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Abstract: From 2000 to 2020, storm surges occurred 397 times in China, resulting in direct economic
losses of up to CNY 220.64 billion. Storm surges not only threaten safety but also cause property
damage; hence, it is necessary to assess the changes in vulnerability to storm surges in order to under-
stand how to reduce said vulnerability. Fifteen coastal cities of four types were chosen, with different
levels of urban development, rapid expansion of impervious surface, high extent of agricultural land,
and high fishery output value. Viewing vulnerability through the dimensions of exposure, sensitivity,
and adaptability, a GIS and RS were used to evaluate and assess the vulnerability in 15 coastal cities
in China over the past 30 years. The results indicated that the vulnerability of these 15 Chinese cities
presented the characteristics of a continuous downward trend from 1990 to 2020, and the average rate
of reduction in vulnerability over the 10 years from 2005 to 2015 was the highest, at 2.23%. The areas
of high vulnerability shifted from the southern region to the northern region. The vulnerabilities
in the southern region, with Shanghai, Shenzhen, and Dongguan, changed significantly, to 3.30%,
3.20%, and 3.45%, respectively. An important factor in determining vulnerability reductions is a
city’s ability to adapt to storm surges. Coastal cities can improve their adaptability to storm surge
disasters through general public budget expenditure, investment in fixed assets, GDP, and medical
and health services, thereby alleviating their vulnerability. Due to China’s frequent storm surge
disasters during the 2005–2015 period, government departments have strengthened the investment
of relevant resources in adaptive indicators, ultimately causing the cities’ vulnerability to rapidly
decrease during this period.

Keywords: vulnerability; spatiotemporal change; China; coastal zone; adaptability; disaster mitiga-
tion; storm surge

1. Introduction

Coastal areas are important for socioeconomic development in coastal countries and
feature the most energetic and frequent human activities. Coastal areas are the junction of
land and sea, with complex and multilateral natural environments. Furthermore, coastal
areas are key areas in which natural disasters frequently occur [1,2]. In the context of
global warming, frequent storm surges—such as typhoons and floods—increase the risk of
natural disasters in coastal regions. How to reduce and prevent disasters has long been a
focus of national attention. As defined by the United Nations Development Programme
(2005), natural disaster risks are the result of the interaction between human or naturally
induced vulnerabilities and disasters, with a probability of harmful impacts (i.e., economic,
infrastructural, and/or environmental) occurring. Storm surges lead to frequent disasters
in coastal areas, and their regularity is difficult to control. Reducing the vulnerability of
coastal areas is the most direct and effective way to reduce losses caused by disasters [3].
The concept of vulnerability, as defined by the IPCC, is “the tendency to be adversely affected,
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the various concepts and factors of vulnerability, the sensitivity or susceptibility to harm, and
the lack of coping and adaptation ability”. Based on the understanding of the concept of vul-
nerability presented by the IPCC, vulnerability, in this paper, is understood to be composed of
three aspects: the degree of exposure of areas susceptible to adverse external environments,
and the sensitivity and adaptability of human activities to external stimuli when coastal
areas are exposed to adverse environments. There has been a trend of considering coastal
regional vulnerability, and of strengthening the effective management of the sustainable
development of vulnerable areas, when conducting storm surge risk research.

As our understanding of coastal vulnerability to storm surges in China is lacking,
more research is urgently needed. China’s coastal region is one of the major typhoon-prone
areas of the world. It is located in the northwestern margin of the northwest Pacific storm
basin, which is the largest tropical storm region in the world, and 36% of the total number
of typhoons originate from this area [4]. Additionally, coastal areas in China are important
population and economic centers and are among the core hotspots for global economic
development [5]. The occurrence of recorded events of storm surge disasters has risen
sharply, resulting in tremendous economic losses in China and the world. The “14th Five-
Year Plan” National Comprehensive Disaster Prevention and Mitigation Plan, issued by
China, noted that the vulnerability of various disaster-bearing bodies is increasing. The plan
further indicated that there are great shortcomings and deficiencies in mitigation when
facing complicated and severe forms of natural disasters [6]. For that reason, assessing
vulnerability to storm surges can provide scientific support and a decision-making basis
for China’s risk prevention and mitigation.

According to current research on vulnerability in China, the focus is on both the spatial
distribution characteristics and the driving force factors. This is based on a comprehen-
sive vulnerability assessment model used to calculate the coastal vulnerability index and
generate a vulnerability level distribution map to determine the spatial distribution charac-
teristics of vulnerability [7]. The results show that high-vulnerability areas are concentrated
in areas with a higher disaster frequency, higher population density, higher GDP, and
higher proportion of both built-up and cropland areas, along with low-lying coastal areas
with flat terrain and physical structures without topographic barriers [8–15]. The above
studies providing a vulnerability evaluation in China have mainly focused on the exposure
and sensitivity aspects, while neglecting the mitigation of vulnerability caused by storm
surge disasters in coastal areas. In another study, considering mitigation indicators such
as seawalls, the results showed that most coastal areas with rapid urbanization lack high-
level seawalls and have insufficient resistance [16,17]. Although the above studies have
considered adaptability indicators, the impact of mitigation ability is still at a single-period
static spatial level, and we do not know the trend of spatiotemporal changes in coastal
vulnerability. Furthermore, with the continuing influx of large numbers of people into
coastal regions, human stresses on the coastal ecosystem and resources are growing, while
at the same time climate variability, climate change, and associated changes in the marine
environment are leading to unoptimistic tendencies regarding the vulnerability of coastal
areas [18]. Based on this, this study argues that assessing the vulnerability of coastal areas
should not only focus on the spatial level, but also focus on the spatiotemporal changes
in vulnerability.

There are existing studies that have analyzed the spatiotemporal changes in China’s
coasts, provinces, and cities. Different trends in vulnerability correspond to varied factors
that affect vulnerability. Li CW et al. used catastrophe theory to fully integrate water,
heat, and vegetation biodiversity, as complex exposure indicators, into urban vulnerability
analysis, revealing that coastal cities in China were exposed to natural biophysical processes
in the past 20 years, from 2000 to 2020, and the results showed that the vulnerability of
China’s coastal areas is generally on the rise [19]. Zhou YF et al. analyzed the landscape
vulnerability changes and spatiotemporal evolution rules that were affected by human ac-
tivities in Jiangsu Province from 2000 to 2015 by constructing a spatiotemporal relationship
evaluation model of landscape vulnerability in counties in Jiangsu Province, and the results
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showed that the landscape vulnerability of counties with high human activity intensity is
increasing [20]. Yu HM et al. explored the change law of social vulnerability in Shenzhen
from 1986 to 2016. The results showed that with the improvement in the adaptability of
influencing factors, the social vulnerability of Shenzhen continued to decrease [21]. These
vulnerability evaluations have mainly focused on smaller scales and neglected the relation-
ship between urban economic development and temporal changes in China’s coastal areas.
Consequently, in addition to focusing on the temporal and spatial changes in vulnerability,
another focus of this study is the relationship between urban economic development and
temporal changes in vulnerability in China’s coastal areas. This paper analyzes the tempo-
ral trends of vulnerability of different types of coastal cities in China from the perspective of
human activities with different degrees of impact on coastal cities. Furthermore, this paper
explores the internal link between economic development and vulnerability in coastal
cities, revealing how the acceleration of economic development and urbanization affects
the changes in the vulnerability of coastal areas. At the same time, in order to further
discover the patterns of rapid adaptation to extreme events such as storm surge disasters
in China’s coastal areas, relevant departments should take relevant measures on the basis
of the discovered patterns, so as to reduce the impact of storm surge disasters on built-up
areas, transportation infrastructure, and other departments in coastal areas.

