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Abstract: Propeller modeling in virtual captive model tests is crucial to the prediction accuracy of
ship maneuvering motion. In the present study, the Computational Fluid Dynamics (CFD) method
with two propeller modeling methods, Sliding Mesh (SM) and Multiple Reference Frames (MRF),
was used to simulate the captive model tests for a KVLCC2 tanker model. The virtual captive model
tests, including for resistance, self-propulsion, rudder force, oblique towing, circular motion, oblique
towing and steady turning tests with rudder angle, were conducted by solving the Reynolds-averaged
Navier–Stokes (RANS) equations. The computed hydrodynamic forces, hydrodynamic derivatives,
and hull-propeller-rudder interaction coefficients were validated against the available captive model
test data and the CFD results obtained by a Body Force (BF) method in the literature. Then the
standard turning circle and zig-zag maneuvers were simulated by using the MMG (Maneuvering
Modeling Group) model with the computed hydrodynamic derivatives and hull-propeller-rudder
interaction coefficients, and the results were validated against available free-running model test
data. The most satisfactory agreement in terms of the ship hydrodynamic forces and maneuvering
parameters and the most accurate rudder normal force were obtained by the SM method rather than
by the MRF or the BF methods, while the lateral forces and yaw moments obtained by the SM and
the MRF methods were all in good agreement with the model test data.

Keywords: ship maneuvering; MMG model; virtual captive model tests; propeller modeling; SM
method; MRF method

1. Introduction

Ship maneuverability is an important hydrodynamic performance closely related to
ship navigation safety and has attracted wide attention from both academia and industry
for a long time. The Maneuvering Committee of the International Towing Tank Conference
(ITTC) [1] and the Workshop on Verification and Validation of Ship Maneuvering Simu-
lation Methods (SIMMAN) [2] summarized and compared different prediction methods
of ship maneuverability. It is well known that the free-running model test (FRMT) is
considered as a reliable method to predict ship maneuverability. In addition to the FRMT,
another commonly used method is the system-based method. It is based on computer
simulations by solving the mathematical model of ship maneuvering motion, and the
essential prerequisite for adopting this method is establishing the mathematical model.

The widely used mathematical models include the Abkowitz model [3] and the MMG
(Maneuvering Modeling Group) model [4]. They contain a lot of hydrodynamic derivatives
(Abkowitz model), as well as the hull-propeller-rudder interaction coefficients (MMG
model). These hydrodynamic derivatives and interaction coefficients can be obtained by
empirical formulae, captive model tests, numerical computations, and system identification
techniques. The method of captive model tests is believed to be the most reliable one,
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however, it requires dedicated facilities and measurement devices, and expensive testing
costs. As a result, it is inconvenient to use in the evaluation and optimization of ship
maneuverability at the ship design stage.

With the rapid development of high-performance computing technique, a CFD (Com-
putational Fluid Dynamics) based numerical computation method has been successfully
used to simulate the captive model tests, or in other words, to conduct virtual captive
model tests. A lot of studies were conducted to obtain the hydrodynamic derivatives in the
Abkowitz model by virtual captive model tests, e.g., Cura-Hochbaum [5], Shenoi et al. [6],
Liu et al. [7], Ardeshiri et al. [8], and Seo et al. [9]. For the MMG model, most studies
focused on obtaining the hydrodynamic derivatives by virtual captive model tests, while
estimated the hull-propeller-rudder interaction coefficients by using empirical formulae,
e.g., Kim et al. [10], Dai and Li [11,12], Franceschi et al. [13], Kołodziej and Hoffmann [14],
and Mai et al. [15]; by contrast, only a few studies obtained all the hydrodynamic deriva-
tives and hull-propeller-rudder interaction coefficients by virtual captive model tests. In
Sakamoto et al. [16], virtual captive model tests were conducted for the KVLCC2 tanker
with a body force (BF) propeller model to obtain all the hydrodynamic derivatives and
hull-propeller-rudder interaction coefficients in the MMG model. The 10◦/10◦ and 20◦/20◦

zig-zag maneuvers were predicted and compared with the model test data. Although the
linear hydrodynamic derivatives were predicted with satisfactory accuracy, the accura-
cies of the computed hull-propeller-rudder interaction coefficients were not high enough,
mainly due to the inaccurate estimation of the rudder normal forces. It indicated that mod-
ifying the propeller modeling is necessary to improve the prediction accuracy of rudder
normal forces. Moreover, Sakamoto et al. [16] did not fully consider the effects of free
surface elevation, sinkage, and trim, and only conducted virtual captive model tests with
small drift angles and yaw rates because only the zig-zag maneuvers were considered.

Obviously, propeller modeling is crucial to the prediction accuracy of virtual cap-
tive model tests. The Body Force (BF) method (Liu et al. [7], Franceschi et al. [13],
Sakamoto et al. [16], Farkas et al. [17]), Multiple Reference Frame (MRF) method
(Pauli et al. [18], Song et al. [19], Jin et al. [20], Zhai et al. [21], Wang et al. [22], Guo et al. [23])
and Sliding Mesh (SM) method (Wang et al. [24], Guo and Zou [25,26]) are the most com-
monly used propeller modeling methods. In recent years, some researchers have focused on
the effect of the propeller modeling methods on the direct simulation of free-running model
tests (Jin et al. [27], Yu et al. [28], Deng et al. [29]). However, to the best knowledge of the
authors, so far there is no relevant research on the influence of propeller modeling in virtual
captive model tests on the system-based prediction. To this end, the present work aims to
study the influence of propeller modeling methods on the CFD-based ship maneuvering
predictions with the MMG model. First, the numerical error and uncertainty analysis in
terms of mesh and time-step discretization is carried out for the rudder force test and the
oblique towing test (OTT). Then, considering the effects of free surface elevation, sinkage
and trim, the SM and MRF methods are applied in systematic virtual captive model tests,
including the resistance test, self-propulsion test, rudder force test, OTT, circular motion
test (CMT), oblique towing and steady turning tests with rudder angle. The computed
results of the hydrodynamic forces are compared with the available captive model test
data to explore the influence of propeller modeling methods on the hydrodynamic forces.
Finally, the hydrodynamic derivatives and the hull-propeller-rudder interaction coefficients
obtained by the virtual captive model tests are used to simulate the turning circle and
zig-zag maneuvers, and the predicted maneuvering parameters are compared with the
FRMT data and the system-based results available in the literature.

2. Mathematical Model
2.1. Coordinate Systems

Considering 3-DOF ship maneuvering motion (surge, sway, and yaw) in the horizontal
plane, two right-handed coordinate systems, a space-fixed coordinate system o0-x0y0z0 and
a ship-fixed coordinate system o-xyz, were adopted, as shown in Figure 1. Both the plane
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o0-x0y0 and the plane o-xy were located at the undisturbed free surface. The z0-axis pointed
downward. The origin of the ship-fixed coordinate system was located at the midship,
and the x-axis was pointing to bow, the y-axis to starboard, and the z-axis downward. u,
vm, and r represented the surge velocity, lateral velocity, and yaw rate, respectively. The
translational velocity was defined as U=

√
u2 + v2

m. The heading angle ψ was defined as the
angle between x0-axis and x-axis, and the drift angle β was defined as β =tan−1(−vm/u).
The rudder angle δ was defined as positive when the rudder turns to the starboard.

Figure 1. Coordinate systems.

