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Abstract: A nested-grid ocean circulation modelling system (NGMS-swYS) is used for examining
the impact of tides and winds on the three-dimensional (3D) circulation, hydrography and seasonal
variability over the southwestern Yellow Sea (swYS). The modelling system is based on the Princeton
Ocean Model (POM) and uses a nested-grid setup, with a fine-resolution (~2.7 km) inner model
nested inside a coarse-resolution (~9.0 km) outer model. The domain of the outer model covers
the China Seas and adjacent deep ocean waters. The domain of the fine-resolution inner model
covers the swYS and adjacent waters. The NGMS-swYS is driven by a suite of external forcings,
including the atmospheric forcing, tides, freshwater discharge and currents specified at the lateral
open boundaries. A comparison of model results with observations and previous numerical studies
demonstrates the satisfactory performance of the NGMS-swYS in simulating tides, seasonal mean
circulation and distribution of temperature and salinity. Five additional numerical experiments were
conducted using NGMS-swYS with different combinations of external forcing. Analysis of model
results demonstrates that the monthly mean circulation over the swYS is affected significantly by
tides and winds, with large seasonal variability. The northward Subei Shoal Current occurred in both
winter and summer months in 2015, with persistent strong southeastward mean currents induced by
tides along the 50 m isobath. Model results also demonstrated that strong wind-induced currents
occurred with large sea surface cooling during Typhoon Chan-Hom.

Keywords: southwestern Yellow Sea; circulation; hydrography; seasonal variation; tidal impact;
wind impact; nested-grid circulation model

1. Introduction

The southwestern Yellow Sea (swYS, see Appendix A for all abbreviations and symbols
used in this paper) is a semi-enclosed marginal sea in the northwest Pacific Ocean, with an
average water depth of about 44 m (Figure 1). The topography in the swYS is characterised
by rugged coastlines and highly variable sea bottoms, with the Radial Sand Ridges (RSR) in
the inner shelf region and the Yellow Sea Trough in the offshore region. Another important
geographic feature in the swYS is the Changjiang Bank (CJB), which is a flat and broad
shallow area located at the junction of the Yellow Sea and the East China Sea [1].

The hydrodynamics in the swYS was found to have significant seasonal variability [2–4].
The monthly mean oceanographic conditions in February and August are used in this
paper to represent the winter and summer conditions. The February mean sea surface
temperatures (SSTs) over the swYS (Figure 2a), inferred from the MURSST satellite remote
sensing data over a 3-year period from 2014 to 16, vary from about 4 ◦C over the coastal
waters off Shandong to about 14 ◦C in the deep waters around Jeju Island, with isotherms
following approximately isobaths. The August mean SSTs during these 3 years are warm
and in a range of 25–27 ◦C in the swYS (Figure 2b), with several patches of cold waters
over the Subei Shoal (SS), HZB and Zhoushan Island [5,6]. The salinity over the swYS is
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affected by the spreading of low-salinity waters from the Changjiang (or Yangtze) River in
both winter and summer months [7,8]. The Changjiang River is the largest river in China,
which has an annual mean discharge of about 3.01× 104 m3 s−1, with significant seasonal
and synoptic variability [9]. Over the swYS, the low-salinity (<31 psu) water in February
is mainly confined to the Subei Shoal, Changjiang Estuary (CJE) and Zhejiang Coastal
Water (ZJCW), with the 31 psu isohaline reaching 123◦E to the east [8]. In August, with the
increased Changjiang River discharge (CRD) and the intensified southerly monsoon, the
Changjiang plume spreads mainly to the northeast and almost the entire swYS is covered
with low-salinity waters. In comparison with the February condition, the freshwater tongue
extending along the Zhejiang coast is greatly restricted in August [7].

Figure 1. Major bathymetric features over domains of (a) the outer model for the China Seas
and adjacent deep ocean waters of the northwestern Pacific and (b) the inner model for the swYS
and adjacent shelf waters of the nested-grid ocean circulation modelling system (NGMS-swYS).
Red triangles in (b) indicate positions of three in situ observation stations: Xiaomaidao (XMD),
Lianyungang (LYG) and Lvsi (LVS). Dark green dots indicate positions of four coastal tidal stations:
Pingdao, Lianyungang, Sheyang and Waikejiao. The red diamond indicates the in situ current
observation station (DD). Pink dots represent seven observation stations along transect HH conducted
by Hohai University.

The general circulation in the swYS includes the Yellow Sea Coastal Current (YSCC),
Taiwan Warm Current (TWC), Yellow Sea Warm Current (YSWC) and Changjiang Plume
(CJP). The circulation in the region is affected by the seasonally varying atmospheric
forcing associated with monsoons [8–11], with the strong northeast monsoon in winter
and the rain-bearing southwest monsoon in summer [4]. In winter, the shelf circulation
system in the swYS normally features two major currents: a southeastward coastal current
(known as the YSCC) flowing approximately along the 50 m isobath from the Lunan Coast
Water (LNCW) to the CJB and a northwestward current (known as the YSWC). The latter
separates from the Kuroshio Current and runs from the southwest of Jeju Island to the
northern YS [10–12]. The circulation in the northern ECS features the weakly seaward CJP
and northward TWC [9]. In summer, the YSCC in the swYS and the northward Korea
Coastal Current (KCC) form the cyclonic circulation over the southern YS, while the YSWC
disappears due to the adjustment of the circulation in the ECS. The CJP and TWC are
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enhanced in summer due mainly to the increase of the CRD and the effect of the southwest
monsoon, respectively [13–16].

Figure 2. Monthly mean sea surface temperatures (image) and wind velocity vectors (open ar-
rows) at 10 m above the mean sea level in (a) February and (b) August averaged over the 3-year
period 2014–2016, based on the satellite remote sensing SST data (MURSST) and hourly atmospheric
reanalysis produced by the NCEP, respectively.

The general circulation and hydrography in the swYS (and also in the CJE) are signifi-
cantly modulated by tides. The tidal residual currents were found to contribute more than
50% to the time–mean flow over the Changjiang Bank [1]. Over the RSR, the maximum
tidal range reaches up to 9.4 m, and the tidal currents reach up to 2.5 m s−1 [17]. Over the
SS, the tidally induced residual currents compensate for the wind-driven currents, leading
to the counter-wind transport in winter months [1,8,13]. An upwelling branch over the
swYS is caused by the large baroclinic gradient across the strong tidal mixing fronts (TMF),
which is induced by tidal mixing over sloping topography in the swYS [18]. As a result,
several cold water patches were observed in summer in this region [19].

The general circulation, hydrography and seasonal variability in the swYS were stud-
ied previously based on observations and numerical results [5,13,20–25]. The unfavourable
natural and political conditions, however, have posed a great challenge to making succes-
sive and synchronous in situ observations over this region. With the advent of computer
resources and advanced numerical methods, numerical ocean circulation models have
increasingly been used in understanding the roles of tides and winds in the temporal
and spatial variability of hydrography and circulation over the region. Naimie et al. [25]
simulated the seasonal mean circulation in the YS and analyzed their dominant dynamics.
Xia et al. [24] studied the three-dimensional (3D) structure of the summertime circulation of
the Yellow Sea using the Princeton Ocean Model (POM). Wu et al. [26] examined the tidal
effects on the CJP using the Estuarine, Coastal and Ocean Model (ECOM). Xuan et al. (2016)
investigated the effect of tidal residual current on the mean flow over the CJB using the
Finite Volume Coastal Ocean Model (FVCOM) [1]. Most of the previous studies focused on
the hydrography and circulation in summer. Very limited studies, however, were made on
wintertime hydrodynamics over the region. In this study, a nested-grid ocean circulation
model was used to examine the impacts of tides and wind forcing on the hydrography,
circulation and seasonal variability in the swYS. Our results will be useful in improving
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our knowledge of temporal and spatial variability of circulation and the main processes
affecting the macroalgal blooms of Ulva prolifera in this region [27,28]. As suggested by
Zhou et al. [20] and Wang et al. [21], the hydrographical structure, horizontal advection
and vertical mixing play substantial roles in the phytoplankton bloom in the swYS.

This paper is arranged as follows. Observational and reanalysis data used in this study
are introduced in Section 2. The nested-grid ocean circulation modelling system, external
forcing and design of experiments are presented in Section 3. Assessment of the model
performance is given in Section 4. The impacts of tides and winds on seasonal variations of
hydrography and circulation are studied in Section 5. A conclusion is provided in Section 6.

2. Observational and Reanalysis Data

Four types of data are used in this study to drive the circulation model and to assess
the model’s performance. These four types of data include satellite remote sensing data, in
situ oceanographic observations, atmospheric reanalysis and hydrographic climatology.
The satellite remote sensing data include the Multi-scale Ultra-high Resolution (MUR)
SST data generated by the Jet Propulsion Laboratory of National Aeronautics and Space
Administration [29]. The MURSST data are based upon the nighttime GHRSST L2P skin
and subskin SST observations and in situ SST observations. The gridded MURSST data
have a spatial resolution of 0.01◦ in longitude and latitude and at a daily frequency.

The in situ oceanographic data used to assess the model performance included the
time series of sea surface temperature (SST) and sea surface salinity (SSS) observed at three
stations (Figure 1b) over the Chinese coastal waters of the YS, namely the Xiaomaidao
station (XMD), Lianyungang station (LYG) and Lvsi station (LVS). There were six hourly
observations at 08:00, 14:00 and 20:00 (UTC + 8 h) at locations XMD and LYG and hourly
observations at LVS in 2015. It should be noted that only the observed SSS at site XMD
in 2015 were available for this study. These in situ data were provided by the National
Marine Data Center (NMDC). The observed hourly surface elevations at Pingdao, Sheyang,
Waikejiao and Lianyungang stations in July 2016 provided by the State Oceanic Adminis-
tration were also used. The observed vertical profiles of temperature and salinity along
transect HH (Figure 1b) were also used, which were conducted by Hohai University on 21
July 2016 using conductivity–temperature–depth (CTD) [5]. The observed vertical profiles
of horizontal currents at station DD (its position is shown in Figure 1b) were also used,
which were also conducted by Hohai University from 06:00 on 23 July to 08:00 on 24 July
2016 using the ADCP, with the sampling interval being 1 s. The ADCP data were averaged
over 60 s time windows.