Aiming to reveal the temporal and spatial changes in the vulnerability of different
types of coastal cities in China and the internal relationship between economic development
and vulnerability, this paper proposes the following: (1) to analyze the temporal and spatial
variation characteristics and differences in the vulnerability intensity of different types
of cities in coastal areas from 1990 to 2020; and (2) to explore the relationships between
exposure, adaptability, sensitivity and vulnerability, and further reveal the factors that affect
the changes in vulnerability. This study provides a scientific basis for disaster prevention
and mitigation in China through an in-depth analysis of the temporal and spatial changes in
the vulnerability of different types of cities along the coast of China and their internal causes,
while providing a research example to reduce the risk of global storm surge disasters.

2. Study Area and Data
2.1. Study Area

At present, increased human activities are increasing the vulnerability of coastal areas
to natural disasters such as storm surges [22]. Therefore, we comprehensively selected
four types of city to evaluate their vulnerability based on the different degrees of impact
of human activities on vulnerability, with different levels of urban development, rapid
urban impervious surface expansion, rapid changes in cultivated land area, and high
total fishery output value. First of all, considering the level of development of China’s
coastal urbanization, diverse urbanization process regions have different post-disaster
reconstruction and recovery capabilities, resulting in disaster-affected bodies in the face of
disasters with unlikely anti-risk capabilities. Secondly, in coastal areas where large-scale
coastal facilities—such as industrial and mining plants and entertainment facilities—are
concentrated, their manifestation is an impervious surface. Finally, agriculture and fisheries
in coastal cities suffer huge economic losses because of the impact of storm surge disasters,
and they possess poor economic recovery ability after disasters. After creating a 10 km
buffer zone based on the coastline, the impervious surface and cultivated land area in the
coastal areas in 1990 and 2020 were calculated, and the impervious surface and cultivated
land change rates of different cities in the coastal areas of the country over the past 30
years were calculated. Figure 1a,b show the top 20 cities in terms of impervious surface
and cultivated land change rate in China’s coastal areas, respectively. The top 20 cities in
the country’s coastal areas in terms of urban fishery output value in 2020 are shown in
Figure 1c.
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Figure 1. Top 20 rankings of different types of change in cities in China: (a) China’s coastal cities
ranked among the top 20 cities in terms of the change rate of impervious surface area. (b) China’s
coastal cities ranked among the top 20 cities in terms of the change rate of cultivated land area.
(c) China’s coastal cities ranked among the top 20 cities in terms of fishery output value in 2020. The
red bars show the top three cities for each indicator.

Combined with the above analysis, we selected representative cities from the following
perspectives: (1) Urbanization level—Shanghai, Guangzhou, Shenzhen, Tianjin, Weifang,
Yancheng, and Zhanjiang were selected as cities with different levels of urban development.
(2) The rate of change of the impervious surface—Figure 1a shows that the impervious
surface change rates of Hangzhou, Binzhou, and Zhongshan were 3640%, 1573%, and 658%,
respectively. Therefore, Hangzhou and Zhongshan were selected as the urban impervious-
surface-expansion-type cities. (3) The rate of change of cultivated land—Figure 1b shows
that the change rates of cultivated land in Binzhou, Huizhou, and Dongguan were 257%,
122%, and 111%, respectively. Binzhou, Huizhou, and Dongguan were therefore selected
as agricultural-development-type cities. (4) Fishery output value—The fishery output
value of Fuzhou, Weihai, and Dalian was CNY 53.31 billion, CNY 36.26 billion, and CNY
34.24 billion, respectively, so the above three cities were selected as fishery-type cities.
Figure 2 shows the geographical distribution of the different types of coastal cities in China.

2.2. Data
2.2.1. Land Cover Data

The timespan of this study was 30 years, from 1990 to 2020, so it was necessary to
select a land-use dataset that satisfied the time change. We selected the GLC_FCS30-2020
dataset of the latest global 30 m surface coverage fine classification product developed by
the team of Mr. Liu Liangyun, from the Institute of Aerospace Information Innovation,
Chinese Academy of Sciences, in 2020. The dataset includes 30 m fine surface coverage
dynamic monitoring products for the whole year, from 1985 to 2020, including a total
of 29 types of land cover, with a 5-year update cycle [23]. The data source link is http:
//data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061 (accessed on 5 January 2023).
The classification of land use is shown in Table A1.

2.2.2. DEM Data

A digital elevation model (DEM) can reflect the absolute terrain and terrain fluctu-
ations in the study area. We adopted NASADEM—a dataset with a spatial resolution of
30 m, which uses an improved algorithm to reprocess the original signal radar data of
Shuttle Radar Topography Mission (SRTM) and combines the data from ice, cloud, and land
elevation satellites (ICESat). The data from the System for Earth Science Laser Altimeter
and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) tool
were used, which are publicly available on the Google Earth Engine (GEE) platform. NASA-
DEM’s data are distributed in 1 degree latitude by 1 degree longitude tiles and consist of
all land between 60◦ N and 56◦ S latitude. This accounts for about 80% of Earth’s total

http://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
http://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
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landmass. The data source link is https://lpdaac.usgs.gov/products/nasadem_hgtv001/
(accessed on 5 January 2023).
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2.2.3. Statistical Data of Each City

The seven indicators of adaptive selection were general public budget expenditure
(CNY 100 million), gross domestic product (GDP) (CNY 100 million), per capita disposable
income of urban residents (CNY), per capita disposable income of rural residents (CNY),
investment in fixed assets (CNY 100 million), number of medical technical personnel of
hospitals and health centers (persons), and number of hospitals and health centers (number).
The sensitivity indicators included four categories, namely, the proportion of females in
the total population (%), number of students in enrollment (10,000 people), proportion of
primary industry in GDP (%), and proportion of fishery output value in GDP (%). The
seven adaptive and four sensitivity indicators resulted in a total of 11 indicator categories.
The data sources for each indicator are shown in Table 1.

https://lpdaac.usgs.gov/products/nasadem_hgtv001/
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Table 1. Data sources for adaptive and sensitivity indicators.

Data Type Description Source

B1 General public budget expenditure Million CNY China City Statistical Yearbook 1990–2020

B2 GDP Million CNY China City Statistical Yearbook 1990–2020

B3 Per capita disposable income of urban
residents CNY Statistical yearbook data of each city

B4 Per capita disposable income of rural
residents CNY Statistical yearbook data of each city

B5 Investment in fixed assets Million CNY Statistical yearbook data of each city

B6 Number of medical technical personnel of
hospitals and health centers Persons China City Statistical Yearbook 1990–2020

B7 Number of hospitals and health centers China City Statistical Yearbook 1990–2020

C1 Proportion of females in the total population % Population census data and Statistical
yearbook data of each city

C2 Number of students in enrollment 10,000 people China City Statistical Yearbook 1990–2020

C3 Proportion of primary industry in GDP % China City Statistical Yearbook 1990–2020

C4 Proportion of fishery output value in GDP % Statistical yearbook data of each city

3. Methods

This study evaluates the vulnerability of coastal cities through the three dimensions
of exposure, adaptability, and sensitivity, and finally obtains the overall vulnerability
evaluation results of administrative units by calculating and evaluating the weights of each
dimension. The comprehensive evaluation process is shown in Figure 3.
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3.1. Calculation and Change of Exposure

Exposure refers to the background vulnerability of the disaster-bearing body and is
one of the important indicators in comprehensive vulnerability evaluations [24]. In this
study, a method based on the existing land cover data and the physical characteristics of the
disaster-bearing body was used to evaluate the degree of urban exposure. Table 2 illustrates
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the exposure index factor weight assignment, and the exposure calculation formula is
as follows:

Exposure = p1 × Landcover + p2 × Elevation + p3 × Slope + p4 × Distance to water (1)

Table 2. Exposure index factor weight assignment.