2.2. Motion Equations

The MMG standard model proposed by Yasukawa and Yoshimura [30] is given as

(m + mx)
.
u−

(
m + my

)
vmr− xGmr2 = X(

m + my
) .
vm + (m + mx)ur + xGm

.
r = Y(

IzG + x2
Gm + Jz

) .
r + xGm

( .
vm + ur

)
= Nm

 (1)

where m is the ship mass, mx and my are the added masses in surge motion and sway
motion; IzG is the moment of inertia around the vertical axis passing through the center
of gravity of the ship, and Jz is the corresponding added moment of inertia. xG is the
longitudinal coordinate of the center of gravity. X, Y, and Nm are the hydrodynamic surge
force, lateral force, and yaw moment, which are decomposed into three parts:

X = XH + XR + XP
Y = YH + YR
Nm = NH + NR

 (2)

where the subscripts H, R, and P denote the hydrodynamic forces and moments on the bare
hull, rudder, and propeller. The detailed expressions of these forces and moments are given
in Yasukawa and Yoshimura [30].

2.3. Hydrodynamic Forces on Bare Hull

In this paper, the forces and moments were non-dimensionalized by (1/2)ρLppdU2

and (1/2)ρL2
ppdU2 respectively, the mass and moment of inertia were non-dimensionalized

by (1/2)ρL2
ppd and (1/2)ρL4

ppd respectively, where ρ is the density of water, Lpp is the ship
length between perpendiculars, and d is the draft.
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The hydrodynamic forces and moment acting on bare hull were expressed as follows
(Yasukawa and Yoshimura [30]):

XH = (1/2)ρLppdU2X′H(v
′
m, r′)

YH = (1/2)ρLppdU2Y′H(v
′
m, r′)

NH = (1/2)ρL2
ppdU2N′H(v

′
m, r′)

 (3)

where v′m and r′ are the non-dimensional lateral velocity and yaw rate; X′H , Y′H , and N′H are
the non-dimensional hydrodynamic forces and moment expressed as polynomial functions:

X′H(v
′
m, r′) = −R′0 + X′vvv′2m + X′vrv′mr′ + X′rrr′2 + X′vvvvv′4m

Y′H(v
′
m, r′) = Y′vv′m + Y′rr′ + Y′vvvv′3m + Y′vvrv′2mr′ + Y′vrrv′mr′2 + Y′rrrr′3

N′H(v
′
m, r′) = N′vv′m + N′rr′ + N′vvvv′3m + N′vvrv′m2r′ + N′vrrv′mr′2 + N′rrrr′3

 (4)

where R′0 is the ship resistance coefficient in straight ahead motion; X′vv, Y′v, N′v, etc. are the
non-dimensional hydrodynamic derivatives.

2.4. Hydrodynamic Forces on Rotating Propeller

The hydrodynamic force on a working propeller was described as follows (Yasukawa
and Yoshimura [30]):

XP = (1− tP)T (5)

where tP is the thrust deduction factor, T is the propeller thrust expressed as

T = ρn2
pD4

PKT (6)

where nP is the propeller revolution; DP is the propeller diameter; KT is the thrust coefficient
in open-water, which can be further expressed as a polynomial function of the propeller
advance coefficient JP:

KT = k2 J2
P + k1 JP + k0 (7)

where the coefficients k0, k1, and k2 can be determined by Least Square Method (LSM)
based on the propeller open-water characteristics, and the propeller advance coefficient JP
is defined as

JP =
u(1− wP)

nPDP
(8)

where wP is the wake fraction at propeller plane in maneuvering motion. In this paper, the
formula in Yasukawa and Yoshimura [30] was adopted:

(1− wP)/(1− wP0) = 1 + [1− exp(−C1|βP|)](C2 − 1) (9)

where wP0 is the wake fraction at propeller plane in straight ahead motion, βP is the
geometrical inflow angle to propeller in maneuvering motion, C1 and C2 are constants
representing the wake characteristics in maneuvering motion. The wake characteristics
at propeller plane are asymmetric about βP for a single screw ship, and C2 takes different
magnitudes at positive and negative βP. βP is expressed as

βP = β− x′Pr′ (10)

where x′P is the non-dimensional longitudinal coordinate of the propeller plane.
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2.5. Hydrodynamic Forces on Rudder

The hydrodynamic forces acting on the rudder can be written as (Yasukawa and
Yoshimura [30]):

XR = −(1− tR)FN sin δ
YR = −(1 + aH)FN cos δ
NR = −(xR + aHxH)FN cos δ

 (11)

where tR is the steering resistance deduction factor, aH is the rudder force increase factor,
xR and xH are the longitudinal coordinates of the rudder position and the acting point
of the additional lateral force due to rudder deflection, respectively. tR, aH , and xH are
collectively referred to as hull-rudder interaction coefficients. FN is the rudder normal force
expressed as

FN = (1/2)ρARU2
R fα sin αR (12)

where AR is the profile area of the movable part of rudder, UR is the resultant inflow
velocity to rudder, fα is the rudder lift gradient coefficient, αR is the effective inflow angle
at the rudder. In this paper, Fujii’s formula (Fujii and Tuda [31]) was used to estimate fα.
UR, fα, and αR are expressed as follows:

UR =
√

u2
R + v2

R (13)

fα =
6.13Λ

Λ + 2.25
(14)

αR = δ− tan−1
(

vR
uR

)
(15)

where Λ is the rudder aspect ratio; uR and vR are the longitudinal and lateral velocity
components of inflow to rudder, expressed as

uR = εu(1− wP)

√
η

{
1 + κ

(√
1 + 8KT

π J2
P
− 1
)}2

+ (1− η)

vR = UγRβR

 (16)

where ε is the ratio of the wake fractions at propeller and rudder positions, η is the
ratio of propeller diameter to rudder height, κ is a constant; γR is the flow straightening
coefficient, βR is the effective inflow angle to rudder in maneuvering motion. Because
of the asymmetrical flows in port side and starboard, γR takes different magnitudes in
positive and negative βR. βR is expressed as

βR = β− l′Rr′ (17)

where l′R is the non-dimensional effective longitudinal coordinate of rudder position.

3. Geometry of the Target Ship

In this study, all the virtual captive model tests were carried out for a fully appended
KVLCC2 ship model, one of the well-known benchmark hull forms. The geometry of the
KVLCC2 ship model is shown in Figure 2. The principal particulars of the KVLCC2 model
are listed in Table 1. There were two different scale ratios used in the present study for
the purpose of comparison with the test data of different institutes from various aspects.
The scale ratio used in the virtual captive model tests was 1:46.4, the same as that used in
the physical captive model tests by the Hyundai Maritime Research Institute (HMRI). The
propeller revolution nP = 9.9 rps and ship speed U = 1.1702 m/s were also consistent with
the model tests of HMRI. To compare with the data of free-running model tests (FRMTs)
conducted by Maritime Research Institute Netherlands (MARIN), the scale ratio of 1:45.7,
the same as that of the FRMTs, was used in the maneuvering predictions.
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Figure 2. Geometry of the fully appended KVLCC2 ship model.

Table 1. Principal particulars of KVLCC2 ship models with different scale ratios.