The monthly climatology of temperature and salinity digitised from the Marine Atlas
of Bohai Sea, Yellow Sea and East China Sea (Hydrology) was also used to assess the model
performance. This Marine Atlas was published by the Editorial Board for Marine Atlas
based on the collection of historical observations between 1970 and 1992 [7].

The hourly CFSv2 atmospheric reanalysis data produced by the National Centers
for Environmental Prediction (NCEP) of the United States [30] from 1 January 2014 to
31 December 2016 were used to force the ocean circulation model. The horizontal resolution
of the CFSv2 data was ~0.2◦ × ~0.2◦.

3. Nested-Grid Modelling System and Forcing

The ocean circulation model used in this study is the nested-grid modelling system
for the southwestern Yellow Sea (hereafter NGMS-swYS) based on the POM [31]. The
modelling system uses the nested-grid configuration similar to a triply-nested coastal
circulation forecast system for the Pearl River Estuary developed by Sheng et al. [32].
The NGMS-swYS has two components (Figure 1): a coarse-resolution outer model and a
fine-resolution inner model. The domain of the outer model covers the region between
117◦ E and 135◦ E and between 19◦ N and 41◦ N, including the Bohai Sea (BS), Yellow
Sea (YS), East China Sea (ECS) and part of the Northwestern Pacific Ocean (NWPO), with
a horizontal resolution about 9.0 km (Figure 1a). The 2-min Gridded Global Relief Data
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(ETOPO2) is used for the bathymetry in the outer model. The domain of the inner model
covers the swYS and northern part of the ECS (Figure 1b), with a horizontal resolution of
about 2.7 km. The 30 arcsec General Bathymetric Chart of the Oceans (GEBCO) bathymetry
data are used in the inner model, except for the SS and CJE. Over areas of the SS and CJE,
the fine-resolution topography in the model is based on the Marine Atlas published by the
Ministry of Transport of the People’s Republic of China. Both the outer and inner models
are 3D circulation models with 41 sigma levels for the vertical coordinates. The horizontal
viscosity and diffusivity coefficients (Am and Ah) are calculated in the model using the
scheme suggested by Smagorinsky [33], with the ratio of Ah to Am for the scheme being
0.1. The vertical viscosity and diffusivity coefficients Km and Kh are calculated using the
modified Mellor-Yamada 2.5 turbulence closure scheme [34,35].

The initial conditions for temperature, salinity and velocity in the outer and inner
models are taken from the daily mean products produced by an East Asian Marginal
Seas model, with a horizontal resolution of 1/12◦ × 1/15◦ [36]. The external forcing for
driving the outer and inner models of the NGMS-swYS in the control run (CR) includes
the atmospheric forcing, tides, freshwater discharge and boundary forcing specified at the
model lateral open boundaries. The atmospheric forcing includes the wind field taken from
hourly NCEP atmospheric reanalysis. The bulk formula of Kondo [37] is used to convert the
wind speed to wind stress. The net heat flux at the sea surface is calculated using shortwave
radiation, long-wave radiation and sensible and latent heat fluxes in the model. All these
components are calculated using the empirical formulas of Hirose et al. [38]. The net
freshwater flux at the sea surface is calculated based on differences between precipitation
and evaporation. The CRD is specified based on the monthly mean data published in the
Chinese River Sediment Bulletin [39].

The tidal forcing at open boundaries of the outer model is specified using the radiation
conditions for the depth-averaged currents and tidal surface elevations using the boundary
condition suggested by Davies and Flather [40]. Four major tidal constituents (M2, S2,
K1 and O1) are used based on the dataset produced by the TPXO ocean tidal circulation
model [41]. The non-tidal components of the open boundary conditions are taken from
the monthly mean reanalysis of the 1/2◦ × 1/2◦ surface elevations, currents, temperature
and salinity produced by the Geophysical Fluid Dynamics Laboratory CM2.5 coupled
circulation-ice model with a simple ocean data assimilation [42]. The GFDL CM2.5 coupled
model has 1440 × 1070 eddy-permitting quasi-isotropic horizontal grid cells. The observed
temperature and salinity assimilated into the GFDL CM2.5 model include the World Ocean
Database of historical hydrographic profiles, in situ observations and satellite remotely
sensed SST. More details of the model are reported by Carton et al. [42].

The surface elevations and depth–mean currents of tidal forcing at open boundaries
of the inner model are specified using the same open boundary condition as in the outer
model [40]. For the 3D currents, temperature and salinity, the adaptive open boundary
condition is used at the open boundaries of the inner model based on the direction of
currents (or waves) through the open boundary [43]. If the open boundary is active (i.e.,
outward propagations of waves through the open boundary), the state variables at the
open boundary of the inner model are advected outward as freely as possible. If the open
boundary is passive (i.e., inward propagations of waves through the open boundary), the
state variables at the open boundary of the inner model are restored to the results produced
by the outer model with a restoring time scale of one day.

Model results in five numerical experiments (Control Run, NoTide, NoWind, NT_CH,
and NT_CH, see Table 1) are analyzed to examine the effects of tides and winds on seasonal
variability in circulation and hydrography over the swYS. In the Control Run (CR), the
NGMS-swYS is driven by the full suite of external forcing discussed above. In the case
of NoTide (NT), the model setup and external forcing are the same in the CR, except for
the exclusion of tidal forcing at the open boundaries of the outer model. In the case of
NoWind (NW), the model setup and external forcing are the same in the CR, except that
the wind forcing in the momentum equation and vertical turbulent kinetic energy equation
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is set to zero in the model. The NGMS-swYS in these three cases is integrated for three
years from 1 January 2014 to 31 December 2016 (UTC). The model results of the last two
years are used in this study. Two additional numerical experiments (cases NT_CH and
NW_CH, Table 1) were conducted to examine the effects of tides and winds in circulation
and hydrography over the swYS during Typhoon Chan-Hom. In the cases of NT_CH and
NW_CH, the external forcing is the same in the CR, except for the exclusion of tidal forcing
and wind forcing between 9 July and 12 July 2015. The model in cases NT_CH and NW_CH
are integrated from 1 January to 31 December 2015.

Table 1. Model configurations for the five numerical experiments using the NGMS-swYS.

Numerical
Experiment

Tidal Forcing
during Time Except

Chan-Hom

Wind Forcing
during Time Except

Chan-Hom

Tidal Forcing
during Chan-Hom

(9–12 July 2015)

Wind Forcing
during Chan-Hom

(9–12 July 2015)
Other Forcing

CR Yes Yes Yes Yes Yes
NT No Yes No Yes Yes
NW Yes No Yes No Yes

NT_CH Yes Yes No Yes Yes
NW_CH Yes Yes Yes No Yes

For convenience, the swYS is divided into the coastal region with water depths shal-
lower than 50 m and the offshore region with water depths deeper than 50 m. The coastal
region includes the LNCW, SS, CJE and CJB. The offshore region consists of the YS Trough
and adjacent deep water regions. Circulation and hydrography have significantly different
features in these two regions.

4. Model Performance

We first assess the performance of the NGMS-swYS in simulating the tide elevations
over the coastal and shelf regions of the NWPO. Figure 3 presents co-amplitudes and
co-phases of M2, S2, K1 and O1 tidal elevations produced by the outer model of the NGMS-
swYS in the case of CR. The simulated M2 tidal waves propagate into the ECS, the YS and
the BS from the deep waters of the NWPO outside of the Ryukyu Islands (Figure 3a). The
simulated M2 amplitudes increase from about 0.6 m in the deep ocean waters around the
Ryukyu Islands to relatively large values over northern Taiwan Strait, Korea Strait and
coastal waters off the western Korean Peninsula. The M2 amplitudes produced by the
outer model are about 1.8 m over northern Taiwan Strait, 1.9 m in Korea Strait and greater
than 2.2 m in Gyeonggi Bay. There are four M2 amphidromic points over the outer model
domain, which are located in coastal waters off northwestern SS, Weihai of China and
BS, respectively (Figure 3a). The general features of co-amplitudes and co-phases for M2
tidal elevations produced by the outer model agree with the previous model results made
by Kang et al. [44], Guo and Yanagi [45] and Zhang and Sheng [46], and also tidal charts
included in the Marine Atlas for the Bohai Sea, Yellow Sea and East China Sea [7].

The co-amplitudes and co-phases of M2 tidal elevations produced by the outer model
in the case of CR (Figure 3a) are also compared to the counterparts from the TPXO ocean
tidal model (Figure A1a in Appendix B). Both the outer model of the NGMS-swYS and the
TPXO model generate very similar distributions of M2 tidal elevations, with differences
in M2 amplitudes smaller than 0.1 m over most areas of the swYS. Over the northern
Taiwan Strait and Korea Bay, however, the M2 amplitudes produced by the outer model
in case CR are about 0.3 m smaller than the TPXO results, due most likely to the poor
representation of the local bathymetry over these areas in the outer model. The locations of
four M2 amphidromic points off northwestern Subei Shoal, Weihai of China and Bohai Sea
produced by the outer model in case CR are consistent with the TPXO results (Appendix B).
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Figure 3. Co-amplitudes (image with grey contour lines) and co-phases (black contour lines) of four
major tidal elevations of (a) M2, (b) S2, (c) K1 and (d) O1 over the China Sea and adjacent deep ocean
waters of the northwestern Pacific Ocean computed from sea levels produced by the outer model.
The tidal phases are in degrees relative to the GMT.

