Water Exchange Due to Wind and Waves in a Monsoon Prevailing Tropical Atoll
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Period
2.2. The Realistic Model
2.3. Numerical Experiments
2.4. In Situ Measurements
3. Results
3.1. Model Validation
3.2. Transports across the Lagoon Boundary
4. Discussion
4.1. Hydrodynamic Time Scales to Measure Exchange Rates
4.2. Diffusion of Pollutants from the Dongsha Island
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- von Arx, W.S. The circulation systems of Bikini and Rongelap lagoons. Trans. Am. Geophys. Union 1948, 29, 861–870. [Google Scholar] [CrossRef]
- Dufour, P.; Andréfouët, S.; Charpy, L.; Garcia, N. Atoll morphometry controls lagoon nutrient regime. Limnol. Oceanogr. 2001, 46, 456–461. [Google Scholar] [CrossRef]
- Monismith, S.G. Hydrodynamics of Coral Reefs. Annu. Rev. Fluid Mech. 2007, 39, 37–55. [Google Scholar] [CrossRef]
- Symonds, G.; Black, K.P.; Young, I.R. Wave-driven flow over shallow reefs. J. Geophys. Res. 1995, 100, 2639–2648. [Google Scholar] [CrossRef] [Green Version]
- Hearn, C.J. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J. Geophys. Res. Ocean. 1999, 104, 30007–30019. [Google Scholar] [CrossRef]
- Gourlay, M.R.; Colleter, G. Wave-generated flow on coral reefs—An analysis for two-dimensional horizontal reef-tops with steep faces. Coast. Eng. 2005, 52, 353–387. [Google Scholar] [CrossRef]
- Lowe, R.J.; Falter, J.L.; Monismith, S.G.; Atkinson, M.J. Wave-Driven Circulation of a Coastal Reef–Lagoon System. J. Phys. Oceanogr. 2009, 39, 873–893. [Google Scholar] [CrossRef]
- Callaghan, D.P.; Nielsen, P.; Cartwright, N.; Gourlay, M.R.; Baldock, T.E. Atoll lagoon flushing forced by waves. Coast. Eng. 2006, 53, 691–704. [Google Scholar] [CrossRef]
- Dumas, F.; Le Gendre, R.; Thomas, Y.; Andréfouët, S. Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling. Mar. Pollut. Bull. 2012, 65, 425–440. [Google Scholar] [CrossRef]
- Taebi, S.; Lowe, R.J.; Pattiaratchi, C.B.; Ivey, G.N.; Symonds, G.; Brinkman, R. Nearshore circulation in a tropical fringing reef system. J. Geophys. Res. 2011, 116, C02016. [Google Scholar] [CrossRef]
- Becker, J.M.; Merrifield, M.A.; Ford, M. Water level effects on breaking wave setup for Pacific Island fringing reefs: Water level effects on wave setup. J. Geophys. Res. Ocean. 2014, 119, 914–932. [Google Scholar] [CrossRef]
- Costa, M.B.; Macedo, E.C.; Valle-Levinson, A.; Siegle, E. Wave and tidal flushing in a near-equatorial mesotidal atoll. Coral Reefs 2017, 36, 277–291. [Google Scholar] [CrossRef]
- Atkinson, M.; Smith, S.V.; Stroup, E.D. Circulation in Enewetak Atoll lagoon1: Enewetak circulation. Limnol. Oceanogr. 1981, 26, 1074–1083. [Google Scholar] [CrossRef]
- Tartinville, B.; Deleersnijder, E.; Rancher, J. The water residence time in the Mururoa atoll lagoon: Sensitivity analysis of a three-dimensional model. Coral Reefs 1997, 16, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Douillet, P.; Ouillon, S.; Cordier, E. A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs 2001, 20, 361–372. [Google Scholar] [CrossRef]
- Mathieu, P.-P.; Deleersnijder, E.; Cushman-Roisin, B.; Beckers, J.-M.; Bolding, K. The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Cont. Shelf Res. 2002, 22, 1379–1395. [Google Scholar] [CrossRef]
- Lowe, R.J.; Falter, J.L.; Monismith, S.G.; Atkinson, M.J. A numerical study of circulation in a coastal reef-lagoon system. J. Geophys. Res. 2009, 114, C06022. [Google Scholar] [CrossRef] [Green Version]
- Lentz, S.J.; Davis, K.A.; Churchill, J.H.; DeCarlo, T.M. Coral Reef Drag Coefficients—Water Depth Dependence. J. Phys. Oceanogr. 2017, 47, 1061–1075. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-H.; Dai, C.-F.; Chen, Y.-Y. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophys. Res. Lett. 2007, 34, L18609. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Wu, R.-J.; Wang, Y.-H. Interaction between internal solitary waves and an isolated atoll in the Northern South China Sea. Ocean Dyn. 2010, 60, 1285–1292. [Google Scholar] [CrossRef]
- Fu, K.-H.; Wang, Y.-H.; Laurent, L.S.; Simmons, H.; Wang, D.-P. Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea. Cont. Shelf Res. 2012, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Reid, E.C.; DeCarlo, T.M.; Cohen, A.L.; Wong, G.T.F.; Lentz, S.J.; Safaie, A.; Hall, A.; Davis, K.A. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnol. Oceanogr. 2019, 64, 1949–1965. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.A.; Arthur, R.S.; Reid, E.C.; Rogers, J.S.; Fringer, O.B.; DeCarlo, T.M.; Cohen, A.L. Fate of Internal Waves on a Shallow Shelf. J. Geophys. Res. Ocean. 2020, 125, e2019JC015377. [Google Scholar] [CrossRef]
