CO2 Emission Efficiency Analysis of Rail-Water Intermodal Transport: A Novel Network DEA Model
Abstract
:1. Introduction
2. Literature Review
2.1. Development of the Network DEA Model
2.2. Application of Network DEA in the Efficiency Evaluation of Transportation Carbon Emissions
2.3. Carbon Emissions in Multimodal Transport Research
3. Efficiency Decomposition and Aggregation in the Network DEA Model
3.1. Efficiency Decomposition
3.2. Efficiency Aggregation
3.3. A Single Compromise Solution for the Division Efficiency Score
4. Non-Cooperative Two-Stage Network DEA Model
5. Empirical Study
5.1. Rail-Water Intermodal Transport in China
5.2. Rail-Water Intermodal Transport Model Considering CO2 Emission
5.3. Results
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.W.; Cao, Y.C.; Zhu, Y.Q.; Xu, C.; Wang, L.X. System dynamic analysis of greenhouse effect based on carbon cycle and prediction of carbon emissions. Appl. Ecol. Environ. Res. 2019, 17, 5067–5080. [Google Scholar] [CrossRef]
- Smith, J.B.; Byrd, R.C. Estimated air emissions savings from partially removing and reefing the jacket of a large California oil and gas platform. Ocean Coast. Manag. 2021, 211, 105741. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, W.; Xu, L.; Di, Z. Evolutionary game analysis on supply side of the implement shore-to-ship electricity. Ocean Coast. Manag. 2021, 215, 105926. [Google Scholar] [CrossRef]
- Lv, B.; Yang, B.; Zhu, X.; Li, J. Operational optimization of transit consolidation in multimodal transport. Comput. Ind. Eng. 2019, 129, 454–464. [Google Scholar] [CrossRef]
- Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Gössling, S.; Meyer-Habighorst, C.; Humpe, A. A global review of marine air pollution policies, their scope and effectiveness. Ocean Coast. Manag. 2021, 212, 105824. [Google Scholar] [CrossRef]
- Yin, C.; Ke, Y.; Chen, J.; Liu, M. Interrelations between sea hub ports and inland hinterlands: Perspectives of multimodal freight transport organization and low carbon emissions. Ocean Coast. Manag. 2021, 214, 105919. [Google Scholar] [CrossRef]
- Hahn, J.-S.; Kho, S.-Y.; Choi, K.; Kim, D.-K. Sustainability Evaluation of Rapid Routes for Buses with a Network DEA Model. Int. J. Sustain. Transp. 2017, 5, 659–669. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Zhao, P.; Guo, J.; Ma, Z. Study of haze emission efficiency based on new co-opetition data envelopment analysis. Expert Syst. 2020, 37, e12466. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Shan, C. Research on the decoupling trend and mitigation potential of CO2 emissions from China’s transport sector. Energy 2019, 183, 837–843. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Network DEA. Socio-Econ. Plan. Sci. 2000, 34, 35–49. [Google Scholar] [CrossRef]
- Castelli, L.; Pesenti, R.; Ukovich, W. DEA-like models for the efficiency evaluation of hierarchically structured DMUs. Eur. J. Oper. Res. 2004, 154, 465–476. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega 2010, 38, 398–409. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.-N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, J. Second order cone programming approach to two-stage network data envelopment analysis. Eur. J. Oper. Res. 2017, 262, 231–238. [Google Scholar] [CrossRef]
- Chen, Y.; Cook, W.D.; Li, N.; Zhu, J. Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 2009, 196, 1170–1176. [Google Scholar] [CrossRef]
- Cook, W.D.; Zhu, J.; Bi, G.; Yang, F. Network DEA: Additive efficiency decomposition. Eur. J. Oper. Res. 2010, 207, 1122–1129. [Google Scholar] [CrossRef]
- Despotis, D.K.; Koronakos, G.; Sotiros, D.G. Composition versus decomposition in two-stage network DEA: A reverse approach. J. Prod. Anal. 2016, 45, 71–87. [Google Scholar] [CrossRef]
- Ang, S.; Chen, C.-M. Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega 2016, 58, 139–153. [Google Scholar] [CrossRef]