The horizontal distribution of simulated S2 tidal waves is very similar to the M2
tidal waves, except for relatively smaller amplitudes of S2 tidal elevations than M2 tidal
elevations. The simulated S2 amplitudes are about 0.5 m over coastal waters of southeastern
China, about 0.2 m over the SS and larger than 0.6 m in Gyeonggi Bay. The simulated S2
tidal elevations also have four amphidromic points at locations very similar to the M2 tidal
elevations. The general features of co-amplitudes and co-phases for S2 tidal elevations
produced by the outer model agree very well with the previous model studies [7,45]. The S2
tidal wave propagations and locations of four amphidromic points produced by the outer
model (Figure 3b) are also in very good agreement with the TPXO results (Figure A1b).
The simulated S2 amplitudes produced by the outer model are slightly smaller than the
TPXO results, with a maximum difference of about 0.2 m over Korea Bay.

The simulated K1 tidal waves produced by the outer model propagate northward from
the deep ocean waters to the south of western Ryukyu Islands into the ECS, the YS and the
BS (Figure 3c). The simulated K1 amplitudes are relatively large over the coastal waters of
the western Korean Peninsula, with the largest amplitude of about 0.4 m over the coastal
waters of Korea Bay. The K1 amplitudes are about 0.3 m and 0.1 m at the northern Taiwan
Strait and SS, respectively. The simulated K1 tidal elevations have three amphidromic
points located in the BS, the swYS and Korea Strait, respectively (Figure 3c). The general
features of simulated K1 tidal elevations produced by the outer model agree well with
the previous numerical results [44–46] and are also in good agreement with the TPXO
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results (Figure A1c in Appendix B). Some small differences occur over the Taiwan Strait
and NWPO, where the simulated K1 amplitudes produced by the outer model are about
0.02 m smaller than the TPXO results.

Propagations of simulated O1 tidal waves produced by the outer model are very
similar to the K1 tidal waves over the outer model domain, except for relatively smaller
amplitudes for O1 tidal elevations than K1 tidal elevations. The simulated O1 amplitudes
are about 0.3 m and 0.1 m over the coastal waters of Korea Bay and SS. The simulated
O1 tidal elevations have two amphidromic points in the BS and the swYS, which are very
similar to the locations of amphidromic points of K1 tidal elevations. The general features
of simulated O1 tidal elevations produced by the outer model agree with the TPXO results
(Figure A1d) and previous numerical studies [44–46].

We next assess the model performance by comparing the simulated surface elevations
produced by the inner model in the case of CR (Figure 4) with the observations made at
four tidal gauge stations of Pingdao, Sheyang, Waikejiao and Lianyungang in July 2016
(their positions are marked in Figure 1b). Three statistical metrics: Correlation coefficient
(Corr), RMSE and γ2 values [47] (Appendix C), are used to quantify the model performance.
The correlation coefficients are about 0.98, 0.97, 0.95 and 0.98 at stations Pingdao, Sheyang,
Waikejiao and Lianyungang, respectively. The RMSE values are about 0.22, 0.34, 0.48 and
0.36 m at these four stations, respectively. All these four RMSE values are smaller than
10 percent of the tidal range at these four stations, respectively. The γ2 values are about 0.04,
0.16, 0.16 and 0.06 at these four stations, respectively. This indicates that the inner model of
the NGMS-swYS has satisfactory skill in simulating surface elevations over the swYS.

Figure 4. Time series of observed and simulated surface elevations at four coastal tidal gauge stations
(a) Pingdao, (b) Sheyang, (c) Waikejiao and (d) Lianyungang in July 2016.

We next examine the model performance in simulating the hydrography over the
swYS. Figure 5 shows the monthly mean SSTs in February and August 2015 produced
by the inner model in the case of CR (right panels) and derived from the satellite remote
sensing data (left panels). In February (Figure 5b), the simulated monthly mean SSTs are
cool and about 2 ◦C over the SS and LNCW; they are warm and about 16 ◦C or higher
near the southwestern and southeastern areas of the inner model domain. The simulated
February mean SSTs shown in Figure 5b indicate the influence of two warm currents,
namely the TWC and the YSWC, which transport the high temperature (about 18 ◦C) and
high salinity (about 34 psu) waters to the swYS in wintertime.
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Figure 5. Monthly mean SST in February (a,b) and August (c,d) 2015 computed from (a,c) MURSST
and (b,d) the inner model results in the case of CR. The black line in (a) represents transect HP used
in examining model results.

In August 2015, the surface water is significantly warmer than in February over the
whole inner model domain (Figure 5d). The simulated August mean SSTs are about 26 ◦C
over most areas of the swYS, except for a cold water patch of about 24 ◦C located off the
SS [18]. This cold water patch indicates an upwelling off the SS in the summer months, as
discussed in Lü et al. [18] and Wang et al. [23].

A comparison of the monthly mean SSTs produced by the inner model and satellite
data (MURSST) demonstrates that the inner model reproduces well the SSTs over the inner
model domain. The differences in the monthly mean SST between the inner model results
and MURSST are less than 1.0 ◦C in both February and August over most areas of the
swYS but relatively large and up to about 2.5 ◦C over the inner shelf of the SS in August
(Figure 5c,d). The simulated August mean SSTs produced by the inner model (Figure 5d)
are significantly warmer than the MURSST (Figure 5c) over the inner shelf due mainly to
the fact of less reliable SSTs inferred from the satellite remote sensing data over coastal
areas. In comparison, the simulated August mean SSTs produced by the inner model agree
well with the previous numerical results produced by Huang et al. [19] over the inner
shelf of the swYS. Furthermore, a comparison of the in situ hydrographic observations and
simulated SSTs produced by the inner model at three Chinese coastal stations (to be shown
later) also demonstrates that the NGMS-swYS reproduce well the SSTs over the inner shelf
of the swYS.

Figure 6 presents the monthly mean sea bottom temperatures (SBT) in February and
August produced by the inner model in the case of CR (right panels) and derived from
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the Marine Atlas for the Bohai Sea, Yellow Sea and East China Sea (Hydrology) [7] (left
panels). In February, the distribution of the SBT produced by the inner model (Figure 6b)
is very similar to the SST, as discussed above. This indicated that, in February 2015, the
high-temperature TWC and YSWC flowed northward into the swYS in the whole water
columns. The general features of the SBT produced by the inner model agree with the
Marine Atlas (Figure 6a). However, the simulated SBT produced by the inner model implies
that the TWC flows more northward to the eastern CJE and that the YSWC is weaker than
the counterparts in the Marine Atlas.

Figure 6. Monthly mean sea bottom temperature (SBT) in February (a,b) and August (c,d) computed
from (a,c) the Marine Atlas and (b,d) the inner model results in 2015 in the case of CR.

In August 2015, the bottom layer of the YS Trough in the inner model was occupied
by the relatively cool water lower than 8 ◦C (Figure 6d), known as the Yellow Sea Cold
Water Mass (YSCWM) [48] extending from the central YS to the ECS. The August mean
SBT produced by the inner model reaches up to 28 ◦C over the inner shelf, with sharp
temperature gradients between the coastal warm water and YSCWM. The distribution of
the simulated YSCWM in the YS Trough produced by the inner model agrees with the
Marine Atlas (Figure 6c), except that the fringe of the YSCWM is significantly affected by
the topography in the model results. Furthermore, the simulated SBT produced by the
inner model is higher than the Marine Atlas over the coastal region.

The vertical distribution of observed temperature and salinity on 21 July 2016 along
transect HH made by Hohai University is presented in Figure 7a,c. This transect extends
from SS to YS Trough (marked in Figure 1b). Over the inner section of the transect (on
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the SS), the vertical stratification of observed temperature and salinity were vertically
uniform and weakly stratified horizontally with vertically well-mixed temperature (salinity)
varying from 26.2 ◦C (28.6 psu) at site HH1 near the coast to about 22.5 ◦C (31.3 psu) at
site HH3. The observed low-salinity (<30 psu) water over the coastal area of transect HH
(Figure 7c) originated from the CRD [13]. Over the central section of the transect, the
vertical stratification of observed temperatures on 21 July 2016 was very strong in the top
15 m and vertically uniform below 20 m (Figure 7a). The observed salinity was vertically
uniform in the top 10 m and below 20 m and slightly stratified vertically between 10 m
and 20 m over the central section of transect HH (Figure 7c). Over the outer section of
the transect close to the YS Trough, the observed temperature and salinity were nearly
uniform vertically and horizontally and about 24.5 ◦C and 31.2 psu, respectively, in the
upper mixed layer (at depths less than 10 m), with a strong thermohaline gradient at depths
between 10 m and 20 m. Below 20 m, the observed hydrography over the outer section
of the transect was vertically uniform and about 11.5 ◦C and 33.3 psu, respectively. The
observed hydrographic profiles along transect HH (Figure 7a) also feature a well-defined
upward climbing of bottom cold waters over the central section of the transect [19,23]. The
observed temperature and salinity shown in Figure 7a,c represent the typical distribution
of hydrography in the summer months over the swYS.

Figure 7. Vertical distribution of temperature (a,b) and salinity (c,d) along transect HH (locations
shown in Figure 1) derived from (a,c) in situ observations made by scientists from Hohai University
and (b,d) simulations produced by the inner model in the case of CR on 21 July 2016.

The simulated daily mean temperature and salinity on 21 July 2016 along transect
HH produced by the inner model in the case of CR are compared with the hydrographic
observations in Figure 7. The inner model reproduces very well the vertical distribution
of observed temperature and salinity over the inner section of the transect (Figure 7b,d),
with the simulated temperature (salinity) varying from 27.5 ◦C (29.2 psu) at HH1 to
23.2 ◦C (31.5 psu) at HH3 over the inner section of transect HH. The inner model also
satisfactorily reproduces the observed upward climbing of bottom cold waters and the
observed vertically uniform and horizontally stratified temperature and salinity below
20 m over the central section of the transect. Over the outer section of transect HH, the inner
model reproduces reasonably well the uniform temperature and salinity in the surface
layer of fewer than 5 m and the subsurface layer below 30 m. It should be noted that the
thermocline in the model is too diffusive in comparison with observations, due mainly to a
model deficiency [49].
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Figure 8 presents the east-westward (U) and north-southward (V) currents at 5 m and
15 m depths at station DD derived from in situ observations (lines) on 23 and 24 July 2016.
The CJB is dominated by strong reciprocating tidal currents, with the maximum current
of about 1.89 m/s at 10:15 on 23 July. The maximum observed current occurs at the top
layer of the water column. The observed currents decreased towards the bottom layer of
the water columns. The simulated velocities produced by the inner model in the case of
CR are in good agreement with the in situ observations horizontally and vertically. The
RMSE values are about 0.09, 0.24, 0.07 and 0.19 m/s, and the γ2 values are about 0.04, 0.09,
0.03 and 0.11 respectively for east-westward and north-southward velocities at 5 m and
15 m depths.