Indicator Judgement
Criterion Exposure Value Experts’ Score Weight

Land cover Impervious surfaces 1 9 0.5
Cropland 0.8
Wetland 0.6
Forest 0.4

Water/bare areas 0.2

Elevation <1 m 1 3 0.167
=1 m 0.6
>1 m 0.2

Slope <0.5◦ 1 2 0.111
0.5−15◦ 0.6

>15◦ 0.2

Distance to water ≤0.5 km 1 4 0.222
0.5–1 km 0.8
1–2 km 0.6
2–5 km 0.4
>5 km 0.2

In this formula, land cover, elevation, slope, and distance to water are the land cover
type, elevation, slope, and the distance from the water system, respectively, multiplied
by the weights p1, p2, p3, and p4 of each index to obtain the final exposure result value.
Among them, each or several types of land cover correspond to a type of disaster-bearing
body. According to the characteristics of the intensity of human activity in the land cover
types, the 29 types of land cover were divided into five types of disaster-bearing bodies with
different properties. These were recast as impervious surfaces, cropland, wetland, forest,
and water/bare areas. According to the Technical Guidelines for Storm Surge Disaster
Risk Assessment and Zoning issued by China in 2016, which is a normative technical
document for storm surge disaster risk assessment and zoning, different vulnerability
values are set for different land-use types. Therefore, this paper improves the evaluation
index system on the basis of the above guidelines. Taking the vulnerability of each land-use
type as the background vulnerability of the disaster-bearing body, this is involved in the
comprehensive vulnerability evaluation of the disaster-bearing body. Moreover, exposure
is closely related to the physical characteristics of the region and is the natural attribute
of the disaster-bearing body. In this study, elevation, slope, and distance from the water
system were selected as the physical characteristics of the disaster-bearing body. A low
altitude, gentle slope, and shorter distance to the water system indicate that the disaster-
bearing body is more sensitive to disasters such as storm surges and, hence, the degree
of exposure for the region is higher. The exposure factor weights were determined by the
expert scoring method and the multilevel analysis method. In this study, indicators in
the expert scoring method were mainly scored by referring to the team’s existing research
results [25]. The weights of each indicator were assigned as shown in Table 2. The weight
results for the above formulae were p1 = 0.5, p2 = 0.167, p3 = 0.111, and p4 = 0.222.

The above calculation process for the exposure index of coastal cities was implemented
in GEE. The exposure level in the calculation result was expanded by 10 times and rounded
up, and the result value was divided into 2–10 levels. Figure 4 shows a frequency dis-
tribution map of the exposure grade area in 15 coastal cities of China from 1990 to 2020.
The distribution of exposure grades in Tianjin changed significantly. In 1995, there was a
single peak and the area of exposure grade 4 was 420.21 km2. After 2000, the distribution
of exposure grades showed double peaks, and the area values of exposure for grades 4 and
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7 of Tianjin in 2000–2020 were 321.04 km2 and 215.97 km2, respectively. The distribution of
exposure grades in Binzhou has always had a unimodal pattern, changing from grade 6 in
2000 to grade 2 in 2005. Before 2000, the average area of exposure for grade 6 of Binzhou
was 230.67 km2. The average area of exposure for grade 2 of Binzhou from 2000 to 2020
was 263.35 km2. The seven cities of Shanghai, Yancheng, Zhanjiang, Hangzhou, Dongguan,
Weihai, and Dalian showed an obvious concentration peak in terms of the distribution of
exposure grades. Shanghai and Zhanjiang showed the highest distribution area of exposure
at grade 6, with an average area of 1437.10 km2 and 2265.36 km2, respectively. Yancheng,
Hangzhou, and Dongguan showed the highest distribution area of exposure at level 7, with
an average area of 1116.07 km2, 190.64 km2, and 95.51 km2, respectively. The fishery-type
cities, represented by Weihai and Dalian, showed the highest area value of exposure level 4;
the areas were 1568.51 km2 and 3017.77 km2, respectively. Guangzhou, Shenzhen, Weifang,
Zhongshan, Huizhou, and Fuzhou had two distinct peaks in the frequency distribution
of exposure grades. The average area difference between the two peaks in Guangzhou
was the highest, at 62.52 km2, and the average area difference between the two peaks in
Weifang was the smallest, at 10.64 km2.
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After 2000, there was no significant inconsistency in the distribution of urban exposure
grades in Tianjin and Binzhou, while the changes in exposure grade area in other cities
from 1990 to 2020 were consistent with single or double peaks. The above analysis results
suggest that the exposure of coastal cities in China has not significantly changed in the past
20 years.

3.2. Change of Sensitivity Indicators

Sensitivity mainly reflects the population and economic losses of cities that are vul-
nerable to storm surge disasters. An increase in sensitivity will reduce a region’s ability to
resist risks, enhancing the region’s vulnerability [26]. The proportion of females in the total
population and the number of students in enrollment were selected considering that the
higher the proportion of females and students in the city, the larger the groups affected by
disaster in the city. The higher the proportion of primary industry and fishery output value
in GDP, the higher the probability of urban poverty rate, the higher the cost of post-disaster
recovery, and the lower the resilience.

Figure 5 illustrates the trend chart of sensitivity index values after positive standard-
ization in 15 coastal cities of China, from 1990 to 2020. The aim of positive standardization
is to eliminate the influence of dimension and distribution differences on each indicator.
The formula for positive standardization is as follows:

x′ij= (x ij −MIN
(
xj
)
)/(MAX

(
xj
)
−MIN

(
xj
)
) (2)

where xij is the original evaluation index matrix, while MAX and MIN represent the
maximum and minimum values of the index value in column j, respectively. From 1990 to
2020, the proportion of primary industry in GDP and the proportion of fishery output value
in GDP in the sensitivity indicators showed a continuous downward trend, the number
of students in enrollment in other cities except for Yancheng continued to increase, and
the proportion of females in the total population in each city showed no obvious trend.
Table A2 shows the annual mean change rates for the sensitivity indicators in the 15 coastal
cities from 1990 to 2020 and further analyzes the changes in the sensitivity indicators in
those 15 coastal cities. From 1990 to 2020, the average growth rate of the proportions of
primary industry and fishery output value in GDP in the 15 coastal cities was negative.
The proportion of primary industry in GDP in Yancheng and Weihai declined the fastest on
average, with an average decline rate of 0.012%/year and 0.011%/year, respectively. As of
2020, the proportion of primary industry in GDP in Yancheng and Weihai was 11.10% and
10.01%, respectively. The proportion of fishery output value in GDP in Weihai declined
the fastest on average, with an average decline rate of 0.007%/year. In 1990 and 2020, the
proportion of fishery output value in GDP in Weihai City was 0.32% and 0.12%, respectively.
From 1990 to 2015, the average rate of decline in the number of students in enrollment in
Yancheng City was 0.7626 ten thousand people/year, the number of students enrolled in
school in 1990 was 1,148 thousand, and the number of students enrolled in school in 2015
was 788.8 thousand. The annual number of students in school was positive, with an average
annual growth rate of 2.61 ten thousand people/year during 2015–2020. As of 2020, the
number of students in enrollment in Yancheng was 919.2 thousand. The number of students
in enrollment in Guangzhou and Shenzhen showed the largest annual growth rate, with an
average growth rate of 7.08 ten thousand people/year and 5.28 ten thousand people/year,
respectively. In 2020, the number of students enrolled in Guangzhou and Shenzhen was
3.10 million and 1.79 million people, respectively. From 1990 to 2020, the regularity of the
proportion of females in the total population was not obvious. The average growth rate of
the proportion of females in the total population in Tianjin, Yancheng, Zhanjiang, Fuzhou,
and Dalian was greater than 0, while the average growth rate of the proportion of females
in the total population in Weifang, Binzhou, and Weihai was equal to 0, and the average
growth rate of the proportion of women in the other cities was less than 0.
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3.3. Change of Adaptability Indicators

