.01 4.23 × 10−1 9.52 × 10−1

IDW 2.79 3.76 1.32 2.25
CPF 1.46 2.03 5.79 × 10−1 1.57
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Table 4. The average MREs of different interpolation methods with in situ salinity.

3D Interpolation
Method

Salinity (%)

Summer 2010 Summer 2011 Autumn 2010 Autumn 2011

RBF lin 1.54 × 10−1 4.30 × 10−2 4.00 × 10−2 4.20 × 10−2

RBF thp 1.41 × 10−1 3.00 × 10−2 3.00 × 10−2 2.70 × 10−2

RBF cub 1.49 × 10−1 3.10 × 10−2 2.90 × 10−2 2.40 × 10−2

RBF mult 5.13 × 10−1 2.38 × 10−1 1.80 × 10−1 3.41 × 10−1

IDW 1.14 5.30 × 10−1 6.18 × 10−1 7.48 × 10−1

CPF 6.89 × 10−1 3.80 × 10−1 1.60 × 10−1 4.68 × 10−1

The scatterplots of the matchups between the interpolated and in situ values (all the
interpolations at the positions of in situ observations in 10 test groups are considered) are
presented in Figures 5 and 6. Generally, most points are close to the 1:1 line for the entire
ECS shelf and the bias calculated following Equation (9) (where n is the total number of
the matchups) is on the order of ~10−4 for all situations. Quantitatively, the correlation
coefficients r and MAE show that the RBF reconstructions have a good agreement with
the in situ data in all conditions. The MAEs of all 10 test groups are in the order of ~10−2

in Figure 5 for all the conditions while the interpolated results in summer are slightly
worse. The same condition occurs in salinity interpolation. The MAEs of all the in situ
observations are smaller than the order of 10−2 except that in summer 2010 (Figure 6a),
with MAE equaling to 0.0419 psu. It is noticed that the larger biases are mostly distributed
in the area with a low salinity, which is near the Yangtze River mouth through the matchups
in Figure 6a,b. It implies that the gradient distributions of the target values possibly have
an essential impact on the interpolated results.

Bias =
1
n

n

∑
i=1

( f̃i − fi) (9)
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We notice that the MAEs present some difference for different cruises while the similar
results are also revealed in scatterplots of the matchups. For the temperature, the MAEs
in the summers of 2010 and 2011 are slightly larger than that in autumn. For instance, the
average MAE of the thin plate spline RBF method in summer 2010 is 0.0353 ◦C while it
is 0.0154 ◦C in autumn 2010. For salinity, the MAEs in summer 2010 are larger than that
in other cruises, which is also reflected in Figure 6 with a more scattered distribution of
the matchups. The average MAE of the thin plate spline RBF method in summer 2010 is
0.0419 psu while it is 0.0094 psu in autumn 2010.

In order to explore the problem mentioned above, we use the interpolated results
to present the spatial distribution of the gradient norm of the temperature and salinity.
Take the cruise in summer 2010 as example. The gradient norm is calculated using the
interpolation results of the 3D thin plate spline RBF method (Figure 7). Since the gradient is
smaller at deeper layers, we choose the gradient at a −5 m depth for display. The MAEs are
at the order of 10−2 in the 10-fold cross-validation experiments, and therefore, we present
the locations of the observations where there is an absolute error larger than 10−1 (◦C or
psu) with the red triangles. The points in Figure 7a with a larger error are located in the
northeast where the gradient norm of temperature is larger. While in Figure 7b, they are
mainly located in the west side. The average gradient norms of the four cruises at a −5 m
depth are shown in Table 5. The averaged gradient norm in summer 2010 for salinity
is nearly twice as large as others, and the averaged gradient norms for temperature in
summer 2010 and 2011 are larger than that in autumn as well. The size of the average
gradient norms corresponds to the interpolation results well (Figures 3 and 4). In addition,
some boundary points are extrapolated. These two factors both contribute to the difference
mentioned in the last paragraph.
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Figure 7. Schematic diagram of the gradient norm distribution of the interpolation results with the
thin plate spline RBF method at−5 m depth in summer 2010 (the unit are °C·km−1 and psu·km−1 for
(a) and (b), respectively). The red triangles present the locations of the observations at −5 m depth
where there is an absolute error larger than 0.1 (◦C or psu) in the random 10-fold cross-validation
experiments, and its size reflects the size of the error. (a) Temperature; (b) Salinity.