Figure 8. Time series of (a,c) east-westward and (b,d) north-southward currents at 5 m and 15 m
depths at station DD based on in situ observations (lines) made by scientists of Hohai University
and simulated currents (black dots) produced by the inner model in case CR on 23 and 24 July 2016
(UTC+8 h). Positive values indicate eastward and northward directions, respectively.

To assess the performance of the NGMS-swYS in simulating the seasonal cycle and
synoptic variability of temperature and salinity, the simulated temperature and salinity
produced by the inner model in the case of CR were compared with the hydrographic
observations at three sites (XMD, LYG and LVS marked in Figure 1) over the Chinese coastal
waters of western YS in 2015 provided by the NMDC (Figure 9). The observed SSTs at
these three sites had large seasonal cycles, which increased from about 5 ◦C in the winter
to about 30 ◦C in the summer in 2015 (Figure 9a,c,d). The observed SSTs at the three sites
also had significant synoptic variability associated mainly with wind-driven upwelling
and downwelling and other dynamic processes.

The simulated SSTs at three sites (XMD, LYG and LVS) produced by the inner model
agree in general with the in situ observations, particularly the seasonal cycle (Figure 9a,c,d).
It should be noted that the simulated SST at site XMD in the period between May and
September 2015 was warmer than the observations, with differences reaching up to 3.5 ◦C
on 6 August during Typhoon Soudelor. The RMSE and the γ2 values are calculated using
the time series of observed and simulated SSTs. The RMSE values are about 1.57 ◦C, 1.44 ◦C
and 1.24 ◦C, and the γ2 values are about 0.04, 0.03 and 0.02, respectively, for SSTs at sites
XMD, LYG and LVS.
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Figure 9. Time series of temperature (a,c,d) and salinity (b) at XMD, LYG and LVS stations based on
observations provided by the NMDC and simulations produced by the inner model in the case of CR
in 2015.

The observed SSS at site XMD does not have a large seasonal cycle but has signifi-
cant synoptic variability (Figure 9b) associated mainly with wind-driven transport and
precipitations. The observed SSS varied between 31.0 psu and 31.5 psu during the first
six months of 2015 and decreased from 31.2 psu at day 197 to 29.7 psu at day 202 after
Typhoon Chan-Hom on 12 July 2015 [50]. The observed SSS increased to 31.7 psu a few
days after the storm. The inner model performs less well in simulating the SSS at site
XMD (Figure 9b) with a relatively large γ2 value of about 0.76, in comparison with the
model performance in simulating the SST at the same site (Figure 9a). The RMSE value is
about 0.42 psu for the SSS at site XMD. The main reason for the large model deficiency in
simulating the SSS is that freshwater discharges from inlets along the Jiangsu coast are not
included in the model simulation [51].

5. Physical Processes Affecting Seasonal Circulation and Hydrography

The three-dimensional (3D) circulation and hydrography in the swYS have significant
seasonal variability, as shown above. The model results in 2015 in cases CR, NT and NW are
examined in this section to investigate the main physical processes affecting the circulation
and hydrography, with a special emphasis on the roles of wind and tidal forcing on the
monthly mean fields.

We follow Wang et al. [52] and quantify the impacts of tides (and winds) on the
seasonal circulation using the impact index (Pi) defined as

Pi =

∣∣UCR −UNT∣∣∣∣UCR∣∣+ ∣∣UNT∣∣ (1)

where UCR and UNT represent the monthly mean horizontal velocity vectors produced by
the inner model in cases CR and NT, respectively, and |A| is the amplitude of the vector. It
should be noted that (UCR −UNT) includes the currents driven directly by tidal forcing
and the nonlinear interactions of tidal currents with wind-driven currents and density-
driven currents. The above-mentioned nonlinear interactions could not be produced by
the circulation model with the tidal forcing only. The impact index for wind forcing can be
calculated in the same way as in Equation (1) by replacing UNT with UNW .
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5.1. Impacts of Tides and Winds on Seasonal Circulation

Figure 10a presents the February mean simulated currents in 2015 in the upper layer
computed by vertically averaging the monthly mean currents produced by the inner model
in the case of CR from the sea surface to 25 m. The monthly mean simulated circulation in
the upper layer in this month features a strong northeastward jet (up to 0.17 m/s) known as
the TWC, which flows from the southwestern area of the inner model domain (i.e., the inner
shelf region off the Zhejiang coast) to the offshore waters. As reaching the southwestern
flank of the CJB, this northeastward jet separates into two branches: an offshore branch
turning anticyclonic and flowing southeastward to the south of the CJB, and an inshore
branch flowing northward along the submarine canyon and then eastward to flow onto the
central CJB (Figure 10a). The upper-layer simulated circulation in this month also has strong
seaward currents (known as the CJP, up to 0.07 m/s) in the CJE and moderate seaward
currents (up to 0.04 m/s) in the Qiantang Bay (QTB). A small branch of the seaward currents
in the upper layer from both the CJE and QTB joins the inshore branch of the TWC to flow
onto the central CJB, with most of the currents turning southwestward to form the Zhe-Min
Coastal Current (ZMCC, up to 0.11 m/s). The February mean simulated Subei Coastal
Currents (SCC, up to 0.06 m/s) over the SS flow northward along the Jiangsu coast, then
turn southeastward at coastal water off Sheyang of China to flow offshore. The upper-layer
simulated circulation in this month also features a strong southeastward circulation known
as the YSCC (up to 0.11 m/s) over the southwestern YS Trough, which turns eastward at
about 33.5◦N to the north of Jeju Island (Figure 10a).

Figure 10d presents the February mean simulated currents in 2015 in the lower layer
computed by vertically averaging the monthly mean currents produced by the inner model
in the case of CR from the depth of 25 m to the sea bottom. The TWC also occurs in the
lower layer in this month and flows northeastward from the southwestern corner of the
inner model domain to the western CJB, with a maximum speed of about 0.18 m/s. A
small offshore branch of the TWC turns anticyclonic to flow nearly eastward to the south
of the CJB in the lower layer. The lower-layer circulation in this month has a weak cyclonic
circulation (up to 0.03 m/s) over the central YS Trough (Figure 10d).

The effect of tidal forcing on the February mean circulation in terms of the tidal impact
index (TII) is shown in Figure 10b for the upper layer and Figure 10e for the lower layer. In
the upper layer, the effect of tidal forcing on the February mean circulation is significantly
large, with the TII values greater than 0.6 over the inner shelf of the swYS, the YS Trough
and the ZJCW. The tidal effect is also large for the February mean circulation in the upper
layer, with the TII values between 0.2 and 0.6 over the eastern CJE. The TII values are
relatively small for the main pathway of the TWC in the upper layer (Figure 10b).

The tidally induced monthly mean currents (TIMMCs, i.e., the monthly mean tidal

residual currents) in the upper layer can be approximated by the differences (∆
⇀
U

tide

UL ) in

the monthly mean currents between cases CR and NT. The ∆
⇀
U

tide

UL distribution in February
2015 (arrows in Figure 10b) was significantly affected by the complex topography in the
swYS and reached up to about 0.03 m/s, 0.05 m/s and 0.07 m/s over the LNCW, SS and
ZJCW, respectively. Over the YS Trough, the upper-layer TIMMCs in this month mainly
flow southeastward along the 50 m isobaths, with a maximum value of about 0.12 m/s.

Over the CJB, the ∆
⇀
U

tide

UL distribution in this month shows several meso-scale tidal eddies
(up to 0.10 m/s) flowing along the isobaths.

In the lower layer, the effect of tidal forcing on the February mean circulation is
significantly large over the central YS Trough and eastern CJB, with the TII values greater
than 0.6 (Figure 10e). The effect of tidal forcing on the TWC in the lower layer is relatively
weak, which is similar to that in the upper layer. The TIMMCs in the lower layer in this

month (∆
⇀
U

tide

LL , arrows in Figure 10d) flow mainly along the YS Trough, with a maximum

value of about 0.06 m/s. Similar to the ∆
⇀
U

tide

UL over the CJB in this month, the lower-layer
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TIMMCs flow westward and turn southward to join the ZMCC, with a maximum value of
about 0.05 m/s.

Figure 10. Distribution of monthly mean currents averaged in (a) the upper layer from the sea
surface to 25 m and (d) the lower layer from 25 m to sea bottom in February 2015 calculated from the
inner model results in the case of CR. The blue and red contours in (a,d) are isobaths of 30 m and
50 m, respectively. Distribution of impact index (Pi, color image) and current differences (arrows) in
(b,c) the upper layer and (e,f) the lower layer (b,e) between cases CR and NT and (c,f) between cases
CR and NW. Vectors are plotted at every 9th grid point.

Figure 10c presents the effect of wind forcing on the February mean circulation in the
upper layer (<25 m) in terms of the wind impact index (WII, image). In the upper layer,
the effect of wind forcing on the February mean circulation is significantly large, with the
WII values greater than 0.6 over the LNCW, the northwestern YS Trough and the southeast
part of the inner model domain. Over other areas, the wind effects in the upper layer are
relatively weak for the February mean circulation, with the WII values smaller than 0.4.