Adaptability mainly reflects coastal cities’ ability to respond to disasters, and adapt-
ability is crucial to alleviating urban vulnerability [27]. This article’s adaptability research
looks at three perspectives: social resistance, social resilience, and social self-healing. Se-
lecting general public budget expenditure, GDP, and investment in fixed assets as aspects
of social resistance indicates that the higher the economic development and infrastructure
investment of cities in the region, the stronger the cities’ ability to resist social risks in the
face of disasters. The per capita disposable income of urban residents and the per capita
disposable income of rural residents are the determinants of social resilience; the higher the
resilience, the stronger the residents’ economic adjustment ability in the face of disaster.
The number of medical technical personnel in hospitals and health centers, along with
the number of hospitals and health centers, represent the social self-healing capabilities;
the higher the proportion, the richer the urban medical resources and the stronger the
self-healing ability [21,25].

Figure 6 illustrates the change trend chart of adaptability index values after negative
standardization in 15 coastal cities of China from 1990 to 2020. The actual situation of the
adaptive index of each coastal city in China is changing with time, and the result value is
continuously increasing. Table A3 shows the annual mean change rate of the adaptability
index in 15 coastal cities from 1990 to 2020. To be consistent with the positive and negative
relationships between the vulnerability results in this paper, we negatively normalized
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the adaptive index, and the negative normalization formula is as shown in Equation (3).
The maximum value in the adaptive index is normalized to the minimum value, so the
standardized results of each adaptive index in Figure 6 continue to decrease with time.

x′ij= (MAX(x j)− xij)/(MAX
(
xj
)
−MIN

(
xj
)
) (3)
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From 1990 to 2020, there was an obvious turning point in the number of medical
technical personnel of hospitals and health centers, as well as in the number of hospitals
and health centers, in Shanghai in 2005. The number of medical technical personnel at
hospitals and health centers in Hangzhou dropped sharply in 2020. The investment in fixed
assets in Binzhou and Dalian reached their highest values in 2010 and 2015, respectively.
The results of the urban adaptation indicators show a continuous downward trend.

Table A3 shows the average annual change rate of each city’s adaptability indicators
over the past 30 years and further analyzes the changes in those adaptability indicators.
In 1990, the number of medical technical personnel in hospitals and health centers and
the number of hospitals and health centers in Shanghai were 158.50 thousand people and
7690, respectively. In 2005, the number of medical technical personnel in hospitals and
health centers and the number of hospitals and health centers were 103.5 thousand people
and 2527, respectively. From 1990 to 2005, the number of medical technical personnel in
hospitals and health centers and the number of hospitals and health centers in Shanghai



J. Mar. Sci. Eng. 2023, 11, 128 12 of 26

continued to decrease; the average annual decline rates were 3.7 thousand people/year
and 344/year, respectively. The number of medical technical personnel in hospitals and
health centers and the number of hospitals and health centers in Shanghai increased from
2005 to 2020, and the annual average added values were 9073.3 thousand people/year and
253/year, respectively. As of 2020, the number of medical technical personnel in hospitals
and health centers and the number of hospitals and health centers in Shanghai were 2396
thousand people and 6317, respectively. The number of medical technical personnel in
hospitals and health centers in Hangzhou in 2015 was 93.04 thousand people and, as of
2020, 51.14 thousand people, showing that the number of medical technical personnel in
hospitals and health centers significantly decreased. The average annual growth rate of the
number of medical technical personnel in hospitals and health centers in Guangzhou was
the highest, with a value of 5.54 thousand people per year. In 2020, the number of medical
technical personnel in hospitals and health centers in Guangzhou was 214.61 thousand
people. The number of hospitals and health centers in Weifang was the largest in 2020,
with a value of 8150. The average annual growth rate of the number of hospitals and health
centers in Weifang was 238 per year.

The cities of Shanghai, Shenzhen, and Guangzhou were developing rapidly, and the
cities accumulated a lot of wealth. The general public budget expenditure and GDP of these
three cities were relatively high. In 2020, the general public budget expenditures of the
three cities of Shanghai, Shenzhen, and Guangzhou were CNY 843.086 billion, CNY 417.842
billion, and CNY 295.265 billion, respectively, with an average annual growth rate of CNY
27.851 billion/year, CNY 13.862 billion/year, and CNY 9.761 billion/year, respectively.
Their GDP was CNY 4321.485 billion, CNY 2767.024 billion, and CNY 2501.911 billion,
respectively, and their average annual growth rates were 141.567 billion CNY/year, 91.781
billion CNY/year, and 82.332 billion CNY/year. In 1990, Tianjin’s investment in fixed
assets was CNY 7.208 billion. As of 2020, Tianjin’s investment in fixed assets was CNY
1,575.955 billion. The annual growth rate of Tianjin’s investment in fixed assets was CNY
52.292 billion per year. Tianjin’s investment in fixed assets in 2020 was 1.78 times that of
the second highest city (Shanghai). The investment in fixed assets in Binzhou reached its
highest value of CNY 404.789 billion in 2010, and it was CNY 150.118 billion as of 2020. Its
rule for investment in fixed assets was to first increase and then decrease, with an average
growth rate of CNY 4.996 billion per year.

As of 2020, the per capita disposable income of urban residents in the coastal areas of
Shanghai, Guangzhou, Hangzhou, and Shenzhen was high, at CNY 82,429, CNY 68,304,
CNY 68,666, and CNY 64,877.7, respectively, with an average annual growth rate of CNY
2,674.91/year, CNY 2,185.17/year, CNY 2222.70/year, and CNY 2025.02/year, respectively.
The urban per capita disposable income of Zhanjiang and Binzhou was low, with an average
annual growth rate of CNY 1022.59/year and CNY 1234.00/year, respectively. The average
annual growth rates of the per capita disposable incomes of rural residents in the three
cities of Hangzhou, Dongguan, and Shanghai were CNY 1250.97/year, CNY 1242.83/year,
and CNY 1228.53/year, respectively.

3.4. Comprehensive Weight Assignment Method of Vulnerability

Exposure, sensitivity, and adaptability were combined with three evaluation methods—
the entropy weight method (Entropy), the coefficient of variation method (CVW), and the
TOPSIS method—and the final vulnerability result value Ws was obtained.

