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Abstract: Workload level has a significant impact on the human errors of ship operators. Therefore,
the accurate discrimination of the operator’s workload level has an important effect on preventing
human errors. Firstly, this study analyzed the differences in performance indicators, subjective
workload indicators, and eye movement indicators under different workloads. Secondly, according
to the correlation analysis result, the NASA Task Load Index (NASA-TLX) score has a correlation
with error rate, operation time, NASA-TLX score, pupil dilation, blink rate, saccadic rate, and fixation
rate. Thirdly, this study used a typical discriminant analysis method to construct a discrimination
model based on these indicators. The validation result indicated that the accurate discrimination rate
of the model is 100% for the low and general workload and that is 90.9% for the high workload. It
indicated that the constructed model can effectively distinguish the workload level.

Keywords: workload level; human errors; typical discrimination method; discrimination model

1. Introduction

As the improvement of automation continues, ship operators must keep track of more
information and manage an increasing number of systems, which increases the operators’
workload [1]. The improvement of workload influences operators work efficiency, physiol-
ogy, and physiological health [2], and it has become a general issue for various industries [3].
Previous research has revealed that human performance is affected by workload [4]; an
appropriate workload level can reduce human error and improve system security [5].

Workload not only includes the cognitive demands of the tasks, but also includes
fatigue and stress. At present, the measurement methods are mainly divided into three
categories, namely, performance measurement methods, subjective rating, and physiology
measurement [6]. The subjective method is easy to implement and is low in cost. At present,
subjective evaluation methods mainly include the circumplex model of affect [7], the Posi-
tive Affect and Negative Affect Schedule [8], the Activation–Deactivation Adjective Check
List [9], NASA-TLX [10], the Subjective Workload Assessment Technique [11], the Overall
Workload Scale [12] and Modified Cooper–Harper Ratings [13]. However, subjective results
are susceptible to characteristics such as bias, reaction sets, and protest attitudes [14].

According to current research, there is a certain relationship between the workload
and physiology response [15,16]. Compared with subjective evaluation methods, phys-
iology measurement methods are affected by environmental factors. The experimental
equipment connected to the participant’s body will affect the operator’s mental state. But
physiology measurements require small samples to get accurate results. At present, a
large amount of research has been conducted on eye reactions in physiology measurement
methods. Eye responses are useful for assessing the design level of the interface and the
operator’s workload [17]. The pupil diameter is generally combined with the scanning
path, fixation time, and error rate to evaluate workload [18,19]. Blinking is considered a

J. Mar. Sci. Eng. 2022, 10, 1098. https://doi.org/10.3390/jmse10081098 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10081098
https://doi.org/10.3390/jmse10081098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-1460-4430
https://doi.org/10.3390/jmse10081098
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10081098?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1098 2 of 12

sign of fatigue [20]. When the operators need to process more information, the blinking
frequency was decreased [21,22]. The other opinion suggested that the blink frequency was
affected by visual demand and workload, which were opposite each other [23]. When the
workload increased, the blink duration also decreased [24]. In addition, the parameter of
fixation time had a correlation with workload [25,26]. The research results revealed that
using fixation time to evaluate workload showed higher reliability [27].

Yan et al. (2019) proposed an artificial neural network model to predict the operator’s
workload [28]. Although both the model proposed by Yan and the model proposed in this
study are used to predict the workload of operators, there are still great differences between
the two research studies. First, the main objectives of previous research are to consider
the relationship between operators’ workload and eye responses in the task of operating
a marine engine interface. The ultimate objective is to build an artificial neural network
model to predict the operators’ workload. However, the main purpose of this study is
to construct a discrimination model using typical discriminant methods to evaluate the
workload level of operators. Therefore, the difference between the two is that the previous
research developed an artificial neural network model, while this research constructed a
discriminant model. Second, the artificial neural network model is trained based on the
back propagation algorithm. The constructed discriminant model in this study is based on
Bayes’ discriminant idea. Therefore, there are differences in the methods of constructing the
two models. Third, an artificial neural network model was developed based on integrating
eye response data. However, the construction of the discrimination model is based on
eye response and human performance (error rate). There are limitations when using a
single method to measure the workload level. However, integrating multiple methods can
effectively overcome the shortcomings of a single method and improve the accuracy of
workload level evaluation. Therefore, this study used the typical discrimination method
to establish the discrimination model based on multiple indicators, which achieved the
discrimination of the workload level of ship interface operators.