Parameter HMRI MARIN

Scale ratio λ 1:46.4 1:45.7
Ship length Lpp (m) 6.893 7.000
Breadth B (m) 1.249 1.269
Draft d (m) 0.448 0.455
Displacement volume ∇ (m3) 3.124 3.272
Longitudinal coordinate of center of gravity xG (m) 0.241 0.245
Non− dimensional radius of gyration for yaw kzz/Lpp 0.25 0.25
Propeller diameter DP (m) 0.212 0.216
Rudder height HR (m) 0.340 0.345
Rudder area AR (m2) 0.0522 0.0539
Aspect ratio of rudder Λ 1.827 1.827

4. Numerical Methods

In this study, computations were performed by using the Reynolds-averaged Navier–
Stokes (RANS) solver in STAR-CCM+. The governing equations were closed with the Shear
Stress Transport (SST) k − ω turbulence model. The Finite Volume Method (FVM) was
used to discretize the flow domain. The temporal discretization was based on a first-order
fully implicit scheme, and the spatial discretization was performed with the second-order
upwind scheme for the convection term and the secondary gradient contribution for
the diffusion term. The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
algorithm was employed for pressure-velocity coupling. Moreover, the free surface was
captured with the Volume of Fluid (VOF) method. The Dynamic Fluid Body Interaction
(DFBI) method was used to simulate the ship motion.

4.1. Computational Domain and Boundary Conditions

As depicted in Figure 3, a cuboid computational domain was adopted. The coordi-
nate system was defined with the x-axis pointing to bow, y-axis to starboard, and z-axis
downward. The origin was located at the intersection of the water-line plane and the
center-line plane at the midship. The dimension of the computational domain ranges
−4.0 Lpp < x < 2.5 Lpp, −2.0 Lpp < y < 2.0 Lpp, and −0.2 Lpp < z < 1.0 Lpp. The compu-
tational domain was composed of two parts. One was the background domain which
contained the entire computational domain except for a small cylindrical domain contain-
ing the propeller, while the other was a small cylindrical domain adopted to embed the
propeller and to simulate the propeller rotation.

As for the boundary conditions, the velocity inlet boundary condition was imposed
on the boundaries of the background domain to describe the far-field condition. The
wave damping with a length of 1.2 Lpp was set on the boundaries of the background
domain except for the top and bottom boundaries to reduce the wave reflections from
the boundaries. The interface boundary conditions were imposed on the contact surfaces
between the cylindrical domain and the background domain. The no-slip wall boundary
condition was imposed on the solid surfaces of hull, rudder, and propeller.
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Figure 3. Computational domain and boundary conditions.

4.2. Mesh Generation

The computational domain was discretized by unstructured hexahedral meshes, and
denser meshes around the free surface, bow, stern, rudder, and propeller were adopted
to capture the flow and wave features during ship motion more precisely. To resolve the
near-wall and boundary-layer flows, the all-y+ wall treatment was utilized, and y+ values
were controlled around 23 throughout all simulations by setting an appropriate near-wall
thickness. To eliminate the differences of the meshes in the MRF and SM methods, the
meshes keep the same in all simulations. Figure 4 shows the details of mesh distribution.

Figure 4. Mesh distributions. (a) Side view of the mesh around the hull; (b) Meshes around the stern;
(c) Surface meshes of the propeller; (d) Meshes at the propeller plane.
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4.3. Propeller Modeling Methods

The same division of the computational domains was adopted for the MRF and the
SM propeller modeling methods: a cylindrical domain containing the propeller and a
background domain covering the global domain; thus, the same meshes can be used for
both methods. An interface between the cylindrical domain and the background domain
was required to transmit the information of flow variables across the interface.

The MRF method and the SM method are different in the process of simulating
the propeller rotation. The SM method is a transient method where both the propeller
and its surrounding meshes in the cylindrical domain actually rotate with the propeller
shaft (as shown in Figure 5a). However, the cylindrical domain remains stationary in the
MRF method, where the flow field in the background domain is solved by the governing
equations in the inertial reference frame (IRF), while the effects of rotating propeller are
simulated by solving the governing equations in the rotating reference frame (RRF) in
the cylindrical domain. The details of governing equations in IRF to RRF can be found
in Pauli et al. [18]. Through the corresponding mathematical transformation between the
two reference frames and the data interpolation between the cylindrical domain and the
background domain, the numerical simulations of the flow field and the rotation motion
are realized. The schematic diagram of the MRF method is shown in Figure 5b.

Figure 5. Schematic diagram of SM and MRF methods. (a) SM method; (b) MRF method.

5. Numerical Error and Uncertainty Analysis

The Grid Convergence Index (GCI) method (Celik et al. [32]) based on Richardson
extrapolation (Richardson [33]; Richardson and Gaunt [34]) was used to estimate the
numerical error and uncertainty due to the discretization in CFD computations. A brief
introduction to its application process is given below:

Firstly, three sets of discretization sizes (for mesh and time step) are selected for simulation.
The sizes of the three sets are h1, h2, h3 and h1 < h2 < h3, corresponding to the fine, medium, and
coarse ones. The refinement factor is defined as r f = r21 = h2/h1 = r32 = h3/h2; ϕ1, ϕ2, and ϕ3
represent the solutions of h1, h2, and h3. The convergence ratio R is defined as (Stern et al. [35]):

R =
ε21

ε32
(18)

where ε21 = ϕ2 − ϕ1 denotes the change between medium-fine solutions; ε32 = ϕ3 − ϕ2
denotes the change between coarse-medium solutions.

The possible convergence states are:

(1) Monotonic Convergence (MC): 0 < R < 1.
(2) Oscillatory Convergence (OC): R < 0; |R| < 1.
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(3) Monotonic Divergence (MD): R > 1.
(4) Oscillatory Divergence (OD): R < 0; |R| > 1.

Then, the apparent order P of the method is expressed as (Celik et al. [32])

P =
1

ln
(

r f

) |ln|ε32/ε21|| (19)

Next, the extrapolated value is calculated with

ϕ21
ext =

(
rP

21 ϕ1 − ϕ2

)
/
(

rP
21 − 1

)
(20)

Finally, the following error estimates are calculated and reported, along with the
apparent order P:

For approximate relative error:

e21
a =

∣∣∣∣ ϕ1 − ϕ2

ϕ1

∣∣∣∣ (21)

For extrapolated relative error:

e21
ext =

∣∣∣∣ ϕ21
ext − ϕ1

ϕ21
ext

∣∣∣∣ (22)

For the fine-grid convergence index:

GCI21
fine =

1.25e21
a

rP
21 − 1

(23)

A convergence study of mesh and time step discretizations was carried out based
on the above approach. Taking a rudder force test (β = 0◦, r′= 0, δ = 25◦) and an oblique
towing test (β = 20◦, r′ = 0, δ = 0◦) as examples, the impact of mesh and time-step dis-
cretizations on the prediction of ship hydrodynamic performance was analyzed. Three sets
of mesh were generated to study the convergence of mesh discretization based on a uni-
form refinement factor of

√
2. The cell numbers in the cylindrical domain were 2.02 × 105,

4.07 × 105, and 8.57 × 105 for the coarse, medium, and fine mesh sizes, respectively. The
corresponding cell numbers in the background domain were 0.68 × 106, 1.33 × 106, and
2.72 × 106. Three sets of time step were used to study the convergence of time step dis-
cretization based on a uniform refinement factor of 2. The time steps of MRF method
were 5.05 × 10−2 s, 2.53 × 10−2 s, and 1.26 × 10−2 s; the time steps of SM method were
5.61 × 10−4 s, 2.81 × 10−4 s, and 1.40 × 10−4 s. The convergence study of mesh discretiza-
tion was conducted with the medium time step, while the convergence study of time step
discretization was conducted with the medium mesh size. The discretization errors and
uncertainties estimated from the convergence studies are given in Tables 2–5, where “RFT”
denotes the rudder force test, “OTT” denotes the oblique towing test.