Ws= CWM(Entropy, CVW, TOPSIS) (4)

Among them, entropy in the entropy weight method is a measure of the uncertainty
of information. The larger the amount of information, the smaller the uncertainty and the
smaller the entropy value. The entropy value is used to measure the discrete degree of
decision-making attributes. The greater the discrete degree, the greater the impact on the
comprehensive evaluation; therefore, a larger weight should be given [25,28]. The coeffi-
cient of variation method means that the attribute with the greater difference in attribute



J. Mar. Sci. Eng. 2023, 11, 128 13 of 26

value has a greater influence on the order of the decision-making scheme. To eliminate
the influence of different dimensions, the coefficient of variation of attributes was used to
measure the degree of difference for each attribute [29]. TOPSIS calculates the weighted
Euclidean distance between a certain scheme and the positive ideal solution and the nega-
tive ideal solution, determining the closeness of the scheme to the ideal solution to judge
the pros and cons of each decision-making scheme [21,30]. The TOPSIS method needs to
combine the entropy weight method to determine the indicator weight value and then sort
the results of multiple indicators.

3.4.1. Kendall Consistency Test

Since different methods have their own limitations, the conclusions drawn by different
models are not the same. However, as long as the evaluation criteria are consistent, the
obtained grading results are reasonable. The Kendall consistency test can be used to test
whether the evaluation criteria of each model are consistent [31].

W =
n

∑
i
(R i −m(n + 1)/2)2/m2n

(
n2 − 1

)
/12 (5)

where m is the number of model species, n is the number of samples participating in the
evaluation, and Ri is the sum of the ranks of the ith sample. The numerator in the formula
is the sum of the squares of the deviation of the total rank of each group of samples and
the total rank of the whole, while the denominator is the square of the total deviation of
the whole rank. Here, m represents three evaluation methods, namely, the entropy weight
method, variation coefficient method, and entropy weight–TOPSIS method. When W is
closer to 1, this indicates that the rank has a greater difference between groups, which
means that there are significant differences in the vulnerability scores obtained for the
urban samples participating in the assessment, and further indicates that the assessment
standards of different methods are consistent; conversely, if W is greater close to 0, there is
no reason to think that the criteria for these methods are consistent.

3.4.2. Combination Weighting Method

At present, there are many methods that can be used to calculate the weights of the
evaluation indicators [1]. Due to the different basic principles of the different methods and
the different emphases used to determine the weights, the weights of the evaluation indi-
cators obtained by the different methods are inconsistent, and the evaluation conclusions
are different. Therefore, the idea of a “combined evaluation” is proposed. Combination
weighting is a kind of combination evaluation. The “combination weight” and “combina-
tion evaluation value” obtained by combining the results calculated by different methods
can improve the reliability and accuracy of the comprehensive evaluation results [32]. The
calculation process of the weight combination based on CWM is as follows:

Combined weight coefficients for a single evaluation method:

θ∗j =
m

∑
i=1

m

∑
t=1

∣∣fij − ftj
∣∣/ n

∑
j=1

m

∑
i=1

m

∑
t=1

∣∣fij − ftj
∣∣ (6)

where fij and ftj are the evaluation values of i and t, respectively, using the single evaluation
method j.

Calculate the combined weights of indicatorsωs:

ωs = θ∗1ω1s + θ
∗
2ω2s + . . . + θ∗nωns (7)

ωjs is the weight value of each vulnerability index s using method j, where s = 3.
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3.5. Result of Consistency Test

The vulnerability assessment of the 15 coastal cities was carried out with the help
of three comprehensive evaluation methods: the entropy weight method, the coefficient
of variation method, and TOPSIS. Table 3 shows the results of the Kendall’s W analysis.
The significance value of the vulnerability results of the three comprehensive evaluation
methods—the entropy weight method, the coefficient of variation method, and TOPSIS—
was 0.000, which is significant at the required level to reject the null hypothesis, so the
vulnerability results show consistency. At the same time, the Kendall’s W value of the
model is 0.214, so the degree of correlation is consistent. Through the Kendall consistency
test, it can be proven that the above three comprehensive evaluation methods can use the
combination of CWM weights to obtain the final evaluation results.

Table 3. The results of Kendall’s W.

Name Mean Rank Median Kendall’s W X2 p

Entropy 1.971 0.495
0.214 44.933 0.000 ***CVW 2.476 0.678

TOPSIS 1.552 0.426
*** means the result at 1% significance level.

4. Results
4.1. Identifying Storm Surge Vulnerability Distribution Changes

The high areas of vulnerability shifted from the southern region to the northern region.
Figure 7 shows the spatial distribution of vulnerability in 15 coastal cities in China from
1990 to 2020. From 1990 to 2020, the vulnerability of the 15 coastal cities decreased. In
1990, the vulnerability of southern cities was higher than that of northern cities. As of 2020,
there has been a significant improvement in the vulnerability of southern cities, and their
vulnerability is now generally lower than that in northern cities. In 1990, the vulnerability
of the 15 coastal cities was relatively high: the vulnerabilities of the southern cities Shang-
hai, Hangzhou, Fuzhou, Guangzhou, Dongguan, Shenzhen, Huizhou, Zhongshan, and
Zhanjiang were all between 0.73 and 0.85. In 2020, the vulnerabilities of the 15 coastal cities
were all between 0.13 and 0.43, and the vulnerabilities of Yancheng, Shanghai, Fuzhou,
Guangzhou, Dongguan, Shenzhen, Huizhou, Zhongshan, and Zhanjiang were lower than
those of the southern cities, with a vulnerability of 0.13–0.23. Only Weifang and Weihai
among the northern cities had vulnerability between 0.13 and 0.23.
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4.2. Identifying Coastal Vulnerability Tendencies

From 1990 to 2020, the vulnerability of different types of coastal city in China showed
a continuous downward trend, and the average reduction rate for vulnerability in the
10 years from 2005 to 2015 was the highest, at 2.23%.

Figure 8 shows the bar distribution of the mean change velocity of urban vulnerability
values from 1990 to 2020. By comparing the median value of the average change speed
of the vulnerability in each time period, the average change speed of the vulnerability
in the 2010–2015 period was found to be the highest, at a value of −2.40%, followed by
the 2005–2010 period, with a value of −2.20%, and the 1995–2000 period, with the lowest
average change rate of vulnerability, at a value of−1.00%. Table A4 shows the vulnerability
results and the change rate of each stage in the 15 coastal cities from 1990 to 2020. In 1990,
Shanghai and Shenzhen, with high levels of urbanization, and Dongguan, with a high
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level of agricultural development, had higher vulnerability values of 0.80, 0.84, and 0.85,
respectively. The agricultural cities of Binzhou, Tianjin, and Yancheng, with medium levels
of urbanization, had lower vulnerabilities of 0.64, 0.70, and 0.71, respectively. As of 2020,
the vulnerabilities of Shanghai, Dongguan, and Shenzhen were relatively low compared
to other cities, at 0.14, 0.16, and 0.19, respectively. The vulnerabilities of Binzhou and
Tianjin were higher, at 0.33 and 0.28, respectively. Over the past 30 years, the vulnerability
results of Shanghai, Dongguan, and Shenzhen significantly decreased. The change rate
of each stage from 1990 to 2020 was less than 0. The vulnerability of Binzhou and Tianjin
first increased and then decreased. According to Figure 8, the vulnerability change rate
of Binzhou in 1990–2000 was 0.39% and 0.90%, respectively, and the change rate in 2000–
2020 was less than 0. Tianjin’s vulnerability change rate was 0.10% in 1990–1995. The
change rate of vulnerability was less than 0 during 1995–2000 in Tianjin. In 1990 and 2020,
the vulnerability value of Yancheng was low, with values of 0.71 and 0.14, respectively.
However, the change rate of the vulnerability value in Yancheng from 1990 to 2000 was
greater than 0, and the average change rate was 1.88% and 0.19%, respectively. The rate
of change in the vulnerability of Yancheng from 2000 to 2020 was less than 0, followed by
−3.41%, −3.6%, −4.32%, and −1.92%. The average change rates of the vulnerability results
of the impervious-surface-development-type and fishery-type development cities were less
than 0, and their vulnerability was continuously decreasing.
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In sum, the urban vulnerability of Shanghai, Shenzhen, and Dongguan changed from
relatively high values in 1990 to relatively low values in 2020, the average rate of change in
vulnerability over the last 30 years was less than 0, and the urban vulnerability continued
to decrease. The vulnerability of Yancheng was relatively low, and its urban vulnerability
value first increased and then decreased over time. The vulnerability of Binzhou and Tianjin
changed from relatively low values in 1990 to relatively high values in 2020. The average
change rate of vulnerability in other cities from 1990 to 2020 was less than 0, indicating that
the vulnerability of each city decreased each year in the past 30 years. The above results
show that the 15 cities along the coast of China have enhanced their ability to resist risks in
the face of natural disasters such as storm surges.
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4.3. Adaptability has a Significant impact on Vulnerability