2. Materials and Methods
2.1. Participants

Operators should not only master the operation of marine engines but also have a
lot of practical operation experience. However, these operators cannot be contacted at
any time. Therefore, this study tested the participants who received specific task training.
Twenty-two students were invited to participate in the study, ranging in age from 21 to
25 (age = 22.8 ± 1.4 years). They are novice students from an altogether different domain.
All the participants have a good engineering education background and are familiar with
computer operations, they are in good health, with normal vision and normal color vision.
All participants performed three tasks. Finally, two-thirds of the sample data were used
to construct the model, and one-third of the sample data was used to verify the reliability
of the model. All students were in good health, with normal vision and normal color
vision. All students must ensure adequate sleep on the day before the experiment, and
the students were asked to stay in a quiet environment before the experiment began. Each
student completed an operational training task before the experiment.

2.2. Equipment

The Neptune simulator MC90 was developed by Kongsberg Maritime Ship Systems
Software (Version: MC90-V, Norge, Norway) based on real data. The software is very
close to real operating procedures. In MC90 software, the propulsion machinery is based
on one MAN B&W 5L90MC, low speed, 5 cylinder configuration, 2-stroke, turbocharged,
reversible diesel engines. The main engine is coupled to a propeller shaft with either a fixed
pitch propeller or a controllable pitch propeller. The software is an effective training tool for
marine engineering professionals. This study used the software for simulation operation.

In this research, eye response was recorded by iView X head-mounted eye tracking
device (SensoMotoric Instruments, Teltow, Germany). The recording rate was 50 Hz, the
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pupil/corneal reflex was <0.1◦, and the gaze position accuracy was <0.5◦ to 1.0◦. The
software of BeGaze was used to analyze and process the experiment data.

2.3. Experimental Task

This research analyzed the changes of indicators under different workload levels
and then analyzed the correlation between workload and each indicator. The three tasks
were used to control workload level. The operation procedure of the three tasks is shown
in Tables 1 and 2 and Table 3 [29]. The first task is the emergency generator operating
procedures. It is mainly to provide power to the ship when there is a problem with the
ship’s power supply system. The operating procedures of the emergency generator are
shown in Table 1. The second task is the shaft generator operating procedures. It can
supply the ship’s network with electrical energy when the SG is running above 200 rpm.
Between 200 and 400 rpm the load is limited to half, and above 400 rpm maximum power is
available. The operating procedures of the shaft generator are shown in Table 2. The third
task is the operating process for starting the diesel generator, and the operating procedures
are shown in Table 3. According to the number of steps for each operation, the first, second,
and third tasks were represented by the low, general, and high workload, respectively. The
required human–computer interface of each task procedure is shown in Figure 1.

Table 1. The emergency generator operation process.

Interface Step Task Description

MD73 1 Ensure battery voltage is correct.
MD70 2 Generator in manual operation press start.

3 Turn on the voltage control to 440 V and control the governor to
provide a 60 Hz output.

4 Connect the emergency generator breaker and connect the main
bus breaker to the emergency bus.

5 The generator is normally in AUTO, voltage control on, circuit
breaker open.

6
If supply is lost to the emergency switchboard, the generator will

automatically start and close the circuit breaker supplying the
emergency bus.

7 The main bus will be isolated due to the connection circuit breaker
opening on low voltage.

8
When the emergency bus is again supplied from the main bus, the
connection circuit breaker is closed, and the emergency generator

will automatically stop and open the circuit breaker.