Tables 2 and 3 present the calculated discretization errors and uncertainties by MRF
method. All the coefficients have small e21

a and e21
ext in spatial convergence, while X′ in

oblique towing tests is more sensitive to the mesh resolutions as its e21
a is up to 25.18%. The

GCI21
fine in spatial convergence is less than 12%. All the coefficients have small e21

a and e21
ext

in temporal convergence, while F′N in oblique towing tests is more sensitive to the time step
as its e21

ext is up to 51.75%. The GCI21
fine in temporal convergence is less than 10%, except for

F′N in oblique towing tests (about 267%) with an oscillatory convergence.
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Table 2. The discretization error and uncertainty in spatial convergence study (MRF method).

ϕ3 × 102 ϕ2 × 102 ϕ1 × 102 R P ϕ21
ext × 102 e21

a × 102 e21
ext × 102 GCI21

fine × 102

X′ −0.92 −0.89 −0.88 0.57 1.61 −0.85 1.78 2.43 2.96
Y′ 2.20 2.10 2.10 0.08 7.11 2.10 0.38 0.04 0.04

RFT N′m −1.08 −1.03 −1.03 0.10 6.68 −1.03 0.40 0.04 0.06
F′N 1.50 1.46 1.46 −0.12 6.22 1.46 0.36 0.05 0.06

T′ 1.76 1.76 1.76 −0.60 1.50 1.75 0.22 0.33 0.41

X′ 0.36 0.34 0.45 −4.55 4.37 0.48 25.18 6.62 8.86
Y′ 16.35 15.67 15.72 −0.07 7.80 15.72 0.29 0.02 0.03

OTT N′m 4.02 3.85 3.72 0.74 0.87 3.37 3.35 10.48 11.86
F′N 1.04 1.10 1.14 0.60 1.49 1.20 3.47 4.89 6.43

T′ 1.67 1.60 1.56 0.56 1.70 1.51 2.46 3.18 3.85

Table 3. The discretization error and uncertainty in temporal convergence study (MRF method).

ϕ3 × 102 ϕ2 × 102 ϕ1 × 102 R P ϕ21
ext × 102 e21

a × 102 e21
ext × 102 GCI21

fine × 102

X′ −0.87 −0.89 −0.88 −0.33 1.58 −0.88 0.70 0.35 1.19
Y′ 2.11 2.10 2.11 −0.60 0.74 2.12 0.22 0.33 0.94

RFT N′m −1.04 −1.03 −1.04 −0.15 2.70 −1.04 0.03 0.01 0.02
F′N 1.45 1.46 1.46 −0.05 4.41 1.46 0.01 0.00 0.00

T′ 1.76 1.76 1.77 0.60 0.74 1.77 0.05 0.08 0.22

X′ 0.35 0.34 0.33 0.57 0.81 0.32 2.49 3.41 9.58
Y′ 15.39 15.67 15.69 0.05 4.46 15.69 0.08 0.00 0.03

OTT N′m 3.84 3.85 3.84 −0.68 0.56 3.83 0.13 0.27 0.74
F′N 1.12 1.10 1.12 −0.98 0.02 2.32 1.72 51.75 269.17

T′ 1.61 1.60 1.60 0.13 2.91 1.60 0.10 0.01 0.07

Table 4. The discretization error and uncertainty in spatial convergence study (SM method).

ϕ3 × 102 ϕ2 × 102 ϕ1 × 102 R P ϕ21
ext × 102 e21

a × 102 e21
ext × 102 GCI21

fine × 102

X′ −0.81 −0.78 −0.76 0.42 2.47 −0.75 1.88 1.41 1.73
Y′ 2.51 2.46 2.47 −0.14 5.60 2.47 0.27 0.05 0.06

RFT N′m −1.23 −1.24 −1.24 0.54 1.79 −1.25 0.31 0.36 0.45
F′N 1.72 1.74 1.76 0.71 0.98 1.79 0.86 2.08 2.65

T′ 1.90 1.90 1.89 −1.33 0.83 1.87 0.43 1.31 1.62

X′ 0.29 0.29 0.30 0.77 0.74 0.31 1.23 4.05 5.27
Y′ 16.54 15.69 15.55 0.16 5.21 15.53 0.89 0.18 0.22

OTT N′m 4.19 3.98 3.88 0.51 1.92 3.76 2.74 2.99 3.63
F′N 0.79 0.82 0.84 0.87 0.42 1.01 3.05 16.37 24.47

T′ 1.74 1.71 1.69 0.60 1.47 1.66 1.09 1.67 2.05

Table 5. The discretization error and uncertainty in temporal convergence study (SM method).

ϕ3 × 102 ϕ2 × 102 ϕ1 × 102 R P ϕ21
ext × 102 e21

a × 102 e21
ext × 102 GCI21

fine × 102

X′ −0.68 −0.78 −0.78 0.00 9.29 −0.78 0.02 0.00 0.00
Y′ 2.35 2.46 2.48 0.19 2.43 2.49 0.81 0.18 0.76

RFT N′m −1.18 −1.24 −1.26 0.25 1.98 −1.26 1.30 0.44 1.65
F′N 1.59 1.74 1.77 0.17 2.57 1.77 1.41 0.29 1.23

T′ 1.90 1.90 1.90 0.11 3.18 1.90 0.04 0.01 0.03

X′ 0.23 0.29 0.34 0.76 0.40 0.48 13.31 29.39 111.80
Y′ 15.39 15.69 15.62 −0.24 2.06 15.60 0.47 0.15 0.57

OTT N′m 3.94 3.98 4.00 0.42 1.27 4.01 0.42 0.30 0.96
F′N 0.80 0.82 0.82 0.28 1.83 0.82 0.56 0.22 0.79

T′ 1.72 1.71 1.71 −0.04 4.49 1.71 0.04 0.00 0.01
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Tables 4 and 5 present the calculated discretization errors and uncertainties by SM
method. All the coefficients have small e21

a and e21
ext in spatial convergence, while F′N in

oblique towing tests is more sensitive to the mesh resolutions because its e21
ext is up to 16.37%.

The GCI21
fine in spatial convergence is less than 6% except for F′N in oblique towing tests

(about 24%). All the coefficients have small e21
a and e21

ext in temporal convergence, while X′

in oblique towing tests is more sensitive to the time step because its e21
ext is up to 29.39%.

The GCI21
fine in temporal convergence is less than 2% except for X′ in oblique towing tests

(about 112%).
The abnormal e21

a , e21
ext, and GCI21

fine in these tables are mainly due to the oscillatory
convergence of numerical results, where the corresponding R values are beyond the range
of (0, 1), implying that the GCI method is not applicable for such non-monotonic conver-
gence cases. In general, the numerical convergence of the two propeller modeling methods
is acceptable. Making a trade-off between the computational efficiency and computa-
tional accuracy, the medium mesh and the medium time step are used in the subsequent
computations.

6. Results and Discussion

Before carrying out the maneuvering predictions, some necessary parameters needed
to be determined. In Table 6, m′x, m′y, and J′z were taken from Yasukawa and Yoshimura [30];
the value of fα was derived from Equation (14); x′R and x′P are the non-dimensional longitu-
dinal coordinates of rudder and propeller; k0, k1, and k2 were derived from the propeller
open-water tests of HMRI [36].

Table 6. Related parameters in the MMG model.