The change law of the vulnerability of each city is greatly affected by the adaptability
index, with an average weight of 0.50, while the average weight of the exposure and sensitiv-
ity indices is only 0.19 and 0.31, respectively. After the Pearson’s correlation test, adaptability
and vulnerability were highly positively correlated, so the development trend of vulnerability
and adaptability is closely related. Among the adaptability indicators, the general public
budget expenditure, investment in fixed assets, GDP, and the level of medical and health
services have a greater impact.

Figure 9 shows the temporal changes in vulnerability, exposure, sensitivity, and
adaptability in the 15 cities from 1990 to 2020. In the results, the negative standardization of
adaptability indicators aims to be consistent with the direction of changes in vulnerability
indicators. The change law of the exposure index is not significant. The sum of the sensitivity
index values of each city from 1990 to 2000 is 8.16, which is higher than that of 5.01 from
2005 to 2020. The adaptability index in the figure shows a decreasing trend with time. In
Table 4, regarding the exposure, adaptability, and sensitivity index weights, cities other
than Shenzhen have the highest proportion of adaptability index weights, with an average
weight value of 0.47. Therefore, the change law of the vulnerability of each city is greatly
affected by the adaptability index. Pearson’s correlation test is used to analyze whether
there is a significant trend relationship between a set of continuous variables. Therefore,
we conducted a Pearson’s correlation test to show the vulnerability and the exposure,
adaptability, and sensitivity. The results show that only the adaptability indicators pass the
correlation test. Changes in vulnerability in cities have the greatest impact.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 28 
 

 

4.3. Adaptability has a Significant impact on Vulnerability 

The change law of the vulnerability of each city is greatly affected by the adaptability 

index, with an average weight of 0.50, while the average weight of the exposure and sen-

sitivity indices is only 0.19 and 0.31, respectively. After the Pearson’s correlation test, 

adaptability and vulnerability were highly positively correlated, so the development 

trend of vulnerability and adaptability is closely related. Among the adaptability indica-

tors, the general public budget expenditure, investment in fixed assets, GDP, and the level 

of medical and health services have a greater impact. 

Figure 9 shows the temporal changes in vulnerability, exposure, sensitivity, and 

adaptability in the 15 cities from 1990 to 2020. In the results, the negative standardization 

of adaptability indicators aims to be consistent with the direction of changes in vulnera-

bility indicators. The change law of the exposure index is not significant. The sum of the 

sensitivity index values of each city from 1990 to 2000 is 8.16, which is higher than that of 

5.01 from 2005 to 2020. The adaptability index in the figure shows a decreasing trend with 

time. In Table 4, regarding the exposure, adaptability, and sensitivity index weights, cities 

other than Shenzhen have the highest proportion of adaptability index weights, with an 

average weight value of 0.47. Therefore, the change law of the vulnerability of each city is 

greatly affected by the adaptability index. Pearson’s correlation test is used to analyze 

whether there is a significant trend relationship between a set of continuous variables. 

Therefore, we conducted a Pearson’s correlation test to show the vulnerability and the 

exposure, adaptability, and sensitivity. The results show that only the adaptability indi-

cators pass the correlation test. Changes in vulnerability in cities have the greatest impact. 

 

Figure 9. Temporal changes in vulnerability values and internal influencing factors (i.e., exposure,
sensitivity, and adaptability) in 15 coastal cities from 1990 to 2020.



J. Mar. Sci. Eng. 2023, 11, 128 18 of 26

Table 4. Exposure, adaptability, and sensitivity index weights and vulnerability correlation values of
15 coastal cities.

City Name
CWM Weight Value Pearson’s Correlation Coefficient

Exposure Adaptability Sensitivity Exposure Adaptability Sensitivity

Shanghai 0.25 0.47 0.28 0.78 * 0.92 ** 0.95 **
Guangzhou 0.14 0.50 0.36 −0.71 0.98 ** 0.91 **
Shenzhen 0.17 0.40 0.44 0.87 * 0.85 * 0.85 *

Tianjin 0.18 0.49 0.32 −0.47 0.98 ** 0.71
Weifang 0.17 0.57 0.26 −0.98 ** 0.98 ** 0.82 *
Fuzhou 0.23 0.53 0.24 −0.13 0.98 ** 0.91 **

Hangzhou 0.25 0.48 0.27 −0.34 0.97 ** 0.82 *
Zhongshan 0.16 0.50 0.34 −0.29 0.97 ** 0.85 *

Binzhou 0.27 0.47 0.26 −0.59 0.98 ** 0.57
Huizhou 0.15 0.50 0.35 −0.94 ** 0.97 ** 0.85 *

Dongguan 0.14 0.44 0.43 0.91 ** 0.93 ** 0.88 **
Weihai 0.17 0.52 0.32 −0.97 ** 0.97 ** 0.83 *
Dalian 0.18 0.55 0.27 −0.84* 0.98 ** 0.71

Zhanjiang 0.19 0.55 0.26 −0.88 ** 0.99 ** 0.93 **
Yancheng 0.19 0.53 0.28 0.44 0.98 ** 0.91 **

*, ** mean the result at 10% and 5% significance level respectively.

According to the above results, we conducted Pearson’s correlation tests between the
vulnerability results and the adaptability indicators. Table A5 shows the weight values
and vulnerability correlation values of the adaptability index of the 15 coastal cities. The
number of medical technical personnel in hospitals and health centers and the number of
hospitals and health centers in Shanghai are not highly correlated with changes in urban
vulnerability. The reason for this is related to the continuous decreases in the number of
medical technical personnel at hospitals and health centers and the number of hospitals
and health centers in Shanghai from 1990 to 2005, as well as the continuous increase after
2005 shown in the adaptability index analysis in this article. The number of medical
technical personnel at hospitals and health centers in Hangzhou dropped sharply from
2015 to 2020, so the number of medical technical personnel in hospitals and health centers
in Hangzhou failed the correlation test. From 1990 to 2020, the investment in fixed assets in
Binzhou first increased and then decreased, which was inconsistent with the change trend
of vulnerability and, thus, also failed the correlation test. According to the results of the
weights of the adaptive indicators of the 15 coastal cities, the weights of the general public
budget expenditure, GDP, and investment in fixed assets in the adaptability indicators of
Guangzhou, Shenzhen, Tianjin, Fuzhou, Hangzhou, Zhongshan, Binzhou, Huizhou, and
Dalian were more than high. The average weights were 0.08, 0.06, 0.09, 0.09, 0.08, 0.09,
0.07, 0.08, and 0.10. For Weifang, Dongguan, Weihai, Zhanjiang, and Yancheng, has the
high value of the number of hospitals. Only in Shanghai’s adaptability indicators were the
weights of general public budget expenditure, GDP, and per capita disposable income of
urban residents relatively high.