9 Ensure that the main bus bar has a supply and connect the main
bus bar breaker to the emergency bus.

10 Open the emergency generator breaker and the generator stops.

Table 2. Shaft generator operation procedure.

Interface Step Task Description

MD77 1 Ensure auxiliary power is on and the cooling fan is running.

2 Check that enough reserve power is available to start the
synchronous condenser, about 150 kW.

3 Start synchronous condenser.
4 Open air valve to the clutch.

5 Ensure input shaft speed below 300 rpm and connect clutch in local
control. When the clutch has engaged, change to remote control.

6 Normal mode is generator mode, as indicated on the control panel.

7 The generator can be connected manually or automatically from the
power chief panel in the normal manner.

8 To use PTI the generator breaker must first be connected in the
normal manner.
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Table 2. Cont.

Interface Step Task Description

9 PTI can be selected locally or from the power chief panel.

10
In PTI mode, select either available mode to use all available power
(300 kW will be in reserve) or select setting mode where the motor

power can be set up to a maximum of 300 kW in reserve.
11 To change to PTI, select generator mode.

12
It is normal to leave the clutch engaged when the main engine is

running; otherwise, in order to engage the clutch, the engine would
have to be slowed down.

13 If the generator is not required, disconnect the circuit breaker in the
normal manner.

14 The synchronous generator may now be stopped.

15
If maintenance is to be carried out, it will be necessary to turn off

the auxiliary power, disengage the clutch and close the air valve to
the clutch.

Table 3. The operating process for starting the diesel generator.

Interface Step Task Description

MD75 1 Check the liquid level in the fresh cooling water expansion tank
and the working status of the fresh water temperature controller.

MD01 2 Ensure sea water valve to cooler is open pump and sea water flow
is normal.

MD75 3 Check the level in lubricating oil sump tank, (min 40%)—refill from
the storage tank if necessary.

4 Line up lubrication oil system. Normally one filter is in operation
and one filter is cleaned and on standby.

5 Ensure that the lubrication oil valve to the sludge tank is closed.

6
Start the electrically driven lubricating oil pump (prelubrication oil

pump), and check that the oil pressure is increasing, and set the
electrical lubricating oil pump in AUTO mode.

7 Check the water level in the fuel oil service tanks and drain if
necessary.

MD05 8 Ensure that the fuel oil supply valve from the diesel oil service tank
to the generator engine are open.

MD11 9 Ensure that the fuel oil supply valve from the fuel oil system to the
generator engine are open.

MD75 10 Open fuel oil inlet valve to fuel oil pump.

11 Open fuel oil valve before fuel oil filters. Normally one filter is in
operation, and one filter is cleaned and on standby.

12 Check the position of the fuel oil supply 3-way valve.

MD59 13 Open start air valves. Start air must be at least 15 bar (218 psi) on
the starting airline.

MD75 14
If any of the alarm lamps (red) at the local panel are lit, press the

RESET button. If no warning lights are lit, press the START button
from the local panel launch engine.

MD70 15 When the engine control panel is in remote, the engine can only be
started from the power chief panel or electric power plant.

MD75 16 To start locally, select local on the engine control panel.

17 Start the lubricating oil priming pump manually and then press
Start button.

18 When the engine is running, stop the lubricating oil priming pump
and set to AUTO.

MD70 19 The generator can now be connected to the main bus using the
electric power plant panel.

MD75 20 To use the power chief, the generator must be switched to remote.
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Figure 1. Neptune simulator MC90 software:(a) MD75 interface, (b) MD01 interface, (c) MD05 in-
terface, (d) MD11 interface, (e) MD59 interface, (f) MD70 interface, (g) MD73 interface, (h) MD77 
interface. 
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Figure 1. Neptune simulator MC90 software: (a) MD75 interface, (b) MD01 interface, (c) MD05 interface,
(d) MD11 interface, (e) MD59 interface, (f) MD70 interface, (g) MD73 interface, (h) MD77 interface.
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2.4. Date Collection and Analysis
2.4.1. Performance Data

Performance indicators were used to evaluate the effectiveness of an object in com-
pleting a specific task. Performance evaluation parameters mainly include the number
of errors, error rate, operation time, etc. [30]. According to the current research result
of performance evaluation methods, this study selected error rate and operation time as
performance evaluation indicators.