The wind-induced monthly mean currents (WIMMCs) in the upper layer are repre-

sented by the velocity differences (∆
⇀
U

wind

UL ) in the monthly mean currents between cases

CR and NW. The ∆
⇀
U

wind

UL values in February 2015 (arrows in Figure 10c) are very weak over
the HZB, SS and CJE. The northward WIMMCs (about 0.05 m/s) in the upper layer flow
along the YS Trough from the southwest of Jeju Island to the central YS.

The effect of wind forcing on the February mean currents in the lower layer (>25 m)
is shown in Figure 10f in terms of the WII (image). The wind effect is significantly large
for the February mean circulation in the lower layer, with the WII values greater than 0.6
over the northwestern YS Trough and relatively weak over other areas. The lower-layer

WIMMCs are represented by the velocity differences (∆
⇀
U

wind

LL , arrows in Figure 10f) in this
month between cases CR and NW. The lower-layer WIMMCs in this month flow northward
along the YS Trough (up to 0.05 m/s) and are very weak over other areas.
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Figure 11a presents the simulated August mean currents in 2015 in the upper layer
(<25 m) computed using the same method as in Figure 10a. In the upper layer, the pathway
of the TWC is very similar in February and August, except that it is stronger in August
(up to 0.5 m/s) than in February. In the upper layer, the monthly mean CJP is significantly
stronger in August (up to 0.12 m/s) than in February 2015 since the CRD is significantly
larger in summer months than in winter months. Most of the CJP turns northeastward to
flow onto the swYS after leaving the CJE. The monthly mean northward SCC in the upper
layer also becomes stronger in August (up to 0.08 m/s) than in February 2015 over the
SS. Over the YS Trough, the upper layer circulation in August features a strong cyclonic
circulation, with a strong southeastward circulation (up to 0.3 m/s) flowing along the 50 m
isobath and turning eastward at about 33◦N to the northwest of the Jeju Island.

Figure 11. Same as Figure 10 except for in August 2015. Distribution of monthly mean currents
averaged in (a) the upper layer from the sea surface to 25 m and (d) the lower layer from 25 m to sea
bottom in August 2015 calculated from the inner model results in the case of CR. The blue and red
contours in (a,d) are isobaths of 30 m and 50 m, respectively. Distribution of impact index (Pi, color
image) and current differences (arrows) in (b,c) the upper layer and (e,f) the lower layer (b,e) between
cases CR and NT and (c,f) between cases CR and NW. Vectors are plotted at every 9th grid point.

Figure 11d presents the August mean simulated currents in the lower layer (>25 m)
computed using the same method as in Figure 10d. In comparison with the counterpart in
February, the TWC in the lower layer is relatively stronger in this month, with a maximum
speed of about 0.2 m/s. Most of the TWC in the lower layer flows northward along the
submarine canyon to the CJB. The lower layer circulation in this month also has a weak
cyclonic circulation (up to 0.05 m/s) over the central YS Trough.

The effect of tidal forcing on the August mean circulation in terms of the TII is shown
in Figure 11b for the upper layer and in Figure 11e for the lower layer. In the upper layer,
the effect of tidal forcing on the August mean circulation is significantly large, with the TII
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values greater than 0.6 over the northern and western YS Trough, the CJE, the QTB and the
ZJCW. The tidal effect is also large for the August mean circulation in the upper layer, with
the TII values between 0.2 and 0.6 over the HZB and the inner shelf of the SS. TII values are
relatively small for the central CJB and the pathway of the TWC.

The strong TIMMCs in the upper layer in August (∆
⇀
U

tide

UL , arrows in Figure 11b) are
cyclonic and run along approximately the 50 m isobaths over the YS Trough and feature a
southwestward flow over the ZJCW from the CJE to the southwestern of the model domain.

The ∆
⇀
U

tide

UL values in this month reach up to about 0.3 m/s, 0.3 m/s and 0.2 m/s over the
northern and western YS Trough and the ZJCW.

In the lower layer, the effect of tidal forcing on the August mean circulation is sig-
nificantly large, with the TII values greater than 0.6 over the LNCW and the YS Trough
(Figure 11e). Over other areas, the tidal effect for the August mean circulation in the lower

layer is relatively weak. The ∆
⇀
U

tide

LL distribution in August (arrows in Figure 11e) demon-
strates that the lower-layer TIMMCs mainly move along the YS Trough (up to 0.18 m/s)
and have a mesoscale eddy (up to 0.07 m/s) off the CJE in the lower layer.

The TIMMCs in August have flow directions similar to the February condition in both
upper and lower layers. However, the magnitudes of the southeastward TIMMCs along
the western slope of the YS Trough in August are larger than that in February in both upper
and lower layers, due to the interaction between tidal currents and baroclinicity, since the
temperature and salinity are highly-stratified in summer months in the swYS.

Figure 11c presents the effect of wind forcing on the August mean currents in the
upper layer (<25 m) in terms of the WII (image). In the upper layer, the effect of wind
forcing on the August mean circulation is significantly large, with the WII values greater
than 0.6 over the LNCW, the main pathway of TWC and the southwest area of Jeju Island.
The wind effect is also large for the August mean circulation, with the WII values between
0.2 and 0.6 over most areas of the SS. The WII values are relatively small in this month

over the main pathway of the YSCC and eastern CJB. The ∆
⇀
U

wind

UL distribution (arrows
in Figure 11c) in August demonstrates that the upper-layer WIMMCs are strong, with
maximum values respectively reaching up to about 0.31 m/s, 0.08 m/s, 0.05 m/s and
0.22 m/s over the ZJCW, the CJB, the LNCW and the west area of Jeju Island. In the upper
layer, the WIMMCs flow northward over the ZJCW, the CJE, the SS and the LNCW to the
northern YS. The upper-layer WIMMCs in this month feature an anticyclonic circulation
over the northwest Jeju Island and a cyclonic circulation over the southwest Jeju Island.

The effect of wind forcing on the August mean currents in the lower layer (>25 m)
is shown in Figure 11f in terms of the WII (image). In the lower layer, the wind effect
is significantly large for the circulation in this month, with the WII values greater than
0.6 over the west areas of Jeju Island. The effect of wind forcing on the August mean
circulation is large, with the WII values between 0.2 and 0.6 over the western areas of the
model domain. WII values are relatively small for the central YS Trough and eastern CJB

in the lower layer. The ∆
⇀
U

wind

LL distribution in this month (arrows in Figure 11f) features a
northeastward WIMMCs over the ZJCW (up to 0.11 m/s) and a southward WIMMCs over
the west area of Jeju Island (up to 0.07 m/s). The WIMMCs are relatively weak in the lower
layer over other areas.

The above analyses demonstrate that, in February 2015, the WIMMCs flow against the
northward SCC over the SS, and the northward YSWC along the YS Trough in the lower
layer was enhanced by the wind-induced barotropic pressure gradient. By comparison,
in August 2015, the southwesterly summer monsoon was generally weak and had minor
impacts on the circulation in the lower layer. The TIMMCs were the dominant currents
over the coastal region of the swYS and YS Trough in both February and August 2015.
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5.2. Impacts of Tides and Winds on Seasonal Hydrography

The differences in the monthly mean SST (∆Ttide
S ) and SSS

(
∆Stide

S

)
between cases CR

and NT were used to quantify the effects of tidal mixing and advection on the monthly
mean hydrography over the swYS. In February 2015, the ∆Ttide

S values (Figure 12a) were
relatively large and up to 2.2 ◦C over the deep waters off the SS and along the 50 m isobaths,
due mainly to the transport of cold water by the TIMMCs from the northern YS to the swYS.
In comparison, the ∆Ttide

S values are very small over the SS in this month. The ∆Stide
S values

in this month (Figure 12c) are significantly negative over the CJE and the coastal water off
Sheyang of China, with maximum negative values of about −7.8 psu over the CJE and
about −6.5 psu over the coastal water off Sheyang of China, which are mainly due to the
effect of the unique tidal wave system over the swYS [8], which means that the northward
TIMMCs from the CJE and the southward TIMMCs from the LNCW merge over the coastal
water off Sheyang of China, then turn eastward to flow offshore, and the TIMMCs over the
RSR spread seaward [51]. The tidal residual currents transport high salinity water from the
offshore area to the RSR; thus, positive ∆Stide

S values (up to 6.5 psu) occur in this region.

Figure 12. Differences in the simulated monthly mean SST (a,b) and SSS (c,d) between cases CR
and NT (a,c) and between cases CR and NW (b,d) in February 2015. The light grey and dark grey
contours are isobaths of 30 m and 50 m respectively.
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The differences (∆Twind
S , ∆Swind

S ) in the monthly mean SST and SSS between cases CR
and NW are used to quantify the effect of wind forcing on the monthly mean hydrography
at the sea surface. It should be noted that the simulated SSTs in the case of NW have
similar seasonal cycles as the counterparts in the case of CR since wind forcing is used in
calculating the net surface heat flux in case NW. If the wind forcing is set to zero in the
calculation of the net surface heat flux, the model does not generate the seasonal cycles
in the SST. Therefore, only the role of advection and vertical mixing generated by wind
forcing on the hydrographic distribution over the swYS is considered based on differences
in simulated hydrography between cases CR and NW.

The ∆Twind
S values in February 2015 (Figure 12b) are negative and up to −3.0 ◦C over

the CJB, due mainly to the advection of cold water from the northern YS to the CJB by
WIMMCs. The ∆Twind

S values are positive and up to 2.8 ◦C over the main pathway of the
TWC in this month, due mainly to the wind-induced vertical mixing between the cool
surface water and warm TWC water. The ∆Swind

S values in this month (Figure 12d) are
positive and up to 6.5 psu over the CJE and the coastal water off Rudong of China and
positive and up to 4.8 psu over the coastal water off Sheyang of China. The ∆Swind

S values in
this month are negative and up to −2.0 psu over the coastal water off Dafeng of China. The
northerly winter monsoon blocks the northward transport of the CRD induced by TIMMCs;
thus, the distribution and values of ∆Swind

S are opposite with the ∆Stide
S (Figure 12c,d).