In sum, the effective adjustment of disaster prevention and mitigation in coastal cities
over the past 30 years can be improved by improving urban adaptability. Continuously
increasing the general public budget expenditure, investment in fixed assets, and GDP
can effectively alleviate storm surge disasters in the region. The higher the adaptability
index of the city, the lower the city’s vulnerability. Similarly, by improving the medical
standards and health of the city, the regional disaster prevention and mitigation capacity
can be effectively strengthened. From 1990 to 2020, the exposure of the cities did not
significantly change; the sensitivity index values only significantly changed from 1990 to
2000, and then there was only a small fluctuation over the next 20 years. Therefore, the
cities can reduce their exposure and sensitivity to improve urban vulnerability. However,
relevant departments can control the growth rates of exposure and sensitivity to alleviate
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the vulnerability of cities in the face of storm surge disasters and effectively improve their
urban disaster prevention and mitigation capabilities.

5. Discussions
5.1. Significance of Spatiotemporal Variations in Vulnerability

This paper conducted an in-depth analysis of the changes in the vulnerability of
15 cities along the coast of China during the period from 1990 to 2020, revealing the tem-
poral and spatial changes in the resilience of coastal areas in China in the face of storm
surge disasters. The results show that China had the highest average rate of change in
vulnerability from 2005 to 2015, and we summarized the frequency of storm surges in
China’s coastal areas over the 20 years from 2000 to 2021 (Figure 10a). The period of most
frequent occurrence of storm surge disasters and the period of highest direct economic
losses in China were both from 2005 to 2013. The above data show that the change patterns
of vulnerability in China, with high values, are consistent with the period of frequent storm
surge disasters in China. The frequency of storm surges and the distribution of direct
economic losses in various coastal areas were determined (Figure 10b,c) and compared
with the change laws of vulnerability in each city (Figure 8). The frequency of disasters and
the direct economic losses in Guangdong in the past 20 years were the highest, at 18.44%
and CNY 69.827 billion, respectively. Among the dynamic results of vulnerability, Guang-
dong’s representative cities—Guangzhou, Shenzhen, Zhanjiang, Zhongshan, Huizhou, and
Dongguan—were vulnerable in 1990 and 2020. The annual median values were 0.79 and
0.19, respectively, and the range of change was −75.30%, which confirmed that the spatial
distribution of the high-value vulnerability changes was consistent with the areas with
high levels of disaster frequency, both in Guangdong. In Section 4.3, the analysis of the
reasons for the changes in vulnerability shows that adaptability has the highest weight
with respect to urban vulnerability. The Pearson’s correlation results confirm that general
public budget expenditure, GDP, investment in fixed assets, and medical care are related to
the changes in vulnerability in the adaptability indicators. Especially in the Guangdong
region, where storm surge disasters are frequent and direct economic losses are too high,
this proves that improving adaptability can effectively alleviate the vulnerability of cities
in the face of storm surge disasters. Therefore, this article shows that, due to the frequent
storm surge disasters in the city over a certain period of time, the government strengthened
the input of relevant resources in the adaptability index, which ultimately led to the city’s
vulnerability decreasing more quickly in this period of time.
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In conclusion, from the perspective of adaptability, we analyzed the temporal and
spatial variation characteristics of the vulnerability of coastal areas to discover the change
law of the anti-risk capability of coastal areas in China. Continuously improving the social,
economic, and adaptability capacity of coastal cities in the face of storm surge disasters
is one of the effective measures to reduce the vulnerability of coastal areas facing storm
surge disasters.

5.2. Adaptability Enhancement Effect

Globally, China is one of the countries most frequently and severely affected by storm
surge disasters. From 2000 to 2020, storm surges occurred 397 times in China, resulting in
direct economic losses of up to CNY 220.64 billion [33]. The main purpose of this paper was
to evaluate the temporal and spatial changes in coastal vulnerability to determine how coastal
areas can quickly adapt to extreme events such as storm surge disasters and reduce the
direct economic losses that storm surge disasters cause in various sectors, such as buildings
and transportation infrastructure, in coastal areas. Many experts and scholars have ana-
lyzed the vulnerability of coastal areas in the face of storm surge disasters from different
angles. Many factors affect the vulnerability of coastal areas. First, coastal areas suffer
from a high frequency of disasters, resulting in serious property losses and casualties in
coastal areas [14,34]. Second, high levels of social sensitivity—such as population aggregation,
economic development, unbalanced population structure, and educational attainment—lead
to high regional vulnerability [35–37]. Third, factors such as low-lying coastal areas, flat
terrain, and physical structures without topographic barriers lead to high regional vulnera-
bility [11,38]. This study mainly evaluated the change characteristics of the vulnerability of
15 typical cities along the coast of China. According to the spatial distribution results, the
vulnerability results of cities in southern China in 2020 are lower than those in northern
cities, among which Shanghai, Shenzhen, and Dongguan have the lowest vulnerability. In
terms of time change, urban vulnerability continued to decline from 1990 to 2020. Com-
pared with exposure and sensitivity, adaptability contributed more to the decline in urban
vulnerability. Therefore, the temporal and spatial changes in vulnerability in this paper are
closely related to the changes in the factors affecting coastal vulnerability, indicating that it
is feasible and effective to reduce vulnerability by improving the adaptability indicators
of factors affecting vulnerability. Furthermore, existing research indicates that, in order to
take necessary measures to alleviate the vulnerability of coastal areas, in addition to the
necessary coastal engineering measures, it is very important to enhance the adaptability
capacity [39]. For example, Shun Y et al. pointed out that the impact of public infrastructure,
insurance protection, medical services, etc., is highlighted in the adaptive indicators, and
most of the adaptive indicators can be improved in the short term [16]. Therefore, it is very
necessary to improve adaptability indicators to alleviate regional vulnerability.

5.3. Suggestions for Disaster Prevention and Mitigation of Storm Surges in China

This paper analyzes the temporal and spatial changes in the vulnerability of different
types of coastal city in China, along with the intrinsic link between economic development
and vulnerability, to help plan and reduce disaster-related costs. First, we highlighted the
temporal and spatial development laws of different types of city in coastal areas, and then we
further analyzed the main influencing factors that affect the development laws of vulnera-
bility. The results show that the vulnerability of different types of city shows a declining
development law, and that the coastal vulnerability can be greatly alleviated by improving
the adaptability index. It is suggested that, when reducing the vulnerability of coastal
cities, relevant departments should give priority to agricultural cities and northern cities
with moderate urbanization development, such as Binzhou and Tianjin. For some coastal
cities in China with relatively average economic development, the post-disaster recovery
costs are high, and resilience is low. Coastal areas should pay attention to economic de-
velopment. Furthermore, in Shenzhen and Dongguan, the vulnerability of the two cities
rapidly decreased due to the increase in the proportion of investment in adaptation-related
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resources by relevant government departments. According to the discussion in Section 5.1,
Shenzhen and Dongguan are at high risk of storm surge damage. With global warming,
regions above sea level, and even the entire coast of China, may experience stronger storm
damage in the future [40,41], which may aggravate the risk of direct economic losses in
coastal cities. Therefore, not only Shenzhen and Dongguan, but all of the coastal cities in
China, need to continuously increase their ability to adapt to disasters while developing
the economy, thereby reducing the cost of future disaster losses.