2.4.2. Subjective Data

The subjective evaluation mainly collects scores when participants use rating scales.
Compared with objective evaluation methods, subjective evaluation methods need nu-
merous sample data, and the evaluation results are vulnerable to being influenced by the
behavior of the evaluators, such as personal preferences and moods. However, due to the
low cost and adaptability of subjective evaluation methods, the application of subjective
evaluation methods is still very extensive. This study used the NASA-TLX score to evaluate
the operators’ workload. NASA-TLX evaluates workload from six dimensions: mental de-
mand, physical demand, temporal demand, own performance, effort, and frustration. Each
dimension used the 0 to 100 scale to evaluate the level. NASA-TLX score was calculated by
Equation (1).

NASA − TLX score =
1

15

6

∑
i=1

XiWi (1)

where NASA-TLX is the NASA task load index; Xi is the rating score of the ith dimension;
Wi is the relative weight of the ith dimension.

2.4.3. Eye Responds Data

In the BeGaze software interface (Version 2.3, Teltow, Germany), the area of interest
(AOI) was selected as the simulated display interface. All recording data beyond the data
on the simulated interface was excluded from the analysis. During the experiment, the eye
response on the simulated interface was recorded by coordinate values. This study selected
the four eye response indicators of pupil diameter, blink rate, saccade rate, and fixation rate
as the research objects. Saccade rate has a negative correlation with fixation rate. When
the interface information is easy to obtain, the saccade rate will increase and the fixation
rate will decrease. On the contrary, when the presentation of interface information does
not conform to the operator’s cognition, the operator’s fixation rate will increase and the
saccade rate will decrease. Therefore, saccade rate and fixation rate are used to evaluate
the workload of operators. Pupil diameter is the average value of the pupils in the vertical
and horizontal directions of the left eye. The time between closing eyes and open eyes is
considered to be blinking time. The average value of multiple measurements is considered
as the blink time in the experiment. The blink rate is the number of blinks per second. The
saccadic rate refers to the number of times the eye moves rapidly around in a second. The
fixation rate refers to the number of times the eye stays in the area for a long time in one
second.

3. Results
3.1. Subjective Evaluation

Table 4 shows the evaluation result of NASA-TLX. It can be seen that the NASA-
TLX score and the dimension of frustration have a significant difference between the
three workloads. The mental demands (p < 0.05) have a significant difference between
the low and general workload, the dimensions of mental demands (p < 0.05), physical
demands (p < 0.02), time demands (p < 0.01), and performance (p < 0.01) have a significant
difference between the low and high workload, and the dimensions of physical demands
(p < 0.05) and time demands (p < 0.05) have a significant difference between the general
and high workload.
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Table 4. The t-test of NASA-TLX between different workloads.

Method

Workload p

Low (M ± SD) General (M ± SD) High (M ± SD) Low-
General Low-High General-

High

Mental demands 61.3 ± 12.9 67.9 ± 7.8 72 ± 13.5 0.04 0.01 0.25
Physical demands 47.2 ± 11.4 48.6 ± 8.7 54.5 ± 10.3 0.67 0.02 0.04

Time demands 45.6 ± 13.5 50.1 ± 8.0 57.4 ± 10.1 0.23 0.00 0.02
Performance 51.2 ± 13.1 57.8 ± 12.1 63.7 ± 12.3 0.11 0.00 0.17

Efforts 55.9 ± 13.2 62.2 ± 10.1 64.7 ± 17.4 0.10 0.08 0.55
Frustration 47.8 ± 10.8 57.9 ± 9.3 63.4 ± 10.7 0.02 0.00 0.04