Similarly, the differences (∆Ttide
B , ∆Stide

B ) in the monthly mean SBT and SBS between
cases CR and NT are used to quantify the effect of tidal forcing on the monthly mean
hydrography at the sea bottom. The ∆Ttide

B values in February (Figure 13a) are negative
and up to −3.0 ◦C over the western of CJB in this month, due mainly to the strong tidal
mixing. Similar to the ∆Ttide

S , the ∆Ttide
B are negative and up to −2.0 ◦C over the deep water

along the 50 m isobaths due to the transport of cold water from northern YS to the swYS
by southeastward TIMMCs along the western slope of the YS Trough. The distribution of
∆Stide

B in this month (Figure 13c) is very similar to ∆Stide
S , with the ∆Stide

B being negative
and up to −8.2 psu over the CJE, negative and up to −5.3 psu over the coastal water off
Sheyang of China and positive and up to 6.5 psu over the RSR. The dynamical factors for
the specific distribution of ∆Stide

B are the same as ∆Stide
S , as discussed above.

Figure 13b,d presents differences (∆Twind
B , ∆Swind

B ) in the February mean SBT and SBS
between cases CR and NW. The large ∆Twind

B are negative and up to −3.5 ◦C over the CJB
and the submarine canyon off the CJE (Figure 11b), due to the advection of cold water from
northern YS to this region by WIMMCs and wind-induced mixing. The distribution of
∆Swind

B in this month is similar to ∆Swind
S over the SS, with positive values (up to 6.5 psu)

over the coastal water off Rudong, positive values (up to 4.2 psu) over the coastal water
off Sheyang and negative values (up to −2.0 psu) over the coastal water off Dafeng. The
monthly mean SBS is weakly decreased (by up to 1.5 psu) over the main pathway of the
TWC in this month due to the wind mixing between the subsurface high-salinity TWC
water and surface low-salinity CRD.

In August 2015, the ∆Ttide
S values (Figure 14a) are positive and up to 3.0 ◦C over the

shallow side of 30 m isobaths due to the transport of coastal warm water by the TIMMCs.
The strong tidal mixing over the deep side of 30 m isobaths plays an important role in
reducing the SST in this month. Over the western slope of the YS Trough, the southeastward
TIMMCs transport cold and high-salinity water from the northern YS to the swYS. As a
result, the ∆Ttide

S values are negative (up to −1.8 ◦C) and the ∆Stide
S values (Figure 14c) are

positive (up to 5.0 psu) over the northern part of the swYS and the western slope of the YS
Trough in this month. The ∆Stide

S values in the same month are negative and up to −9.8 psu
over the inner shelf of the SS and the QTB due to the tidal transport of the CRD.
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Figure 13. Same as Figure 12 except for the near bottom temperature (a,b) and near bottom salinity
(c,d) in February 2015.

Distribution of negative values of ∆Twind
S in August (Figure 14b) demonstrates that

the monthly mean SSTs are reduced by wind-induced vertical mixing over the entire swYS,
except for the HZB and SS since the water temperatures are relatively warm and uniform
over these regions. The large and negative values of ∆Twind

S over the LNCW (up to−1.0 ◦C),
ZJCW (up to −3.0 ◦C) and waters off the SS (up to −2.3 ◦C) are associated with the wind-
driven upwelling [6,10]. The ∆Swind

S values in this month (Figure 14d) are negative (up to
−9.0 psu) over the northern and eastern part of the inner model domain and positive (up
to 8.6 psu) over the CJE and ZJCW since the southwesterly winds block the southward
transport of the CJP and push the CJP to extend northward.

Figure 15 presents the effects of tides and winds on the August mean SBT and SBS.
The ∆Ttide

B values in this month (Figure 15a) are positive and up to 7.2 ◦C over the CJB,
and up to 4.5 ◦C over the LNCW, the HZB and the ZJCW. The positive ∆Ttide

B over the CJB
are mainly due to the strong tidal mixing. Over the shallow side of the 30 m isobaths in
this month, the ∆Ttide

B values are positive and highly similar to the positive ∆Ttide
S values,

which are generated by the tidal transport of warm coastal water. Very similar to the ∆Stide
S

values, the ∆Stide
B values in August 2015 (Figure 15c) are negative and up to −10.0 psu

over the CJE and the QTB and positive (up to 3.5 psu) over the north of the model domain.
The dynamical factors for the distribution of ∆Stide

B are the same as ∆Stide
S in this month, as

discussed above. The ∆Stide
B values in this month are very small over the central YS Trough

due to the blocking effects of the strong TMF in summer months.
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Figure 14. Differences in the simulated monthly mean SST (a,b) and SSS (c,d) between cases CR and
NT (a,c) and between cases CR and NW (b,d) in August 2015. The light grey and dark grey contours
are isobaths of 30 m and 50 m, respectively.

The ∆Twind
B values in August (Figure 15b) are positive and up to 5.2 ◦C over the CJB,

and up to 5.0 ◦C over the southern LNCW, due mainly to the advection of warm water
from the southern part of the inner model domain by WIMMCs and wind-induced vertical
mixing. The southwesterly summer monsoon contributes to the northward transport of the
CRD and depresses the southward moving of the CRD; as a result, the ∆Swind

B values are
negative and up to −9.5 psu over the inner shelf of the SS, and positive and up to 7.2 psu
over the QTB and inner shelf of the ZJCW in this month (Figure 15d).

Based on differences in SST, SBT, SSS and SBS between cases CR and NT in Febru-
ary and August 2015, tidal residual currents are found to play an important role in the
northward movement of the CRD over the coastal region and southeastward movement of
waters from northern YS to the swYS, which have significant effects on the water exchange
between different regions in both seasons. The strong tidal stirring also enhances the
mixing of the surface and subsurface waters over the regions between 30 m and 50 m
isobaths in February and August. The northerly winter monsoon transports cold water
from the northern YS to the swYS and blocks the northward advection of CRD, while the
upwelling-favourable southwesterly wind in summer enhances the northward advection
of CRD and inshore transport of bottom waters in the swYS. The wind-induced mixing
also contributes to the exchange of surface and subsurface waters in both seasons.
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Figure 15. Same as Figure 14 except for near bottom temperature (a,b) and near bottom salinity
(c,d) in August 2015.

We next examine the effects of tides and winds on the vertical distribution of monthly
mean temperature and salinity along transect HP (shown in Figure 5a) based on the inner
model results in the case of CR. In February 2015 (Figure 16a,b), the vertically uniform cold
(about 5.7 ◦C) and low-salinity (about 29.3 psu) waters occurred in the inner section of
transect HP, while vertically uniform warm (about 9.3 ◦C) and high salinity (about 34.1 psu)
water covered the YS trough of transect HP.

The differences in the February mean temperature and salinity between CR and NT
(∆Ttide

HP , ∆Stide
HP ) along transect HP are presented in Figure 16c,d. Over the inner section of

transect HP in this month, the ∆Stide
HP values are vertically uniform and vary in the offshore

direction from positive values (up to 4.0 psu) over the western inner section of transect
HP to negative values (up to −2.0 psu) over the eastern inner section (Figure 16d), due
mainly to the northward transport of the CRD under the unique wave system mentioned
earlier. By comparison, the ∆Ttide

HP values are near zero (<0.4 ◦C) over the inner section of
transect HP in the same month (Figure 16c) since the water temperatures are relatively cool
(about 5.7 ◦C) and nearly uniform vertically and horizontally over the inner shelf of the SS
in winter months. These relatively cool waters over the inner shelf in winter months are
generated by winter convection. Over the central section of transect HP, the ∆Ttide

HP values
are relatively large and negative (up to−2.0 ◦C) and the ∆Stide

HP values are vertically uniform
and vary from about −1.2 psu on the west side to 1.5 psu on the east side (Figure 16c,d),
due mainly to the TIMMCs over the SS. Over the outer section of transect HP, the ∆Ttide

HP
values are negative (up to −1.2 ◦C) and ∆Stide

HP values are relatively small and positive (up
to 1.5 psu) due to the tide-induced transport of high salinity water from northern YS to the
central swYS.
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Figure 16. Vertical distribution of the simulated monthly mean temperature (a) and salinity (b) at
transect HP (shown in Figure 5) based on the inner model results in the case of CR in February 2015,
and differences in the simulated monthly mean temperature (c,e) and salinity (d,f) at transect HP
between cases CR and NT and between cases CR and NW in February 2015, respectively.

The differences in the February mean temperature and salinity between CR and NW
(∆Twind

HP , ∆Swind
HP ) along transect HP are presented in Figure 16e,f. Over the inner section of

the transect, the ∆Twind
HP values in this month are also small and less than 0.4 ◦C (Figure 16e),

due mainly to the uniform temperatures vertically and horizontally over the inner shelf of
the SS in this month. It should be noted that wind forcing plays a very important role in
the net heat flux at the sea surface, as mentioned earlier. The ∆Swind

HP values in this month
are vertically uniform and vary from a positive value of about 1.5 psu near the coast to
negative values of about −1.3 psu over the offshore waters over the inner section of the
transect (Figure 16f) due to the transport of the CRD generated by wind forcing. Over the
central section of transect HP in this month, the ∆Twind

HP values are nearly vertically uniform
varying from about −1.2 ◦C on the west side to about 1.0 ◦C on the east side (Figure 16e),
and the ∆Swind

HP are positive and up to 1.2 psu at the east side of this section (Figure 16f), due
mainly to the wind-induced transport of cold and high salinity water from the northern
YS. The ∆Twind

HP values in this month are positive and up to 1.2 ◦C in the top 10 m at about
122.7◦E over the outer section due to the wind-induced transport of warm waters from
the southwest of Jeju Island (Figure 16e). The ∆Swind

HP are negative and very small (up to
−0.5 psu) over the outer section of transect HP in this month, due mainly to the transport
of CRD and wind-induced vertical mixing.
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The vertical distribution of the August mean temperature and salinity produced by
the inner model in case CR is presented in Figure 17a,b. The monthly mean temperature
and salinity in this month are vertically uniform and weakly stratified horizontally over
the inner section of transect HP. The vertically well-mixed temperature and salinity in this
month vary from 28.2 ◦C and 27.7 psu over the western side near the coast to about 26.5 ◦C
and 32.6 psu over the eastern side of the inner section. Over the central section of transect
HP, the vertical stratification of the August mean temperature is strong in the top 15 m and
vertically uniform below 20 m (Figure 17a). The August mean salinity is vertically uniform
and weakly stratified horizontally in the top 10 m and vertically uniform below 20 m over
the central section of transect HP. Over the outer section of transect HP close to the YS
Trough, the August mean temperature is uniform (24.9 ◦C) vertically and horizontally,
while the August mean salinity is nearly uniform (34.8 psu) vertically and weakly stratified
horizontally in the upper mixed layer. The monthly mean temperature shows a strong
thermocline at depths between 15 m and 23 m over the outer section of transect HP in this
month. Below 23 m, the August mean hydrography over the outer section of transect HP is
vertically uniform and about 11.7 ◦C and 34.3 psu, respectively.