Table 5. The average gradient norm at −5 m depth of four cruises.

Period Temperature (°C·km−1) Salinity (psu·km−1)

Summer 2010 0.0283 0.0401
Summer 2011 0.0213 0.0200
Autumn 2010 0.0187 0.0259
Autumn 2011 0.0186 0.0220

The thin plate spline and the cubic RBF method are similar as each as in MAEs.
Therefore, we use the thin plate spline and the cubic RBF methods to reconstruct the 3D
hydrologic structure in the ECS shelf for a comparison. Since data at numerous stations
of the cruise in summer 2011 shows a larger discrepancy, we present its reconstructed
results at several layers in Figures 8 and 9. The results are similar, and they all largely
coincide with the in situ observations. Therefore, in the circumstance of the hydrologic
reconstruction in the ECS shelf, these two RBF methods are all recommended. Considering
the good numerical stability and convergence of the thin plate spline RBF interpolation [33],
the thin plate spline RBF reconstructions are chosen to present the results and explore the
hydrologic variations in the ECS shelf.

3.4. The 2D RBF Method

The same 2D interpolation methods (IDW, CPF, and RBF methods) corresponding to
the 3D interpolation introduced in the Sections 3.1 and 3.2 methods were tested and we
present the result using the thin plate spline RBF method with the data in summer 2011 for

a test of the effectiveness of 2D interpolation. For the 2D method, the input vector
→
V is only

a 2D horizontal vector and the vertical information is not included. The equation of the

reconstructed field is changed and the input vector
→
V in Equations (5) and (6) is modified

as a 2D vector. As for the Equation (1), it is changed correspondingly to Equation (10).

f
(→

V
)
= ∑N

i=1 ci ϕ(||
→
V −

→
Vi||) + α1 + α2xi + α3yi, 1 ≤ i ≤ N. (10)
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depth; (d–f) −45 m depth; and (g–i) −85 m depth.
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Figure 9. The in situ salinity (summer 2011) and reconstructed results with different RBFs in the ECS
shelf. The first column presents the original in situ observations, the second is the interpolation result
using the thin plate spline RBF method, and the last column uses the cubic RBF method. (a–c) −5 m
depth; (d–f) –45 m depth; and (g–i) −85 m depth.
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The average MAE of each depth is recorded in Figure 10. Compared with the 3D thin
plate spline RBF method, the average MAE of the 2D method is obviously larger. Since
observations at different depths show different patterns, the average MAE at each depth is
different from each other. The average MAEs with the 3D thin plate spline RBF method at
each depth are also computed. It shows an obvious advantage in the 3D reconstruction of
the hydrologic factors in the ECS shelf. Other 2D methods (IDW and CPF) are also tested
and the same conclusions are obtained (not shown). In conclusion, the 2D interpolation
methods are not good at handling the 3D data because of insufficient data at the horizontal
direction and its ignorance of the vertical information.
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Figure 10. The log10(MAE) at different depths with 2D and 3D thin plate spline RBF methods,
respectively. The blue dash-dot line is the 2D thin plate spline RBF method while the orange dash-dot
line is the 3D thin plate spline RBF method. (a) Temperature, (b) Salinity.

4. Application
4.1. Reconstruction and Water Mass Analysis

We reconstructed temperature and salinity at different depths which include −2 m,
−5 m, −10 m, −20 m, −40 m, −60 m, −80 m, and −100 m. The boundary between coastal
water mass and offshore water mass is obvious. In the southeast corner of the study area,
with the increase in depth, the temperature decreases while the salinity increases.