- Michali, M.; Emrouznejad, A.; Dehnokhalaji, A.; Clegg, B. Noise-pollution efficiency analysis of European railways: A network DEA model. Transp. Res. Part D Transp. Environ. 2021, 98, 102980. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Ji, X.; Chu, J.; Liang, L. Two-stage network processes with shared resources and resources recovered from undesirable outputs. Eur. J. Oper. Res. 2016, 251, 182–197. [Google Scholar] [CrossRef]
- Chao, S.-L.; Yu, M.-M.; Hsieh, W.-F. Evaluating the efficiency of major container shipping companies: A framework of dynamic network DEA with shared inputs. Transp. Res. Part A Policy Pract. 2018, 117, 44–57. [Google Scholar] [CrossRef]
- Sotiros, D.; Koronakos, G.; Despotis, D.K. Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes. Omega 2019, 85, 144–155. [Google Scholar] [CrossRef]
- Lozano, S.; Khezri, S. Network DEA smallest improvement approach. Omega 2021, 98, 102140. [Google Scholar] [CrossRef]
- Lee, H.S. Efficiency decomposition of the network DEA in variable returns to scale: An additive dissection in losses. Omega 2021, 100, 102212. [Google Scholar] [CrossRef]
- Kao, C. Efficiency decomposition and aggregation in network data envelopment analysis. Eur. J. Oper. Res. 2016, 255, 778–786. [Google Scholar] [CrossRef]
- Koronakos, G.; Sotiros, D.; Despotis, D.K.; Kritikos, M.N. Fair efficiency decomposition in network DEA: A compromise programming approach. Socio-Econ. Plan. Sci. 2022, 79, 101100. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. Airline energy efficiency measures considering carbon abatement: A new strategic framework. Transp. Res. Part D Transp. Environ. 2016, 49, 246–258. [Google Scholar] [CrossRef]
- Cui, Q. Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA. Energy 2019, 180, 763–771. [Google Scholar] [CrossRef]
- Cui, Q.; Jin, Z.-Y. Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model. Energy 2020, 207, 118221. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Park, H. Measuring foregone output under industry emission reduction target in the transportation sector. Transp. Res. Part D Transp. Environ. 2016, 49, 138–153. [Google Scholar] [CrossRef]
- Chen, M.-C.; Yu, M.-M.; Ho, Y.-T. Using network centralized data envelopment analysis for shipping line resource allocation. Int. J. Environ. Sci. Technol. 2018, 15, 1777–1792. [Google Scholar] [CrossRef]
- Tovar, B.; Wall, A. Environmental efficiency for a cross-section of Spanish port authorities. Transp. Res. Part D Transp. Environ. 2019, 75, 170–178. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhu, Q.; Chu, J. Environmental efficiency of land transportation in China: A parallel slack-based measure for regional and temporal analysis. J. Clean. Prod. 2017, 142, 867–876. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, C.-X.; Zhang, Y.-J. The energy-environment efficiency of road and railway sectors in China: Evidence from the provincial level. Ecol. Indic. 2016, 69, 559–570. [Google Scholar] [CrossRef]
- Kang, C.-C.; Feng, C.-M.; Liao, B.-R.; Khan, H.A. Accounting for air pollution emissions and transport policy in the measurement of the efficiency and effectiveness of bus transits. Transp. Lett. 2020, 12, 349–361. [Google Scholar] [CrossRef]
- Kim, N.S.; Janic, M.; van Wee, B. Trade-off between carbon dioxide emissions and logistics costs based on multi-objective optimization. Transp. Res. Rec. 2009, 2139, 107–116. [Google Scholar] [CrossRef]
- Stanley, J.K.; Hensher, D.A.; Loader, C. Road transport and climate change: Stepping off the greenhouse gas. Transp. Res. Part A Policy Pract. 2011, 45, 1020–1030. [Google Scholar] [CrossRef]
- Qu, Y.; Bektaş, T.; Bennell, J. Sustainability SI: Multimode Multicommodity Network Design Model for Intermodal Freight Transportation with Transfer and Emission Costs. Netw. Spat. Econ. 2016, 16, 303–329. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Bektaş, T.; Crainic, T.G. Minimizing greenhouse gas emissions in intermodal freight transport: An application to rail service design. J. Oper. Res. Soc. 2010, 61, 530–542. [Google Scholar] [CrossRef]