Parameter Value Parameter Value Parameter Value

m′x 0.022 fα 2.747 k0 0.314
m′y 0.223 x′R −0.500 k1 −0.270

J′z 0.011 x′P −0.483 k2 −0.176

6.1. Resistance and Self-Propulsion Tests

Table 7 presents (1 − tP) and (1 − wP0) obtained from the simulations of resistance
and self-propulsion tests by using the MRF and SM methods, and the numerical results
were compared with the available model test data and other CFD results in the literature.
Parameters CFD-MRF and CFD-SM denote the present results obtained by the MRF and
SM methods, respectively. Parameter EFD-HMRI represents the model test data of HMRI
(SIMMAN2022 [36]; Shin et al. [37]; Sung and Park [38]); EFD-NMRI represents the model
test data of National Maritime Research Institute (NMRI) (Yasukawa and Yoshimura [30];
SIMMAN2008 [39]); CFD-BF-NMRI denotes the CFD results of NMRI by using BF method
(Sakamoto et al. [16]). It should be noted that the CFD solver, mesh distribution, and
numerical discretization adopted in this paper and those in Sakamoto et al. [16] were not
exactly the same. In addition, a horn rudder was considered in the present study, while a
rudder without horn was used in Sakamoto et al. [16].

Table 7. Parameters of resistance and self-propulsion tests obtained from experiments and simulations.

EFD-HMRI EFD-NMRI CFD-BF-NMRI CFD-MRF CFD-SM

1− tP 0.87 0.78 0.82 0.93 0.85
1− wP0 0.63 0.60 0.51 0.72 0.64

As shown in Table 7, the calculated (1− tP) and (1− wP0) by the SM method presented
higher accuracy comparing with the test data than those by the MRF and BF methods, as
the relative error between the SM results and the test data is within 3%. The reason for
the larger relative error of MRF method is that this method underestimates the propeller
thrust, and the predicted ship propulsion point might be larger than the test data of
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HMRI. The underestimation of propeller thrust by the MRF method will be analyzed in the
next subsection.

6.2. Rudder Force Tests

For the rudder force tests (β = 0◦, r′ = 0, δ 6= 0◦), Equation (2) can be rewritten in the
non-dimensional form:

X′ = −R′0 + (1− tP)T′ − (1− tR)F′N sin δ
Y′ = −(1 + aH)F′N cos δ

N′m = −(x′R + aHx′H)F′N cos δ

 (24)

Equation (24) shows that (1 − tR), (1 + aH), and (x′R + aHx′H) are defined as the slopes
of X′, Y′, N′m versus −F′N sin δ, −F′N cos δ, and −F′N cos δ, respectively.

Figure 6 illustrates the CFD results of rudder force tests in comparison with the model
test data. The value of X′ calculated by the SM method was in better agreement with the
test data than that by the MRF method. The result by the MRF method was generally
larger than that by the SM method due to the fact that X′ contains T′ component, and the
underestimated T′ by the MRF method gives rise to a larger X′. There was a satisfactory
consistency between the CFD results by the SM/MRF methods and the test data in terms
of Y′ except for the case at δ = 25◦. The accuracy of predicted N′m and F′N by the SM
method was generally higher than those by the MRF and BF methods except for the case
at δ = 25◦. The more remarkable deviation at δ = 25◦ may be caused by the severe flow
separation at a large rudder angle. The reason for a smaller T′ obtained by the SM and
MRF methods than that of NMRI is that the scale ratio and self-propulsion point in the
present study are different from those of NMRI, and the similar observations are presented
in the following paragraphs.

Figure 7 shows the plots of linear regression analysis to determine the hull-rudder
interaction coefficients. These coefficients are summarized in Table 8. The calculated
(1 − tR) by the SM method presented the best consistency with the model test data among
the three propeller modeling methods, and the result was about 19% larger than the test
data. The calculated (1 + aH) by the SM and MRF methods were 12% larger than the test
data. The calculated (x′R + aHx′H) by the MRF and SM methods were in better agreement
with the test data than that by the BF method. Although the accuracy of F′N by the SM
method was generally higher than that by the MRF method as shown in Figure 6, the hull-
rudder interaction coefficients obtained by the two methods indicated that the difference in
the interaction coefficients was minor.

Table 8. The hull-rudder interaction coefficients obtained from the rudder force tests.

EFD-HMRI EFD-NMRI CFD-BF-NMRI CFD-MRF CFD-SM

1− tR 0.616 0.613 0.934 0.779 0.734
1 + aH 1.211 1.312 1.178 1.404 1.443
x′R+aH x′H −0.718 −0.645 −0.558 −0.709 −0.722

6.3. Oblique Towing Tests

The ship hydrodynamic forces measured in the oblique towing tests (OTTs) and
circular motion tests (CMTs) by NMRI/HMRI contained inertia components, while in CFD
simulations these forces were not considered. For the sake of direct comparisons between
the CFD results and the test data, the inertia components (Yasukawa and Yoshimura [30])
were added to the computed hydrodynamic forces to obtain the surge force X′mes, lateral
force Y′mes, and yaw moment N′mes containing the inertia components:

X′mes = X′H
∗ + X′R + X′P

Y′mes = Y′H
∗ + Y′R

N′mes = N′H
∗ + N′R

 (25)
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where X′H
∗, Y′H

∗, and N′H
∗ are the hydrodynamic forces and moment on the hull including

the inertia components:

X′H
∗ = X′H +

(
m′ + m′y

)
v′mr′ + x′Gm′r′2

Y′H
∗ = Y′H − (m′ + m′x)r′

N′H
∗ = N′H − x′Gm′r′

 (26)

Because the rudder angle is zero in OTTs and CMTs, Equation (25) can be rewritten as

X′H
∗ = X′mes − (1− tP)T′

Y′H
∗ = Y′mes + (1 + aH)F′N

N′H
∗ = N′mes + (x′R + aHx′H)F′N

 (27)

Substituting Equation (26) into Equation (4) yields:

X′H
∗(v′m, r′) = −R′0 + X′vvv′2m +

(
X′vr + m′ + m′y

)
v′mr′ +

(
X′rr + x′Gm′

)
r′2 + X′vvvvv′m4

Y′H
∗(v′m, r′) = Y′vv′m + (Y′r −m′ −m′x)r′ + Y′vvvv′3m + Y′vvrv′2mr′ + Y′vrrv′mr′2 + Y′rrrr′3

N′H
∗(v′m, r′) = N′vv′m +

(
N′r − x′Gm′

)
r′ + N′vvvv′3m + N′vvrv′2mr′ + N′vrrv′mr′2 + N′rrrr′3

, (28)

The simulation condition of OTTs is β 6= 0◦, r′ = 0, δ = 0◦. Figure 8 shows the CFD
results and the model test data of OTTs. The values of X′mes and T′ calculated by the
SM method were in good agreement with the test data of HMRI at β < 0◦, although
some discrepancies were observed at β > 0◦. The SM method can capture the asymmetric
characteristics of longitudinal forces (including X′mes and T′) better than the MRF and BF
methods, but still underestimated the asymmetric characteristics compared with the test
data. A satisfactory agreement between the CFD results and the test data in terms of Y′mes
and N′mes was observed. The CFD results of Y′mes were in better agreement with the test data
of HMRI, while the results of N′mes were in better agreement with the test data of NMRI.
The F′N calculated by the SM method presented a good agreement with the test data, and
some discrepancies were found in the calculated F′N by the MRF method.