NASA-TLX score 54.8 ± 8.1 61.6 ± 7.4 66.1 ± 8.2 0.01 0.00 0.04

3.2. Performance Evaluation

The t-test results of the performance are summarized in Table 5. The results showed
that the error rate (p < 0.01) has a significant difference between the low and high workloads,
and the operation time has a significant difference between the three different workloads.
The required operation time to complete a task varies with the complexity of a task. The
more task complex, the more time it takes to complete the task. The workload is affected
by task complexity, thus, the operation time can indirectly reflect the operator’s workload.
It can be summarized that the error rate and the operation time were affected by the
workload level.

Table 5. The t-test of performance date between different workloads.

Performance Method
Workload p

Low (M ± SD) General (M ± SD) High (M ± SD) Low-General Low-High General-High

Error rate 0.027 ± 0.045 0.052 ± 0.049 0.061 ± 0.052 0.12 0.00 0.51
Operation time (s) 80 ± 19 127 ± 21 186 ± 15 0.00 0.00 0.00

3.3. Eye Respond Result

Table 6 shows the t-test results of eye response under the three workload levels. The
results showed that the pupil dilation and saccadic rate have a difference under three
workload conditions. The fixation rate has a difference between low workload and general
workload (p < 0.05) and between low workload and high workload (p < 0.01). As the
workload increased, the pupil diameter, blink rate, and fixation rate also increased, and the
saccadic rate decreased.

Table 6. The t-test of eye response between different workloads.

Eye Response
Workload p

Low (M ± SD) General (M ± SD) High (M ± SD) Low-General Low-High General-
High

Pupil dilation (pixel) 47.0 ± 4.7 52.6 ± 3.9 57.4 ± 6.4 0.00 0.00 0.01
Blink rate (times/s) 0.48 ± 0.15 0.52 ± 0.11 0.57 ± 0.16 0.34 0.05 0.24

Saccadic rate (times/s) 1.31 ± 0.29 1.02 ± 0.26 0.73 ± 0.16 0.00 0.00 0.00
Fixation rate (times/s) 0.91 ± 0.26 1.15 ± 0.32 1.25 ± 0.38 0.04 0.00 0.37

The correlation between the NASA-TLX score and other indicators is shown in Tables 7
and 8 and Table 9. The analysis result showed that the NASA-TLX score has a positive
correlation with an error rate, operation time, pupil dilation, blink rate, and fixation rate
under the three workload levels. Also, the NASA-TLX score has a negative correlation with
saccadic rate under the three workload levels. In addition, the error rate and operation time,
and pupil dilation and blink rate have a positive correlation under all three workloads.
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Table 7. Correlation analysis under the low workload.

No. Indicators 1 2 3 4 5 6

1 NASA-TLX 1
2 Error rate 0.57 ** 1
3 Operation time 0.52 * 0.45 * 1
4 Pupil dilation 0.73 ** 0.68 ** 0.44 * 1
5 Blink rate 0.50 ** 0.25 0.26 0.43 * 1
6 Saccadic rate −0.44 * −0.33 −0.28 −0.52 * −0.25 1
7 Fixation rate 0.49 * 0.51 * 0.31 0.83 ** 0.37 −0.66 **

* p ≤ 0.05, ** p ≤ 0.01.

Table 8. Correlation analysis under the general workload.

No. Indicators 1 2 3 4 5 6

1 NASA-TLX 1
2 Error rate 0.56 ** 1
3 Operation time 0.62 ** 0.55 ** 1
4 Pupil dilation 0.46 * 0.21 0.03 1
5 Blink rate 0.62 ** 0.34 0.31 0.49 * 1
6 Saccadic rate −0.60 ** −0.65 ** −0.69 ** −0.10 −0.42 1
7 Fixation rate 0.48 * 0.032 0.34 0.24 0.37 −0.18

* p ≤ 0.05, ** p ≤ 0.01.

Table 9. Correlation analysis under the high workload.