Figure 17. Same as Figure 16 except for in August 2015. Vertical distribution of the simulated monthly
mean temperature (a) and salinity (b) at transect HP (shown in Figure 5) based on the inner model
results in the case of CR in August 2015, and differences in the simulated monthly mean temperature
(c,e) and salinity (d,f) at transect HP between cases CR and NT and between cases CR and NW in
August 2015, respectively.

The ∆Ttide
HP values along transect HP (Figure 17c) in August 2015 are positive and up to

2.8 ◦C over the eastern side of the inner section due mainly to the tidal transport of warm
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water from the inner shelf of the SS to the break of the continental slope. Over the central
section of the transect, the ∆Ttide

HP values in this month are negative and up to −2.0 ◦C in
the upper layer and positive and up to 2.2 ◦C in the bottom layer, which is generated by
the secondary vertical circulation induced by the strong baroclinic pressure gradients in
the TMF [18]. Over the swYS, the tidal forcing generates strong vertical eddy viscosity
in the near-bottom layer. The strong eddy viscosity mixes the warm water close to the
thermocline and the cold water in the bottom layer; as a result, the lower mixed layer below
the strong thermocline is maintained. Therefore, the significant negative values of the
∆Ttide

HP for the August mean temperature (up to −3.5 ◦C) in the intermediate layer between
20 m and 50 m are generated by the tidal mixing over the outer section. The positive values
of ∆Stide

HP in Figure 15d demonstrates that the tidal forcing increases the salinity over the
entire transect HP in this month. The maximum value of ∆Stide

HP occurs in the upper layer of
the central section and up to 2.6 psu since the tidal residual currents transport high-salinity
water from the northern YS to this region.

Figure 17e demonstrates that the ∆Twind
HP values are very small over the inner section

of transect HP in August since the water temperature is relatively warm (about 28.2 ◦C)
and nearly uniform vertically and horizontally over the inner shelf of the SS in summer
months. Over the central section, the ∆Twind

HP values are negative and up to −2.0 ◦C due
mainly to the wind-induced transport of cold water. In summer months, the vertical eddy
viscosity induced by wind forcing mixes the warm surface water and cool subsurface
water to generate the upper mixed layer. As a result, large and positive values of ∆Twind

HP
(up to 5.2 ◦C) occur in the intermediate layer at depths between 5 m and 30 m over
the outer section of transect HP. The ∆Swind

HP in this month (Figure 17f) are negative and
−3.2 psu over the inner section and up to −1.4 psu over the outer section of transect HP
since the southwesterly monsoon in summer months contributes to the northward and
northeastward transport of the CRD. Over the central section of transect HP (Figure 17f),
the monthly mean salinity in this month is slightly increased by up to 0.7 psu due to the
wind-induced transport of high salinity water. The cool and high salinity water over the
central section of transect HP originates from the subsurface water in the YS Trough, which
needs further study.

5.3. Circulation and Hydrography during a Storm

The 3D circulation and hydrography over the swYS are also affected by typhoons [53,54].
In this section, we examine the model results in three different experiments (CR, NT_CH
and NW_CH) over the swYS during Typhoon Chan-Hom [50]. Chan-Hom was formed in
the western Pacific Ocean on 30 June 2015 and passed the Miyako Strait on 10 July 2015.
The storm swept Zhejiang Province of China on 11 July 2015 and then moved into the YS
on 12 July with a maximum wind speed of about 40 m/s [54]. Chan-Hom passed through
the YS and caused economic losses exceeding 8.5 billion Chinese Yuan.

Figure 18 presents the simulated SST, SSS and surface currents produced by the inner
model in the case of CR and the daily mean wind vectors at 10 m derived from the NCEP
atmospheric reanalysis data before, during and after the passage of Typhoon Chan-Hom.
Before the arrival of Chan-Hom on 3 July 2015, the daily mean surface currents (DMSCs)
produced the inner model (arrows in Figure 18d) flow northward along the Jiangsu and
Lunan Coast over the SS, HZB and LNCW and southwestward along the Zhejiang Coast
over the ZJCW under the influence of the easterly and northeasterly winds (arrows in
Figure 18a). On the same day, the simulated temperature and salinity (Figure 18a,d) have
typical hydrographic features in summer months, with relatively warm and low-salinity
waters over coastal waters and relatively cool and high-salinity waters in the middle and
outer shelf regions of the swYS. The simulated daily mean SSTs on 3 July vary between
18 ◦C and 27 ◦C, with several cold water patches occurring between the 30 m and 50 m
isobaths, western area of Jeju Island and southern area of the Shandong peninsula. Previous
studies suggest that these cold water patches are induced by strong tidal mixing and wind-
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induced upwelling [5,18,46]. The CJP on this day mainly flowed northward with the 31 psu
isohaline extending northward to 36◦N and eastward to 123◦E.

Figure 18. Distribution of daily mean wind vectors at 10 m (grey arrows in a–c) derived from NCEP
atmospheric reanalysis data, and simulated SST (image in a–c), SSS (image in d–f) and sea surface
currents (black arrows in d–f) produced by the inner model in CR, respectively, before (3 July), during
(12 July) and after (27 July) the passage of Typhoon Chan-Hom. White contour lines in lower panels
represent 31 psu isohaline.

During the passage of Typhoon Chan-Hom on 12 July 2015, the simulated surface
circulation and hydrography over the swYS were significantly affected by the storm
(Figure 18b,e). The simulated DMSCs on this day (Figure 18e) feature strong typhoon-
induced cyclonic circulation centered over the central swYS, with a maximum speed of
the DMSCs being about 1.35 m/s over the ZJCW. The DMSCs turned to flow southward
over the coastal region, including the LNCW, HZB and SS, under the direct impact of
Typhoon Chan-Hom. The DMSCs are strong and up to 0.96 m/s and flow southeastward
and eastward over the central swYS. The simulated daily mean SSTs on this day were
significantly reduced and low to 16.9 ◦C over the middle and outer shelf regions of the
swYS, especially over areas with water depths deeper than 50 m. The differences in the
daily mean SST between coastal waters of the SS and YS Trough are very large and greater
than 8 ◦C. The daily mean SSS on 12 July 2015 was confined to the inner shelf of the SS, the
CJE and the ZJCW (Figure 18e) in comparison with the typical SSS distribution in summer
months [26], due mainly to the strong southward currents induced by Typhoon Chan-Hom.

After the passage of Typhoon Chan-Hom on 27 July 2015, the simulated surface
circulation and hydrography over the swYS returned gradually to the typical summertime
patterns (Figure 18c,f). On this day, the daily mean southwesterly winds over the swYS
were weak and less than 5 m/s. The strong TWC flowed northeastward over the ZJCW
on this day, with speeds up to 1.1 m/s. The CJP (up to 0.4 m/s) mainly flows eastward
over the CJE, and the DMSCs (up to 0.6 m/s) flow southeastward over the central swYS.
The daily mean SSTs on this day were warm and up to 30 ◦C over the coastal region of the
swYS and about 24.5 ◦C over the offshore regions of the swYS. The eastward CJP transports
the low-salinity water to the offshore area with the 31 psu isohaline extending eastward
to 124◦ E.
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The differences in the simulated SST (∆TCH
s ), SSS (∆SCH

s ) and surface currents (∆UCH
s )

between cases CR and NW_CH and cases CR and NT_CH on 12 July 2015 (Figure 19) were
used to examine the impacts of tides and winds on the hydrography and circulation over
the swYS during Typhoon Chan-Hom. The ∆TCH

s values (Figure 19b) induced by wind
forcing associated with Typhoon Chan-Hom on this day were large and negative (surface
cooling) along the storm track and relatively small far from the storm track, particularly
over the coastal region of the swYS. The maximum negative values of ∆TCH

s are about
−8.2 ◦C over the ZJCW and about −6.0 ◦C over the YS Trough. The ∆UCH

s values on
this day (Figure 19h) featured strong cyclonic currents (up to 0.92 m/s) over the central
swYS and strong inshore currents (up to 1.42 m/s) over the ZJCW. The wind-induced
southward DMSCs over the SS and CJE block the northward and eastward transport of
the CRD and push the CRD to move southward. As a result, the wind-induced values of
∆SCH

s are positive and up to 13.5 psu over the CJE and negative and up to −12.5 psu over
the QTB. This indicates that the storm-induced strong currents and vertical mixing play
an important role in reducing SST and spreading low-salinity water in the swYS during
Typhoon Chan-Hom.

Figure 19. Distribution of simulated daily mean (a) SST, (d) SSS and (g) sea surface currents produced
by the inner model in the case of CR on 12 July 2015, and differences in SST (b,c), SSS (e,f) and sea
surface currents (h,i) between cases CR and NT_CH and cases CR and NW_CH. Grey arrows in
(a) represent daily mean wind vectors at 10 m on 12 July 2015. The black line in (d) represents the
storm track of Typhoon Chan-Hom.