Figure 9 shows X′H
∗, Y′H

∗, and N′H
∗ obtained from OTTs and the corresponding fitting

curves by LSM regression. Although X′mes and T′ in Figure 8 are asymmetric with respect to
β, X′H

∗ in Figure 9 is almost an even function of β (or v′m). The value of X′H
∗ calculated by

the MRF method showed the best agreement with the test data among the three propeller
modeling methods. The overall trend of calculated X′H

∗ by the SM method was like the test
data, but the trend of X′H

∗ by the BF method was contrary to the test data. The calculated
Y′H
∗ and N′H

∗ by the SM and MRF methods showed good agreement with the test data.
The fitting curve of the calculated N′H

∗ by the BF method deviated from the test data
at large drift angles, because the OTTs with large drift angles were not considered in
Sakamoto et al. [16].

The hydrodynamic derivatives obtained from the OTTs are listed in Table 9. There
was little difference between the calculated hydrodynamic derivatives obtained by the
SM method and the MRF method, and their results were all in good agreement with
the test data except for the hydrodynamic derivatives related to the longitudinal motion
and Y′v. The deviation of the longitudinal hydrodynamic derivatives was caused by the
underestimated X′H

∗ as shown in Figure 9. The values of Y′v calculated by the SM and MRF
methods were about 17% larger than the test data of HMRI, and Y′vvv calculated by the two
methods were about 75% smaller than the test data of HMRI, yet the fitting curves of the
calculated Y′H

∗ by the two methods (Figure 9) were still in good agreement with the test
data of HMRI.
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Figure 6. Hydrodynamic quantities in rudder force tests obtained from experiments and simulations.



J. Mar. Sci. Eng. 2022, 10, 1131 15 of 31

Figure 7. Results of linear regression analysis for hull-rudder interaction coefficients.

Table 9. Resistance coefficient and hydrodynamic derivatives obtained from OTTs.

EFD-HMRI EFD-NMRI CFD-BF-NMRI CFD-MRF CFD-SM

R′0 - 0.022 0.020 0.019 0.017
X′vv - −0.040 −0.0004 0.027 0.024
X′vvvv - 0.771 −0.471 0.364 0.181
Y′v −0.300 −0.315 −0.235 −0.250 −0.247
Y′vvv −0.819 −1.607 −2.930 −1.412 −1.468
N′v −0.136 −0.137 −0.143 −0.152 −0.155
N′vvv 0.092 −0.030 0.582 0.137 0.172

6.4. Circular Motion Tests (β = 0◦)

The simulation condition of circular motion tests (CMTs) (β = 0◦) is r′ 6= 0, δ = 0◦.
Figure 10 shows the CFD results and the test data of CMTs. The overall trends of X′mes and
T′ calculated by the SM and MRF methods were consistent with those of the test data, and
the values of X′mes and T′ were smaller than the test data. The calculated Y′mes and N′mes
were in good agreement with the test data. The value of F′N obtained by the SM method
was in good agreement with the test data, while some significant deviation occurs in the
calculated F′N by the MRF method. All the three propeller modeling methods can capture
the asymmetric characteristic of T′ with respect to r′.
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Figure 8. Hydrodynamic quantities in OTTs obtained from experiments and simulations.



J. Mar. Sci. Eng. 2022, 10, 1131 17 of 31

Figure 9. Hydrodynamic for es on the hull obtained from OTTs and corresponding fitting curves.

Figure 11 shows X′H
∗, Y′H

∗, and N′H
∗ obtained from CMTs (β = 0◦) and the corre-

sponding fitting curves by LSM regression. The hydrodynamic derivatives obtained from
CMTs are listed in Table 10. Figure 11 shows that the calculated X′H

∗ by the SM and MRF
methods showed better agreement with the test data than that by the BF method, and were
generally smaller than the test data. The calculated Y′H

∗ and N′H
∗ by the three propeller

modeling methods all agreed well with the test data. Table 10 shows that the hydrodynamic
derivatives obtained by the SM and MRF methods agreed well with the test data.

Table 10. Hydrodynamic derivatives obtained from CMTs (β = 0◦).

EFD-HMRI EFD-NMRI CFD-BF-NMRI CFD-MRF CFD-SM

X′rr+x′Gm′ - 0.021 0.006 0.017 0.014
Y′r−m′−m′x −0.244 −0.233 −0.224 −0.252 −0.255
Y′rrr −0.016 0.008 −0.005 0.017 0.022
N′r−x′Gm′ - −0.059 −0.059 −0.054 −0.053
N′rrr - −0.013 −0.002 −0.018 −0.021
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Figure 10. Hydrodynamic quantities in CMTs (β = 0◦) obtained from experiments and simulations.
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Figure 11. Hydrodynamic forces on the hull obtained from CMTs (β = 0◦) and corresponding fitting curves.

6.5. Circular Motion Tests (β 6= 0◦)

Figure 12 shows the CFD results of CMTs (β 6= 0◦) compared with the model test data.
The calculated X′mes and N′mes were in good agreement with the test data. Generally, Y′mes
presents a satisfactory agreement with the test data, although there were larger discrepan-
cies at the drift angles β > 5◦ and larger yaw rate (r′ = 0.6). The value of F′N calculated by
the SM method was in better agreement with the test data than that by the MRF method,
especially when the magnitude of yaw rate was larger (r′ = ±0.6).

Figure 13 shows X′H
∗, Y′H

∗, and Y′H
∗ obtained from CMTs (β 6= 0◦) and the correspond-

ing fitting curves by LSM regression. The wake fraction wP was determined by the thrust
identity method. Figure 14 shows wP and the corresponding fitting curves. The calculated
wP presented obvious asymmetric tendencies versus βP, agreeing well with the test data
at βP < 0◦. The calculated wP by the SM method showed better agreement with the test
data than that by the MRF method. Even so, remarkable deviations from the test data still
existed at βP > 0◦ due to the complicated flow field and severe flow separations around the
propeller under maneuvering condition.
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Figure 12. Hydrodynamic quantities in CMTs (β 6= 0◦) obtained from experiments and simulations.
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Figure 13. Hydrodynamic forces on the hull obtained from CMTs (β 6= 0◦) and corresponding fitting curves.

Figure 14. Wake fraction and corresponding fitting curves.

Table 11 presents the hydrodynamic derivatives obtained from CMTs (β 6= 0◦), together
with C1 and C2. The calculated Y′vvr and N′vvr by the SM method were more consistent with
the test data than those by the MRF and BF methods. The calculated Y′vrr and N′vrr by the
SM and MRF methods were more consistent with the test data than those by the BF method.
The deviation of C1 and C2 resulted from the underestimated wP at βP > 0◦, as shown in
Figure 14.
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Table 11. Cross hydrodynamic derivatives obtained from CMTs (β 6= 0◦), C1, and C2.