No. Indicators 1 2 3 4 5 6

1 NASA-TLX 1
2 Error rate 0.53 * 1

3 Operation
time 0.51 * 0.58 ** 1

4 Pupil dilation 0.50 * 0.24 0.25 1
5 Blink rate 0.67 ** 0.44 * 0.12 0.62 ** 1
6 Saccadic rate −0.74 ** −0.44 * −0.45 * −0.82 ** −0.66 ** 1
7 Fixation rate 0.63 ** 0.38 0.50 * 0.37 0.49 * −0.53 *

* p ≤ 0.05, ** p ≤ 0.01.

3.4. Constructing Discriminant Model

The basic principle of discriminant analysis is to fit the discriminant function from the
samples that have determined the category of observations, then apply the discriminant
function to the new data set recorded by the same observation variables, and then judge
the category attribution of new samples. According to the experimental results, the typical
discriminant analysis method was used to construct the workload discrimination model
to evaluate user workload level. The typical discriminant method constructs one or more
linear discriminant functions by the idea of variance analysis. The discriminant coefficient
is determined by making the variability between different groups as large as possible and
the variability within the same group as small as possible. The constructed discriminant
formula of the Fisher method is as follows:

y = a1x1 + a2x2 + a3x3 + · · ·+ anxn (2)

where y is the value in the lower dimensional space. x1, x2, x3, . . . , xn are the feature
variables of the observation. a1, a2, a3, . . . , an are coefficients of each variable.

The discriminant model includes several feature variables, such as NASA-TLX score,
error rate, operation time, pupil dilation, blink rate, saccadic rate, and fixation rate. In
this study, SPSS 22.0 software was used to analyze the experimental data. Discriminating
functions (3) and (4) can be obtained after discriminant analysis by SPSS software, and the
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data analysis results by SPSS software give the centers of gravity. Therefore, according
to the analysis results by SPSS software, it can construct the distinguishing function and
determine the centers of gravity. The canonical discriminating functions are as follows:

y1 = −0.051 ∗ x1 − 8.929 ∗ x2 + 0.063 ∗ x3 + 0.081 ∗ x4 + 0.381 ∗ x5 − 0.263 ∗ x6 − 0.577 ∗ x7 − 8.321 (3)

y2 = 0.075 ∗ x1 + 5.777 ∗ x2 − 0.017 ∗ x3 + 0.061 ∗ x4 − 5.703 ∗ x5 − 0.297 ∗ x6 + 1.709 ∗ x7 − 4.319 (4)

where y1 and y2 indicate the value of the discrimination function, the parameters of x1,
x2, x3, x4, x5, x6, and x7 represent the NASA-TLX score, errors rate, operation time, pupil
dilation, blink rate, saccadic rate, and fixation rate, respectively.

The plane coordinates of each observation sample were calculated based on the
discriminant functions, and then the distance to the center of gravity of each category
was calculated. The calculation formulas of the distance from each center of gravity are
as follows:

Z2
1
= (y1 + 3.158)2 + (y2 + 0.163)2 (5)

Z2
2
= (y1 + 0.348)2 + (y2 − 0.282)2 (6)

Z2
3 = (y1 − 3.507)2 + (y2 + 0.119)2 (7)

Based on the feature variables values of x1 to x7, the values of y1 and y2 are calculated
and brought into Equations (5)–(7). If the value of Z1 is less than the Z2 and Z3, participants
are considered to be at a low workload level. Similarly, if the value of Z2 or Z3 is the
smallest of the three values of Z1, Z2, and Z3, the participant’s workload is considered to be
at the general or high workload level.

Figure 2 shows the discriminant classification of samples by the constructed discrimi-
nant model. The correct discrimination classification of the constructed model is 95.5% for
low workload and high workload samples and 91% for general workload samples, which
indicates that the constructed model can effectively discriminate the workload level.
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As shown in Tables 10 and 11, Wilks’ Lambda is used to test whether each discriminant
function is statistically significant. The test results show that the first discriminant function
is statistically significant (p = 0.00), and the second function is not statistically significant.
However, considering that the first function accounts for more than 99.5% of the variance
variation, the established discriminant function is acceptable.