The tide-induced changes of ∆TCH
s (Figure 19c) were relatively weak over the inner

model domain in comparison with the wind-induced ∆TCH
s on 12 July 2015. The relatively

large values of ∆TCH
s occur in the central southern YS and the main pathway of TWC, with

a maximum negative value of about −2.8 ◦C. The tide-induced values of ∆TCH
s are very

weak and smaller than 0.5 ◦C over the coastal region. The tide-induced DMSCs on this day
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(Figure 19i) featured a cyclonic circulation (up to 0.53 m/s) over the swYS and seaward
currents (up to 0.41 m/s) over the offshore region of the CJE and QTB. Similar to previous
studies, the spread of low-salinity water over the inner shelf of the SS was controlled by
tidal residual current [8,54], the tide-induced ∆SCH

s were positive and up to 6.5 psu over the
inner shelf of the SS on this day. The tide-induced ∆SCH

s are negative and up to −10.8 psu
over the eastern CJE and positive and up to 10.5 psu over the eastern QTB, due mainly to
the strong tidal mixing and tidal residual currents, respectively.

6. Discussion and Conclusions

A nested-grid ocean circulation modelling system was used to examine the impacts of
tides and winds on the circulation, hydrography and associated seasonal variability over
the southwestern Yellow Sea (swYS). The nested-grid modelling system (NGMS-swYS) is
based on the Princeton Ocean Model (POM) and has two components, with a fine-resolution
inner model embedded inside a coarse-resolution outer model. The domain of the outer
model with a horizontal resolution of about 9.0 km covers the China Seas and adjacent
deep ocean waters of the northwestern Pacific Ocean. The domain of the inner model
with a horizontal resolution of about 2.7 km covers the swYS and adjacent shelf waters.
Five numerical experiments, namely the control run (CR), NoTide (NT), NoWind (NW),
NoTide_Chan-Hom (NT_CH) and NoWind_Chan-Hom (NW_CH), were conducted using
the NGMS-swYS with different combinations of external forcing. The model performance in
the case of CR was assessed using the MURSST data, Marine Atlas and in situ oceanographic
data over the study region. It was found that the NGMS-swYS has satisfactory skills in
reproducing the four major tides (M2, S2, K1 and O1), three-dimensional (3D) circulation
and hydrography over the swYS.

The monthly mean model results in cases CR, NT and NW produced by the inner
model in February and August 2015 were analyzed to examine the 3D circulation and
hydrography and the roles of tidal and wind forcings in the winter and summer months
over the swYS. The monthly mean circulation in case CR featured a northward Subei
Coastal Current and persistent southeastward mean currents along the 50 m isobaths in
both February and August. These currents were stronger in August than in February of the
same year.

The roles of tidal forcing on the 3D circulation and hydrography over the swYS were
quantified based on differences in monthly mean results produced by the inner model
between cases CR and NT. It was found that the tidally induced monthly mean currents
(TIMMCs) are similar over the SS and western slope of the YS Trough in both February
and August, indicating the barotropic characteristics of the tidal residual currents over
these areas. By comparison, the TIMMCs differ significantly over the LNCW, HZB and
CJB in February and August, and the southeastward TIMMCs along the 50 m isobaths are
stronger in August than in February, indicating the role of baroclinic tides over these areas.

The tidal residual currents also play an important role in the northward transport of the
Changjiang River Discharge (CRD) over the coastal region and the southeastward moving
of waters along the western slope of the YS Trough from northern YS to the swYS, which
have significant effects on the water horizontal exchange between different regions in both
February and August. The southeastward TIMMCs bring the cool and high-salinity water
from the northern YS to the swYS, while the northward TIMMCs transport warm and low-
salinity CRD from the CJE to the SS in both February and August. The strong tidal mixing
enhances the vertical mixing in the subsurface layer contributing to the maintenance of the
bottom mixed layer below the strong thermocline over the YS Trough in the summertime
and the maintenance of the vertically uniform water in the wintertime.

The wind-induced monthly mean currents (WIMMCs) feature a classical two-layer
circulation in the vertical direction with southward currents in the surface layer and
northward compensating currents flowing along the YS trough in the deep layer in February.
In August, the weak wind forcing enhances mainly the coastal currents over the SS and
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HZB to move northward in both upper and lower layers and has a weak influence on the
circulation over the YS Trough.

The southward WIMMCs transport cold water from the northern YS to the swYS over
the coastal region and block the northward advection of the CRD in February, while the
upwelling-favourable southwesterly wind in August enhances the northward advection of
the CRD and inshore transport of bottom waters in the swYS. The wind-induced vertical
mixing plays an important role in forming the vertically uniform temperature and salinity
in February and maintaining the highly stratified vertical pattern in August over the swYS.

It was demonstrated that strong winds significantly changed the circulation and
hydrography over the swYS during Typhoon Chan-Hom. The coastal currents over the
HZB and SS turn to flow southward, and the surface currents feature a strong cyclonic
circulation over the swYS during Typhoon Chan-Hom. The SST is significantly reduced in
the offshore region, and the SSS is confined to the inner shelf of the coastal region during
the same time.

The main focus of this study was on the impact of tides and winds on the 3D circulation,
hydrography and associated seasonal variability over the swYS. Hydrodynamics of the
swYS are also affected by other dynamical factors, however, including the Changjiang
River Discharge, the Taiwan Warm Current and other basin-scale oceanic circulation.
The 3D hydrodynamics of the swYS are also affected by the surface waves. Further
research on the influences of these dynamic factors on the seasonal variability of circulation
and hydrography over the swYS is needed. Furthermore, comprehensive oceanographic
observations of temperature, salinity and currents, especially during extreme weather
conditions, are needed to validate further the performance of the NGMS-swYS.
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Appendix A. List of Abbreviations and Symbols Used

Abbreviation Definition

3D Three-dimensional
BS Bohai Sea
ECS East China Sea
YS Yellow Sea
swYS Southwestern Yellow Sea
NWPO Northwestern Pacific Ocean
NGMS Nested-grid ocean circulation modelling system

https://rda.ucar.edu/
https://coastwatch.pfeg.noaa.gov/


J. Mar. Sci. Eng. 2022, 10, 912 30 of 33

Abbreviation Definition

RSR Radial Sand Ridges
CJB Changjiang Bank
CJE Changjiang Estuary
CJP Changjiang Plume
CRD Changjiang River Discharge
YSCC Yellow Sea Coastal Current
TWC Taiwan Warm Current
YSWC Yellow Sea Warm Current
KCC Korea Coastal Current
ZMCC Zhe-Min Coastal Current
XMD Xiaomaidao station
LYG Lianyungang station
LVS Lvsi station
SST Sea surface temperature
SBT Sea bottom temperature
SSS Sea surface salinity
SBS Sea bottom salinity
SS Subei Shoal
QTB Qiantang Bay
HZB Haizhou Bay
ZJCW Zhejiang Coastal Water
LNCW Lunan Coast Water
TMF Tidal mixing fronts
GFDL Geophysical Fluid Dynamics Laboratory
MURSST Multi-scale Ultra-high Resolution Sea Surface Temperature
NMDC National Marine Data Center
CTD Conductivity-temperature-depth
NCEP National Centers for Environmental Prediction
CFSv2 Climate Forecast System reanalysis version 2
ETOPO2 2-min Gridded Global Relief Data
GEBCO General Bathymetric Chart of the Oceans
CR Control run
NT NoTide run
NW NoWind run
NT_CH NoTide during Chan-Hom period
NW_CH NoWind during Chan-Hom period
RMSE Root mean square error
γ2 Normalized variance of model errors
YSCWM Yellow Sea Cold Water Mass
TII Tidal impact index
WII Wind impact index
TIMMCs Tidally induced monthly mean currents
WIMMCs Wind-induced monthly mean currents
DMSCs Daily mean surface currents

∆
⇀
U

tide

UL , ∆
⇀
U

wind

UL
The TIMMCs, WIMMCs in the upper layer

∆
⇀
U

tide

LL , ∆
⇀
U

wind

LL
The TIMMCs, WIMMCs in the lower layer

∆Ttide
S , ∆Twind

S Differences in SST induced by tide, wind
∆Stide

S , ∆Swind
S Differences in SSS induced by tide, wind

∆Ttide
B , ∆Twind

B Differences in SBT induced by tide, wind
∆Stide

B , ∆Swind
B Differences in SBS induced by tide, wind

∆Ttide
HP , ∆Twind

HP Differences in temperature along transect HP induced by tide, wind
∆Stide

HP , ∆Swind
HP Differences in salinity along transect HP induced by tide, wind

∆TCH
s , ∆SCH

s , ∆UCH
s Differences in SST, SSS and surface currents induced by Chan-Hom
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Appendix B. Tidal Elevations from OSU TPXO Ocean Models

The TPXO model is calculated using the two-dimensional barotropic fluid equations,
and assimilated by the satellite altimetry and in situ observation data [46]. The four major
tide constituents (M2, S2, K1, O1) in the China Seas and adjacent deep waters are extracted
from the 1/6◦ × 1/6◦ global TPXO models.

Figure A1. Co-amplitudes and co-phases of (a) M2, (b) S2, (c) K1, and (d) O1 over the China Seas and
adjacent deep ocean waters of the northwestern Pacific based on results produced by the Oregon
State University (OSU) TPXO ocean tidal model. The phases are in degrees relative to the GMT.

Appendix C. Metrics for Model-Data Comparisons

Three statistical metrics are used in this study to quantify the performances of NGMS-
swYS, including the correlation coefficient (Corr), root mean square error (RMSE) and the
normalised variance of model errors

(
γ2):

corr =
∑n

i=1
(

Mi −M
)(

Oi −O
)

[var(M)·var(O)]1/2 (A1)

RMSE =

[
1
n ∑n

i=1(Mi −Oi)
2
] 1

2
(A2)

γ2 =
var(M−O)

var(O)
(A3)
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where n is the total number of observations, M and O are the simulated and observed
values, and var stands for the variance, the overbar indicates the temporal mean. The
smaller the values of RMSE and γ2 are, the better the model performance is.
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