EFD-HMRI EFD-NMRI CFD-BF-NMRI CFD-MRF CFD-SM

X′vr+m′+m′y - 0.518 0.527 0.495 0.510
Y′vvr 0.452 0.379 0.797 0.283 0.352
Y′vrr −0.050 −0.391 0.195 −0.346 −0.409
N′vvr −0.325 −0.294 −0.415 −0.249 −0.281
N′vrr 0.158 0.055 −0.102 0.060 0.076
C1 - 2.0 - 0.0029 −2.3
C2 (βP < 0◦) - 1.10 - 32.51 0.97
C2 (βP > 0◦) - 1.60 - 51.79 0.92

6.6. Oblique Towing and Steady Turning Tests with Rudder Angle

The simulation conditions of oblique towing and steady turning tests with rudder
angle were (β 6= 0◦, r′ = 0, δ 6= 0◦) and (β = 0◦, r′ 6= 0, δ 6= 0◦), respectively. In addition to
Equation (16), u′R and v′R can also be expressed as (Yasukawa and Yoshimura [30]):

u′R =

√
dF′N
dδ

∣∣∣∣
δ=δFN0

Lppd
AR

1
fα

(
1 + δ2

FN0
) , v′R = u′RδFN0 (29)

where δFN0 is the rudder angle at which the rudder normal force becomes zero.
Assume that l′R is consistent with the test data of NMRI. By substituting v′R obtained from

Equation (29) into Equation (16), γR in Equation (16) can be determined by LSM regression.
Figure 15 shows the CFD results of F′N from oblique towing and steady turning tests

with rudder angle in comparison with the test data. The calculated F′N by the SM method
was more consistent with the test data than that by the MRF method. Figure 16 shows δFN0
and dF′N/dδ obtained by processing rudder normal forces in Figure 15. The calculated δFN0
by the SM method was in better agreement with the test data than those by the MRF and
BF methods. The calculated dF′N/dδ by the SM and MRF methods was slightly smaller
than the test data, and the results obtained by the SM method agreed better with the test
data, whereas dF′N/dδ was more overestimated by the BF method.

Figure 17 shows the calculated u′R, v′R and the linear regression of v′R. It can be seen
that u′R obtained by the BF method was much larger than the test data, while the results
obtained by the SM and MRF methods were slightly smaller than the test data. The values
of v′R obtained by the SM and MRF methods show obvious asymmetric characteristic
against βR. A satisfactory consistency between the calculated v′R by the SM/MRF methods
and the test data at βR > 0◦ was observed, while significant deviation from the test data
occurred at βR > 0◦ in the results obtained by the BF method. The calculated v′R by the SM
and MRF methods were slightly smaller than the test data at βR < 0◦.

Table 12 presents the CFD results and the test data of γR and l′R. The calculated γR by
the MRF method showed higher accuracy comparing with the test data at βR < 0◦, while
the result by the SM method was in better agreement with the test data at βR > 0◦. The
discrepancy of the calculated γR by the BF method from the test data was more remarkable.

Table 12. Rudder parameters determined by rudder force tests in oblique towing and steady turning
motions.

EFD-HMRI EFD-NMRI CFD-BF-NMRI CFD-MRF CFD-SM

γR (βR < 0◦) 0.404 0.395 0.277 0.356 0.502
γR (βR > 0◦) 0.688 0.640 0.277 0.723 0.672
l′R - −0.71 −1.08 −0.71 −0.71

In the present study, ε and κ in Equation (16) were estimated following the procedure in
Yasukawa and Yoshimura [30]. However, ε and κ do not converge to the generally accepted
values, which was also found in the study by Sakamoto et al. [16]. The values ε = 1.09
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and κ = 0.50 in Yasukawa and Yoshimura [30] were used in the subsequent maneuvering
simulations.

Figure 15. Rudder normal force obtained from oblique towing and steady turning tests with rudder
angle. (a) Rudder normal forces in oblique towing test with rudder angle; (b) Rudder normal forces
in steady turning test with rudder angle.

6.7. Maneuvering Simulations

In order to compare the present results of maneuvering simulations with the free-
running model test (FRMT) data of MARIN (denoted as FRMT-MARIN) (SIMMAN2008 [39])
and the system-based results utilizing the hydrodynamic derivatives and hull-propeller-
rudder interaction coefficients obtained from the physical captive model tests (denoted
as EXP-Yasukawa) (Yasukawa and Yoshimura [30]), the scale ratio 1:45.7 was selected for
maneuvering simulations. The initial forward speed of the ship was U0 = 1.179 m/s, and
the rudder steering rate was 15.8 ◦/s. The propeller revolution was adjusted to allow the
ship to move at the initial speed U0. Maneuvering motions were simulated by solving
Equation (1) with a fourth-order Runge-Kutta scheme. The predicted trajectories of turning
circle maneuvers under δ = ±35◦ are presented in Figure 18, and the results of ±10◦/10◦

and ±20◦/20◦ zig-zag maneuvers are presented in Figure 19. Table 13 summarizes the
maneuvering parameters, i.e., the non-dimensional advance A′D, the non-dimensional
tactical diameter D′T , and the first and second overshoot angles (OSAs), together with the
relative error E, defined as (Pred.–FRMT)%FRMT, where “Pred.” denotes the maneuvering
parameters predicted by system-based methods.
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Figure 16. δFN0 and dF’N/dδ obtained from oblique towing and steady turning tests with rudder
angle. (a) Rudder parameters in oblique towing test with rudder angle; (b) Rudder parameters in
steady turning test with rudder angle.

Figure 17. Non-dimensional longitudinal and lateral inflow velocity components to rudder.
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Figure 18. Trajectories of ±35◦ turning circle maneuvers.

Figure 19. Time histories of heading angle and rudder angle of zig-zag maneuvers. (a) +10◦/10◦;
(b) −10◦/10◦; (c) +20◦/20◦; (d) −20◦/20◦.
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Table 13. Summary of maneuvering parameters.

Maneuvers Parameters FMRT-MARIN EXP-Yasukawa CFD-MRF CFD-SM

Turning circle
maneuvers

+35◦

A′D 3.25 3.31 2.98 3.03
E (%) - 1.85 −8.31 −6.77

D′T 3.34 3.36 3.15 3.18
E (%) - 0.60 −5.69 −4.79

−35◦

A′D 3.11 3.26 2.80 2.99
E (%) - 4.82 −9.97 −3.86

D′T 3.08 3.26 2.82 3.14
E (%) - 5.84 −8.44 1.95

Zig-zag
maneuvers

+10◦/10◦
1st OSA (◦) 8.20 5.20 7.20 8.90

E (%) - −36.59 −12.20 8.54
2nd OSA (◦) 21.90 15.80 34.00 28.70

E (%) - −27.85 55.25 31.05

−10◦/10◦
1st OSA (◦) 9.50 7.60 14.60 12.70

E (%) - −20.00 53.68 33.68
2nd OSA (◦) 15.00 10.20 16.10 19.70

E (%) - −32.00 7.33 31.33

+20◦/20◦
1st OSA (◦) 13.70 10.90 13.60 15.20

E (%) - −20.44 −0.73 10.95
2nd OSA (◦) 14.80 16.80 21.70 18.50

E (%) - 13.51 46.62 25.00

−20◦/20◦
1st OSA (◦) 15.10 14.50 21.50 19.10

E (%) - −3.97 42.38 26.49
2nd OSA (◦) 13.50 12.60 13.90 14.60

E (%) - −6.67 2.96 8.15

As Figure 18 and Table 13 show, the accuracy of the predicted turning circle maneuvers
by the SM method was higher than that by the MRF method. For the +35◦ turning circle
maneuver, the results of the SM method showed slightly higher accuracy than those of
the MRF method. The results of both the SM and MRF methods were in good agreement
with the FRMT data, with the maximum relative error of 8.31%. For the −35◦ turning circle
maneuver, the accuracy of the SM method (maximum relative error 3.86%) was clearly
higher than that of the MRF method (maximum relative error 9.97%), and even slightly
higher than the results of EXP-Yasukawa (maximum relative error 5.84%). Moreover,
the turning ability of the KVLCC2 ship model was generally overestimated by the CFD
methods, while mostly underestimated by EXP-Yasukawa.