Table 10. Characteristic value results.

Function Characteristic Value Variance (%) Accumulation (%) Normative Relevance

1 7.82 99.5 99.5 0.942

2 0.042 0.5 100 0.201

Table 11. Wilks’ Lambda results.

Function Test Wilks’ Lambda Chi-Square Degree of Freedom Sig.

1 through 2 0.109 136.1 14 0.00

2 0.96 2.474 6 0.87

3.5. Validating the Reliability of the Model

In this study, two-thirds of the experimental data were used to construct the discrimi-
nation model, and the remaining one-third of the data were used to validate the accuracy
of the discriminant model in the classification of workload level. In the correlation analysis
results, the correlation between NASA-TLX and several other indicators is proved. It is
indicated that the other indicators can indirectly reflect the workload level, and it shows
the rationality of the indicators selected for constructing the model. For the reliability
verification of the developed model, it is needed to judge whether the classification results
of the workload by the model are correct. In this study, the sample data that did not par-
ticipate in the construction of the model was used to verify the accuracy of the developed
model in discriminating the workload level. The discriminant results of the discriminant
model in the classification of workload level are shown in Table 12. It can be seen that the
discriminant accuracy is 100% for low workload and general workload, and that it is 90.9%
for the high workload. Therefore, combining characteristic value results and Wilks’ lambda
result, it can be considered that the discrimination model can effectively distinguish the
workload level.

Table 12. The workload discrimination results.

Workload Level
Predicted Result (%)

Low General High Total

Low 100 0 0 100

General 0 100 0 100

High 0 9.1 90.9 100

4. Discussion and Conclusions

Workload has a great influence on information acquisition and feedback time, which
may lead to human errors. This study constructed a discrimination model to discrimi-
nant the operator’s workload level. Three task procedures were used to represent three
workload levels.

According to the number of steps for each operation, the workload of the three tasks
was divided into the low workload, general workload, and high workload. The t-test result
of NASA-TLX showed that the NASA-TLX score has a significant difference between the
three tasks, which indicated that the workload has a significant difference under different
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tasks. The dimension of mental demand has the highest score among the three tasks, which
indicated that the operation process required a high degree of concentration. The high
effort score indicated that users needed to spend more effort to complete the operation task.

The operation time has a significant difference between the three tasks, and the error
rate has a significant difference between low workload and high workload. The increase in
workload requires more cognitive resources, but cognitive resources are limited, which may
lead to an increase in error rate. At the same time, the increase in the number of operation
steps also requires the operator to spend more time completing a task.

The t-test result showed that the pupil dilation and saccadic rate have a significant
difference between the three workloads. The fixation rate also has a significant difference be-
tween low workload and general workload and between low workload and high workload.
The increased task steps leads to the workload increasing. As the increase of workload, the
amount of information that the eyes need to obtain increases, which leads to the expansion
of pupil diameter. In addition, it is more difficult to search the required information under
a high workload, which leads to a decrease in saccade rate and an increase in fixation rate.
The blink rate is affected by both workload and visual demand. Therefore, the workload
did not have a significant effect on the blink rate.

According to the above analysis, these indicators can reflect the workload levels. The
correlation analysis showed that the NASA-TLX score has a correlation with the error
rate, operation time, and eye response indicators. Therefore, these indicators were used to
construct the discriminant model. This research constructed a discriminant model based
on the indicators of NASA-TLX score, error rate, operation time, pupil diameter, blink rate,
saccadic rate, and fixation rate. The validation results indicated that the discrimination
model can effectively distinguish the operators’ workload level.

However, there are still some limitations to this study. Firstly, the quantity of samples
is small. Secondly, the experiment was performed on a simulation platform, which is
different from the real operating environment. Therefore, the reliability of the model needs
to be further verified in practical application.
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