The 3D reconstructed temperature (Figure 11a) and salinity (Figure 11b) in summer
2011 was shown for example. High temperature and low salinity water were observed
in the upper layer (above −20 m) near the Yangtze River mouth. Because it is the flood
time of the Yangtze River, warm and fresh water is diluted into the ECS and mixed with
local ECS water. The results show that the influences of Yangtze diluted water decreased
with depth and almost disappeared at −20 m. The cold area in the upper layer near the
Zhejiang coast was induced by upwelling that brought the cold and saline water from a
lower layer to the surface. High temperature and high salinity water can be resolved at the
upper layer of the southeastern part of the ECS, which originated from Kuroshio in the ECS.
With the increase in depth, the southeast of the ECS showed low temperature and high
salinity that was attributed to the intrusion of the Kuroshio Branch Current to the northeast
of Taiwan (KBCNT, [34,35]). The KBCNT originated from Kuroshio Subsurface Water
with a temperature ranging from 13 to 25 °C and salinity ranging from 34.5 to 35.0 psu [7].
The low temperature water at the northeast of the ECS is considered to be the cyclonic
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eddy in the northern ECS [36], which is a subsurface cold eddy below −20 m with a low
temperature. Overall, our method clearly resolves the water masses in the ECS.
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Figure 11. The 3D reconstruction of the in situ observations in summer 2011. (a) Temperature;
(b) Salinity.

To check the reconstruction results, we present T-S diagrams during the four cruises
(Figure 12) to show various water masses. Similar to Figure 11, the T-S diagrams can clearly
show the high salinity water from Kuroshio, which includes high temperature Kuroshio
surface water and lower temperature Kuroshio subsurface water [7]. Coastal water in
the north ECS including Yangtze River plume and Zhejiang upwelling water can also be
identified in summer (Figure 12a,b). The coastal water cooling in autumn (Figure 12c,d) is
significant compared with that in summer due to the air temperature falling and enhanced
mixing driven by strong wind. The cold eddy in the north ECS is a phenomenon that can
only be observed in summer and can be easily found in our reconstruction results.

An important current in the ECS is the intrusion of the KBCNT at the bottom layer,
which can affect the water mass near the Yangtze River mouth and southwest of the Yellow
Sea [1]. To check the RBF reconstruction results, we showed the distribution of bottom
salinity in Figure 13, because the temperature is easily influenced by solar heating at the
surface. In summer (Figure 13a), the east wind was prevailing near the Yangtze River
mouth, which hindered the north intrusion of the KBCNT on the bottom because the east
wind induces northward transport in the surface and thus the southward transport on
the bottom. In summer (Figure 13b), the high salinity KBCNT was close to the Zhejiang
coast, which may be due to the offshore Ekman transport on the surface by the south wind
and onshore transport as a compensation. With the similar mechanisms to that in summer,
the bottom KBCNT intrudes offshore in winter (Figure 13c,d). The high salinity tongue
can intrude further north to the southwest of the Yellow Sea, because of the barotropic
adjustment as described in [1]. Compared with the result in [8], using regular Cressman
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interpolation, this result can show more details of the intrusion process of the KBCNT and
can help further explore the observation data.
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4.2. Comparison with Satellite-Derived SST

The 3D RBF methods used in Section 3 perform better than the 2D RBF methods for
the surface hydrologic conditions in the ECS shelf (Figure 10), which also shows a very
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small error in statistical analysis (the correlation coefficients in the 10-fold cross-validation
experiments are larger than 0.99 and the MAEs maintain the order of ∼10−2). Considering
the lack of in situ observations and the inaccuracy of the 2D interpolation methods, the
3D RBF reconstructions could reflect the SST more precisely and will not be disturbed
by the spatial inconsistency. Therefore, the interpolated results are used to compare with
satellite-derived SST and present the seasonal variability with analysis of influence factors.

Satellite-derived SST from MODIS could play an important role in the analysis of
oceanic phenomena. The accuracy of the satellite was influenced by the platform, time, and
the studied area. Previous studies show that the accuracy of MODIS-derived SST ranged
from −0.06 ◦C to 0.8 ◦C and there was even a 2 ◦C bias in some areas [37,38]. The monthly
MODIS-derived SST during daytime in summer and autumn 2010–2011 is used. As the in
situ measurements have been interpolated onto the grids of satellite observations, there
is no spatial mismatch between them. The interpolated results at −1 m depth are used to
compare with the MODIS-derived SST.