As shown in Figure 19 and Table 13, the accuracy of the predicted zig-zag maneuvers
by the SM method (average relative error 21.89%) was generally higher than that by the
MRF method (average relative error 27.64%) except for the −10◦/10◦ zig-zag maneuver,
but slightly lower than that of EXP-Yasukawa (average relative error 20.13%). The yaw
checking ability of the KVLCC2 ship model evaluated by the overshoot angles was generally
underestimated by the CFD methods, while mostly overestimated by EXP-Yasukawa.

7. Conclusions

The RANS-based CFD method was applied to simulate the captive model tests of a
fully appended KVLCC2 ship model by using the SM method and the MRF method for the
propeller modelling. The hydrodynamic forces on the hull-propeller-rudder system, the
hydrodynamic derivatives and hull-propeller-rudder interaction coefficients in the MMG
model were computed, and the numerical results were validated against the available test
data and the CFD results of BF method in the literature. The standard turning circle and
zig-zag maneuvers were predicted by using the MMG model with the computed hydro-
dynamic derivatives and hull-propeller-rudder interaction coefficients, and the predicted
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maneuvering parameters were validated by comparing them with the FRMT data. Some
conclusions can be drawn from this study:

(1) In general, the results of ship hydrodynamic forces and maneuvering predictions
obtained by the SM method were more accurate than those by the MRF and BF
methods compared with the test data.

(2) The lateral forces Y′ and yaw moments N′m calculated by the SM, MRF, and BF
methods were in good agreement with the test data. The rudder normal force F′N
calculated by the SM method was more accurate than those by the MRF and BF
methods compared with the test data. The propeller thrust T′ calculated by the SM
method was more accurate than that by the MRF method compared with the test data,
while the MRF method underestimated the propeller thrust.

(3) It is more appropriate to adopt the MRF or the BF methods in simulations of OTTs
and CMTs to save computing time with sufficient prediction accuracy of Y′ and N′m,
while it may be necessary to adopt the SM method in simulations of rudder force tests
to obtain F′N with higher accuracy.

(4) The calculated wake fraction wP by the MRF and SM methods deviated from the test
data at βP > 0◦. To obtain wP with higher accuracy, more accurate turbulence flow
simulation for the propeller is needed.

(5) In general, the prediction accuracy of the standard maneuvers by the SM method was
higher than that by the MRF method, but slightly lower than that of EXP-Yasukawa.

(6) The turning ability of the KVLCC2 ship model was generally overestimated by the
CFD methods but underestimated by EXP-Yasukawa. The yaw checking ability was
underestimated by the CFD methods but overestimated by EXP-Yasukawa.

In future work, the prediction accuracy of the wake fraction wP can be improved
by higher order turbulence modeling such as Detached Eddy Simulation or Large Eddy
Simulation. The present work focused on 3-DOF maneuvering motion and neglected the
roll effect; a 4-DOF MMG model will be adopted in a future study to consider the roll
effect. Moreover, the added mass and added moment of inertia were estimated in the
present work by using empirical formulae from the literature. The virtual Planar Motion
Mechanism (PMM) test can be an option to determine the added mass and added moment
of inertia accurately.

Author Contributions: Conceptualization, C.C. and Z.Z.; software, C.C. and H.G.; validation, C.C.;
investigation, C.C.; resources, L.Z. and Z.Z.; writing—original draft preparation, C.C.; writing—review
and editing, L.Z., Z.Z. and H.G.; supervision, L.Z. and Z.Z.; project administration, L.Z. and Z.Z.; funding
acquisition, L.Z. and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work is financially supported by the National Natural Science Foundation of China
(Grant No. 51979164).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank SIMMAN Workshops for providing the model test data
of KVLCC2.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2022, 10, 1131 28 of 31

Abbreviations and Nomenclature
Abbreviations
BF Body Force
CFD Computational Fluid Dynamics
CMT Circular Motion Test
DFBI Dynamic Fluid Body Interaction
FRMT Free-running Model Test
FVM Finite Volume Method
GCI Grid Convergence Index
HMRI Hyundai Maritime Research Institute
IRF Inertial Reference Frame
ITTC International Towing Tank Conference
LSM Least Square Method
MARIN Maritime Research Institute Netherlands
MMG Maneuvering Modeling Group
MRF Multiple Reference Frames
NMRI National Maritime Research Institute
OSA Overshoot Angle
OTT Oblique Towing Test
PMM Planar Motion Mechanism
RANS Reynolds-averaged Navier-Stokes
RFT Rudder Force Test
RRF Rotating Reference Frame

SIMMAN
Workshop on Verification and Validation of Ship
Maneuvering Simulation Methods

SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SM Sliding Mesh
SST Shear Stress Transport
VOF Volume of Fluid
Nomenclature
A′D Non-dimensional advance
aH Rudder force increase factor
AR Profile area of movable part of rudder
B Ship breadth

C1, C2
Constants representing the wake characteristics in
maneuvering motion

d Ship draft
DP Propeller diameter
D′T Non-dimensional tactical diameter
E Relative error
e21

a Approximate relative error
e21

ext Extrapolated relative error
fα Rudder lift gradient coefficient
FN Rudder normal force
GCI21

fine Fine-grid convergence index

h1, h2, h3
Discretization sizes of fine, medium and coarse
meshes/time steps

HR Rudder height

IzG
Moment of inertia about the vertical axis passing through the
left of gravity of the ship

JP Propeller advance coefficient
Jz Added moment of inertia
k0, k1, k2 Coefficients representing KT
KT Thrust coefficient in open-water
Lpp Ship length between perpendiculars

l′R
Non-dimensional effective longitudinal coordinate of
rudder position

m Ship mass
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mx, my Added masses in surge and sway motions
nP Propeller revolution
P Apparent order
R Convergence ratio
r f , r21, r32 Refinement factors
R′0 Ship resistance coefficient in straight ahead motion
T Propeller thrust
tP Thrust deduction factor
tR Steering resistance deduction factor
U Translational velocity
u, vm, r Surge velocity, lateral velocity and yaw rate
UR Resultant inflow velocity to rudder

uR, vR
Longitudinal and lateral velocity components of inflow
to rudder

wP Wake fraction at propeller plane in maneuvering motion
wP0 Wake fraction at propeller plane in straight ahead motion
X, Y, Nm Surge force, lateral force and yaw moment
xG Longitudinal coordinate of the left of gravity

xH
Longitudinal coordinates of the acting point of the additional
lateral force

XH , YH , NH Surge force, lateral force and yaw moment on bare hull

X′H
∗, Y′H

∗, N′H
∗ Surge force, lateral force and yaw moment on the bare hull

with the inertia components

X′mes, Y′mes, N′mes
Surge force, lateral force and yaw moment with the
inertia components

XP Surge force on propeller

x′P
Non-dimensional longitudinal coordinate of the propeller
plane

xR Longitudinal coordinates of the rudder position
XR, YR, NR Surge force, lateral force and yaw moment on rudder
αR Effective inflow angle at the rudder position
β Drift angle
βP Geometrical inflow angle to propeller in maneuvering motion
βR Effective inflow angle to rudder in maneuvering motion
γR Flow straightening coefficient
δ Rudder angle
δFN0 Rudder angle at which the rudder normal force becomes zero
ε Ratio of wake fractions at propeller and rudder positions

ε21, ε32
Change between medium-fine solutions and change between
coarse-medium solutions

η Ratio of propeller diameter to rudder height
κ A constant for expressing uR
Λ Rudder aspect ratio
λ Scale ratio
ρ Density of water
ϕ1, ϕ2, ϕ3 Solutions of fine, medium and coarse meshes/time steps
ϕ21

ext Extrapolated value
ψ Heading angle
∇ Displacement volume
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