- Demir, E.; Burgholzer, W.; Hrušovský, M.; Arıkan, E.; Jammernegg, W.; Van Woensel, T. A green intermodal service network design problem with travel time uncertainty. Transp. Res. Part B Methodol. 2016, 93, 789–807. [Google Scholar] [CrossRef]
- Accorsi, R.; Cholette, S.; Manzini, R.; Pini, C.; Penazzi, S. The land-network problem: Ecosystem carbon balance in planning sustainable agro-food supply chains. J. Clean. Prod. 2016, 112, 158–171. [Google Scholar] [CrossRef]
- Benjaafar, S.; Li, Y.; Daskin, M. Carbon Footprint and the Management of Supply Chains: Insights from Simple Models. IEEE Trans. Autom. Sci. Eng. 2012, 10, 99–116. [Google Scholar] [CrossRef]
- Gerilla, G.P.; Teknomo, K.; Hokao, K. Environmental assessment of international transportation of products. J. East. Asia Soc. Transp. Stud. 2005, 6, 3167–3182. [Google Scholar]
- Liao, C.-H.; Tseng, P.-H.; Cullinane, K.; Lu, C.-S. The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port. Energy Policy 2010, 38, 5251–5257. [Google Scholar] [CrossRef]
- Chen, K.; Yang, Z.; Notteboom, T. The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels. Transp. Res. Part E Logist. Transp. Rev. 2014, 61, 192–211. [Google Scholar] [CrossRef]
- Rodrigues, V.S.; Beresford, A.; Pettit, S.; Bhattacharya, S.; Harris, I. Assessing the cost and CO2e impacts of rerouteing UK import containers. Transp. Res. Part A Policy Pract. 2014, 61, 53–67. [Google Scholar] [CrossRef]
- Rodrigues, V.S.; Pettit, S.; Harris, I.; Beresford, A.; Piecyk, M.; Yang, Z.; Ng, A. UK supply chain carbon mitigation strategies using alternative ports and multimodal freight transport operations. Transp. Res. Part E Logist. Transp. Rev. 2015, 78, 40–56. [Google Scholar] [CrossRef]
- Mostert, M.; Caris, A.; Limbourg, S. Road and intermodal transport performance: The impact of operational costs and air pollution external costs. Res. Transp. Bus. Manag. 2017, 23, 75–85. [Google Scholar] [CrossRef]
- Heinold, A.; Meisel, F. Emission rates of intermodal rail/road and road-only transportation in Europe: A comprehensive simulation study. Transp. Res. Part D Transp. Environ. 2018, 65, 421–437. [Google Scholar] [CrossRef]
- Lozano, S.; Gutiérrez, E. A slacks-based network DEA efficiency analysis of European airlines. Transp. Plan. Technol. 2014, 37, 623–637. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. Programming with linear fractional functionals. Nav. Res. Logist. Q. 1962, 9, 181–186. [Google Scholar] [CrossRef]
- Despotis, D.K.; Sotiros, D.; Koronakos, G. A network DEA approach for series multi-stage processes. Omega 2016, 61, 35–48. [Google Scholar] [CrossRef]
- Kuosmanen, T. Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs. Am. J. Agric. Econ. 2005, 87, 1077–1082. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. A Comment on Weak Disposability in Nonparametric Production Analysis. Am. J. Agric. Econ. 2009, 91, 535–538. [Google Scholar] [CrossRef]
- Han, B.; Wan, M.; Zhou, Y.; Su, Y. Evaluation of Multimodal Transport in China Based on Hesitation Fuzzy Multiattribute Decision-Making. Math. Probl. Eng. 2020, 2020, 1823068. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Chen, J.; Wan, Z.; Shu, Y.; Song, L.; Xu, L.; Di, Z. Governance of global vessel-source marine oil spills: Characteristics and refreshed strategies. Ocean Coast. Manag. 2021, 213, 105874. [Google Scholar] [CrossRef]
- Su, J.; Rogers, M.M. The Role of Economic Variables and CO2 Emissions in Examining the Efficiency of National Transportation Systems. Int. J. Sustain. Transp. 2012, 6, 48–66. [Google Scholar] [CrossRef]
- Cantos-Sánchez, P.; Pastor, J.M.; Serrano, L. Productivity, efficiency and technical change in the European railways: A non-parametric approach. Transportation 1999, 26, 337–357. [Google Scholar] [CrossRef]
- Wanke, P.; Kalam Azad, M.A. Efficiency in Asian railways: A comparison between data envelopment analysis approaches. Transp. Plan. Technol. 2018, 41, 573–599. [Google Scholar] [CrossRef]