The standard deviation of MODIS-derived data has a seasonal variability. In summer
it is in the range of 1.5 to 2.5 ◦C while in autumn it is in the range of 1 to 1.5 ◦C, indicating
the seasonal variation of the SST in the ECS. The scatter plots presented in Figure 14 shows
an obvious seasonal discrepancy. On the one hand, the MAE is 0.4535 ◦C in autumn 2011
and 0.8808 psu in autumn 2010. But it is larger than 1 ◦C in summer. Except the MAE, the
MRE in summer is higher than that in autumn. Especially in autumn 2011, the MRE could
reach the level of 1.84% while in other periods it is larger than 4%. Most points are located
in the range of ±2 °C to the 1:1 line. At the same time, it can be seen from the scattered
diagram that the distribution is more scattered in summer, presenting lower correlation
coefficients, while it shows an obvious linear trend in autumn (Figure 14). On the other
hand, the bias also presents seasonal variability. In summer 2011, the bias is positive while
the bias is negative in autumn 2010 and 2011.
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The possible causes of error are simply shown as follows. Firstly, the monthly MODIS
SST was used, which introduced a possible large error in temporal consistency. Secondly,
the obvious seasonal variability shown in the scatter plots is needed to be explored. Donlon
et al. [39] carried out some tests to demonstrate that when the wind speed is greater than
2.5 m/s, the satellite-derived SST during the daytime and the nighttime will have a negative
bias, while the wind speed is smaller than 2.5 m/s, the satellite-derived SST during the
daytime will have a large positive bias. Therefore, we depict monthly wind speed contour
maps and the bias distribution together in one picture (Figure 15). It can be seen that the
wind speed in summer is significantly lower than that in autumn, and the wind speed
in the area with a large error is largely below 2.5 m/s. The wind speeds in Figure 15c,d
are largely higher than 2.5 m/s with small negative biases. At the same time, it can be
seen in autumn 2010 that the area with a large error corresponds to the relatively smaller
wind speed. The SST obtained from MODIS is the skin-SST while the ships measure the
depth-SST. There is a discrepancy between them [40,41] which is possibly influenced by
climate factors. Similar conclusions are mentioned in [42], which demonstrated that there
would be a large positive bias between the skin-SST and depth-SST when the wind is weak
during the daytime.
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Moreover, due to the large diurnal variability of SST in summer (long-time solar
radiation), the error of the daytime data may be enlarged. Together with the small wind
speed in summer, the vertical convective mixing is weak, which results in a shallow warm
layer. The difference between the depth-SST and the skin-SST is greater than that in autumn
when vertical mixing is stronger, which contributes to the large bias. At the same time,
because of the impact of the fresh water of the Yangtze River in the summer, the hydrologic
situation near the estuary is more complicated. Some fronts and vortices generated by the
Kuroshio lead to a more complex temporal and spatial distribution of SST. These factors
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probably make more contribution to the lower correlation coefficients and larger errors in
summer.

5. Summary

The 3D RBF interpolation schemes behave well for the data used in our paper. Based on
sparse and unevenly distributed in situ observations, it could give complete reconstructed
results with small errors. We tested other 3D interpolation methods and 2D methods to
demonstrate the priority of the 3D RBF methods. Since the patterns of data play an essential
part in choosing the RBFs, we also tested different 3D RBF methods. Our study shows the
RBF method combined with the cubic or thin plate spline function is the optimal method
for the reconstruction of temperature and salinity in the ECS shelf. Their MAEs could
maintain the order of ~10−2 and the correlation coefficients between the observations and
the interpolations are all larger than 0.99 in the 10-fold cross-validation experiments. In
addition, the consistency of the change rate in different dimensions could contribute to the
low MAEs. In fact, it is suggested that the horizontal and vertical change rates of target
values in calculation are better to be adjusted to the same order of magnitude as far as
possible, which may be beneficial to the small MAEs.

For the coherent 3D distributions of hydrological characters in the ECS, the 3D RBF
interpolation could provide a more accurate result to explore the phenomena and related
mechanisms. The 3D thin plate spline RBF interpolated results are presented not only
for the 3D reconstruction but also for the satellite data evaluation. By comparing the
interpolations and satellite-derived SST, we found that the large bias of satellite-derived
data corresponds to weak mixing during weak wind. For the evaluation of the SST, the 3D
RBF interpolation methods could give a more accurate result and could be applied in other
regions with a lack of in situ observations.
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