- Xu, A.; Chen, X. A Strong Internal Solitary Wave with Extreme Velocity Captured Northeast of Dong-Sha Atoll in the Northern South China Sea. J. Mar. Sci. Eng. 2021, 9, 1277. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Zhang, H.; Gong, W. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato. Estuar. Coast. Shelf Sci. 2019, 228, 106364. [Google Scholar] [CrossRef]
- Prakash, K.R.; Pant, V. On the wave-current interaction during the passage of a tropical cyclone in the Bay of Bengal. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 172, 104658. [Google Scholar] [CrossRef]
- Calvino, C.; Dabrowski, T.; Dias, F. A study of the wave effects on the current circulation in Galway Bay, using the numerical model COAWST. Coast. Eng. 2023, 180, 104251. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Haidvogel, D.B.; Arango, H.G.; Hedstrom, K.; Beckmann, A.; Malanotte-Rizzoli, P.; Shchepetkin, A.F. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Ocean. 2000, 32, 239–281. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res. Ocean. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Kumar, N.; Voulgaris, G.; Warner, J.C.; Olabarrieta, M. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model. 2012, 47, 65–95. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009. [Google Scholar] [CrossRef]
- Chapman, D.C. Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. J. Phys. Oceanogr. 1985, 15, 1060–1075. [Google Scholar] [CrossRef]
- Flather, R.A. A tidal model of the northwest European continental shelf. Mem. Soc. R. Des Sci. De Liege 1976, 6, 141–164. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Rogers, J.S.; Monismith, S.G.; Fringer, O.B.; Koweek, D.A.; Dunbar, R.B. A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications. Ocean Model. 2017, 110, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Hasselmann, K.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Madsen, O.S.; Poon, Y.-K.; Graber, H.C. Spectral Wave Attenuation by Bottom Friction: Theory. In Proceedings of the 21st Conference on Coastal Engineering, Torremolinos, Spain, 20–25 June 1988; Volume 1, p. 34. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, S.G. A comment on the use of flushing time, residence time, and age as transport time scales. Limnol. Oceanogr. 2002, 47, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Rayson, M.D.; Gross, E.S.; Hetland, R.D.; Fringer, O.B. Time scales in Galveston Bay: An unsteady estuary. J. Geophys. Res. Ocean. 2016, 121, 2268–2285. [Google Scholar] [CrossRef] [Green Version]
- Jouon, A.; Douillet, P.; Ouillon, S.; Fraunié, P. Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Cont. Shelf Res. 2006, 26, 1395–1415. [Google Scholar] [CrossRef]
- Delandmeter, P.; van Sebille, E. The Parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 2019, 12, 3571–3584. [Google Scholar] [CrossRef]
Label | Tides | Wind | Waves |
---|---|---|---|
T | K1 | n/a | n/a |
TWi_SW | K1 | SW | n/a |
TWi_NE | K1 | NE | n/a |
TWa_SW | K1 | n/a | SW |
TWa_NE | K1 | n/a | NE |
SS | RMSE | Bias | |||
---|---|---|---|---|---|
H10 | Surface elevation | 0.995 | 0.99 | 0.033 | −0.011 |
Eastward depth-averaged velocity | 0.8 | 0.73 | 0.029 | −0.011 | |
Northward depth-averaged velocity | 0.79 | 0.73 | 0.032 | 0.012 | |
Significant wave height | 0.88 | 0.78 | 0.099 | 0.021 | |
Peak wave period | 0.50 | 0.39 | 4.612 | 3.706 | |
N09 | Surface elevation | 0.99 | 0.996 | 0.035 | −0.014 |
Eastward depth-averaged velocity | 0.53 | 0.40 | 0.011 | −0.002 | |
Northward depth-averaged velocity | 0.60 | 0.38 | 0.019 | −0.002 | |
Significant wave height | 0.58 | 0.41 | 0.107 | 0.060 | |
Peak wave period | 0.44 | 0.24 | 4.314 | 3.343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-M. Water Exchange Due to Wind and Waves in a Monsoon Prevailing Tropical Atoll. J. Mar. Sci. Eng. 2023, 11, 109. https://doi.org/10.3390/jmse11010109
Chen S-M. Water Exchange Due to Wind and Waves in a Monsoon Prevailing Tropical Atoll. Journal of Marine Science and Engineering. 2023; 11(1):109. https://doi.org/10.3390/jmse11010109
Chicago/Turabian StyleChen, Shi-Ming. 2023. "Water Exchange Due to Wind and Waves in a Monsoon Prevailing Tropical Atoll" Journal of Marine Science and Engineering 11, no. 1: 109. https://doi.org/10.3390/jmse11010109
APA StyleChen, S. -M. (2023). Water Exchange Due to Wind and Waves in a Monsoon Prevailing Tropical Atoll. Journal of Marine Science and Engineering, 11(1), 109. https://doi.org/10.3390/jmse11010109