- Tongzon, J. Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transp. Res. Part A Policy Pract. 2001, 35, 107–122. [Google Scholar] [CrossRef]
- Barros, C.P. The measurement of efficiency of Portuguese sea port authorities with DEA. Int. J. Transp. Econ. 2003, 30, 335–354. [Google Scholar]
- Almawsheki, E.S.; Shah, M.Z. Technical Efficiency Analysis of Container Terminals in the Middle Eastern Region. Asian J. Shipp. Logist. 2015, 31, 477–486. [Google Scholar] [CrossRef]
- Saeedi, H.; Behdani, B.; Wiegmans, B.; Zuidwijk, R. Assessing the technical efficiency of intermodal freight transport chains using a modified network DEA approach. Transp. Res. Part E Logist. Transp. Rev. 2019, 126, 66–86. [Google Scholar] [CrossRef]
Literature | System | Variables | Orientation | Area |
---|---|---|---|---|
Cantos et al., 1999 | Railway | Inputs:
| Input-oriented | Europe |
Wanke and Kalam Azad, 2018 | Railway | Inputs:
| Input-oriented | Asia |
Michali et al., 2021 | Railway | Inputs:
| Input-oriented | Europe |
Tongzon, 2001 | Port | Inputs:
| Input-oriented | Worldwide |
Barros, 2003 | Port | Inputs:
| Input-oriented | Portugal |
Almawsheki and Shah, 2015 | Port | Inputs:
| Input-oriented | Middle-east |
Saeedi et al., 2019 | Multimodal transport | Inputs:
| Input-oriented | Europe |
Variable | Data Sources |
---|---|
Length of railways | China Ports Yearbook |
Railway labor | Annual Report |
Railway− port freight volumes | China Ports Yearbook |
Berth quantity | China Statistical Yearbook |
Port labor | Annual Report |
Port cargo throughput | China Statistical Yearbook |
Carbon dioxide emissions | China City Greenhouse Gases Emissions Dataset (2015) |
2015 | Length of Railways (km) | Railway Labor | Railway −Port Freight Volumes (10,000 Tons) | Berth Quantity | Port Labor | Port Cargo Throughput (10,000 Tons) | Carbon Dioxide Emissions (10,000 Tons) |
---|---|---|---|---|---|---|---|
Qinhuangdao Port | 170.00 | 1692 | 4328.00 | 72 | 11,993 | 25,309.00 | 23.90 |
Rizhao Port | 158.00 | 1100 | 4400.00 | 53 | 5389 | 33,707.36 | 52.90 |
Beibu Gulf port | 85.50 | 353 | 3229.00 | 256 | 3119 | 20,482.00 | 44.52 |
Zhanjiang Port | 110.00 | 976 | 3038.00 | 174 | 6765 | 22,036.11 | 37.76 |
Tangshan Port | 19.86 | 412 | 2780.00 | 97 | 2675 | 49,285.00 | 132.92 |
Dalian Port | 124.85 | 830 | 2270.00 | 222 | 8235 | 41,482.00 | 136.28 |
Lianyungang Port | 86.30 | 455 | 2733.00 | 77 | 8982 | 21,074.90 | 29.87 |
Ningbo-Zhoushan Port | 54.50 | 521 | 2016.20 | 624 | 12,289 | 88,929.50 | 654.49 |
Yantai Port | 24.50 | 335 | 1794.25 | 98 | 8995 | 25,163.00 | 142.18 |
Guangzhou Port | 41.70 | 366 | 910.00 | 715 | 9970 | 52,095.67 | 35.01 |
Beiliang Port | 51.00 | 101 | 432.10 | 11 | 819 | 1368.00 | 3.73 |
Yichang Port | 21.00 | 154 | 335.10 | 579 | 3022 | 7776.00 | 18.44 |
Nanjing Port | 15.00 | 823 | 161.65 | 346 | 2745 | 22,218.00 | 12.12 |
Zhuhai Port | 17.69 | 73 | 289.00 | 147 | 2883 | 11,208.78 | 137.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wu, X.; Guo, J. CO2 Emission Efficiency Analysis of Rail-Water Intermodal Transport: A Novel Network DEA Model. J. Mar. Sci. Eng. 2022, 10, 1200. https://doi.org/10.3390/jmse10091200
Zhang W, Wu X, Guo J. CO2 Emission Efficiency Analysis of Rail-Water Intermodal Transport: A Novel Network DEA Model. Journal of Marine Science and Engineering. 2022; 10(9):1200. https://doi.org/10.3390/jmse10091200
Chicago/Turabian StyleZhang, Weipan, Xianhua Wu, and Ji Guo. 2022. "CO2 Emission Efficiency Analysis of Rail-Water Intermodal Transport: A Novel Network DEA Model" Journal of Marine Science and Engineering 10, no. 9: 1200. https://doi.org/10.3390/jmse10091200
APA StyleZhang, W., Wu, X., & Guo, J. (2022). CO2 Emission Efficiency Analysis of Rail-Water Intermodal Transport: A Novel Network DEA Model. Journal of Marine Science and Engineering, 10(9), 1200. https://doi.org/10.3390/jmse10091200