5.4. Limitation and Uncertainty of Assessment

In the face of storm surge disasters in coastal areas, urban vulnerability changes
have spatiotemporal characteristics. Therefore, this paper analyzes the spatiotemporal
changes in the vulnerability of 15 coastal cities in China from 1990 to 2020 and further
reveals the relationship between economic development and vulnerability changes. The
results of the paper show that the city’s adaptability to disasters has the highest correlation
with vulnerability, and the degree of urban vulnerability decreases with the increase in
adaptability. From the perspective of economic development, this paper explores the
changes in urban vulnerability in the face of storm surge disasters and concludes that
the main reason for the continuous reduction in the vulnerability of coastal cities from
1990 to 2020 was the continuous improvement in urban adaptability. In this research, the
adaptability of coastal cities was evaluated based on the general public budget expenditure,
investment in fixed assets, GDP, and other indicators in urban statistical data. Although
the urban statistical indicators have a high temporal coherence, the change in adaptability
at a finer scale was assessed. Existing statistical indicators are far from explanatory, so it is
necessary to develop long-term adaptation data at finer scales for a dynamic assessment of
coastal vulnerability.

A combination of factors can increase the vulnerability of coastal areas. For example,
global warming can lead to sea level rises in coastal areas, increasing the risk of inundation
of fragile coastal areas, such as coastal cities and deltas that were originally low-lying
plains. Frequent occurrences will increase the vulnerability of coastal areas. In addition
to the abovementioned uncontrollable disaster factors, the increase in the proportion of
children and the elderly in coastal areas, as well as the increase in fishing intensity and
other sensitive indicators, will also increase the vulnerability. Therefore, in future research,
in addition to overcoming the limitations of the lack of long-term fine-scale data, more
attention should be paid to the temporal and spatial variation laws of coastal vulnerability
in highly exposed and highly sensitive coastal cities, deltas, and other regions, and intrinsic
drivers of vulnerability changes in those areas should be further studied.

6. Conclusions

Previous studies of the vulnerability to storm surge disasters in China have focused
on the spatial distribution characteristics of vulnerability and neglected the temporal and
spatial changes in the vulnerability of different types of coastal city in China, as well as
the relationship between economic development and vulnerability. Therefore, this paper
analyzes the temporal and spatial variation characteristics and differences in vulnerability
in 15 typical coastal cities in China from 1990 to 2020 and further explores the relationships
between urban exposure, adaptability, sensitivity, and vulnerability. This paper also aimed
to reveal the impact of the accelerated urbanization process of economic development
on the changes in vulnerability in coastal areas, as well as to provide a scientific basis
for improving the comprehensive disaster reduction ability with respect to storm surge
disasters and coping with storm surge disaster risks in China’s coastal areas.

The results show that the vulnerability declined the fastest from 2005 to 2015, and that
the areas with the highest vulnerability shifted from the southern region to the northern
region. The southern cities of Shanghai, Shenzhen, and Dongguan had low vulnerability
values and high risk resistance ability when facing storm surge disasters. The improve-
ment in economic capacity greatly improved cities’ ability to adapt to disasters, and the
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improvements in adaptability greatly contributed to the reduction in urban vulnerabil-
ity. Furthermore, this article further reveals that the general public budget expenditure
capacity, investment in fixed assets, GDP, and healthcare level can effectively alleviate the
city’s vulnerability, with the help of exposure and sensitivity. The effect of vulnerability
is not significant, but the vulnerability of cities in the face of storm surge disasters can be
alleviated by controlling the speed of exposure and sensitivity increases through effective
means. Finally, we should note that, due to the frequent storm surge disasters in cities
during the 2005–2015 period, government departments strengthened the input of relevant
resources in the adaptive capacity, ultimately meaning that the cities’ vulnerability declined
faster during this period.

In future research, it will be necessary to develop long-term adaptive index data at
a finer scale, and to pay more attention to the temporal and spatial variation patterns of
vulnerability in coastal cities, deltas, and other high-exposure and high-sensitivity coastal
areas. It will also be necessary to deeply study the impact of internal drivers of vulnerability
changes in high-exposure and high-sensitivity areas. Furthermore, more consideration
should be given to the coastal attributes related to natural disasters of the storm surge type
in the exposure indicators in future studies—such as relief, landform, rock type, ocean
vertical movement, tidal range, wave height, shoreline displacement rate, coastal slope,
relative SLR rate, shoreline erosion/acceleration rate, barrier type, beach type, storm surge
wave climb, sediment granularity, hinterland nature, coastal elevation, coastal land use,
foreshore width, presence of vegetation, presence of manmade or natural protection, shape
state restoring force, etc.—and the collection of related data on the time dynamic index for
comparative study.
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Appendix A

A total of five schedules are cited in the text—Table A1: GLC_FCS30 land cover
classification system. Table A2: The annual mean change rate of sensitivity indicators in
15 coastal cities from 1990 to 2020. Table A3: The annual mean change rate of adaptability
index in 15 coastal cities from 1990 to 2020. Table A4: The results of vulnerability and the
change rate of each stage in 15 coastal cities from 1990 to 2020. Table A5: The weight values
and vulnerability correlation values of the adaptability index of 15 coastal cities. Details of
the tables are shown in Appendix A.
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Table A1. GLC_FCS30 land cover classification system.

LC id Classification System Exposure Value

10 Rainfed cropland 0.8
11 Herbaceous cover 0.4
12 Tree or shrub cover (Orchard) 0.4
20 Irrigated cropland 0.8
51 Open evergreen broadleaved forest 0.4
52 Closed evergreen broadleaved forest 0.4
61 Open deciduous broadleaved forest (0.15 < fc < 0.4) 0.4
62 Closed deciduous broadleaved forest (fc > 0.4) 0.4
71 Open evergreen needle-leaved forest (0.15 < fc < 0.4) 0.4
72 Closed evergreen needle-leaved forest (fc > 0.4) 0.4
81 Open deciduous needle-leaved forest (0.15 < fc < 0.4) 0.4
82 Closed deciduous needle-leaved forest (fc > 0.4) 0.4
91 Open mixed-leaf forest (broadleaved and needle-leaved) 0.4

92 Closed mixed-leaf forest (broadleaved and
needle-leaved) 0.4

120 Shrubland 0.4
121 Evergreen shrubland 0.4
122 Deciduous shrubland 0.4
130 Grassland 0.4
140 Lichens and mosses 0.4
150 Sparse vegetation (fc < 0.15) 0.4
152 Sparse shrubland (fc < 0.15) 0.4
153 Sparse herbaceous (fc < 0.15) 0.4
180 Wetlands 0.6
190 Impervious surfaces 1
200 Bare areas 0.2
201 Consolidated bare areas 0.2
202 Unconsolidated bare areas 0.2
210 Water body 0.2
220 Permanent ice and snow 0
250 Filled value 0

Table A2. Annual mean change rate of sensitivity indicators in 15 coastal cities from 1990 to 2020.

City C1
(%/Year)

C2
(10,000

People/Year)

C3
(%/Year)

C4
(%/Year)

Shanghai −0.0003 1.10 −0.0014 −0.0003

Guangzhou −0.0004 7.08 −0.0023 −0.0001

Shenzhen −0.0017 5.28 −0.0017 −0.0006

Tianjin 0.0004 1.84 −0.0029 −0.0004

Weifang 0.0000 0.57 −0.0086 −0.0003

Yancheng 0.0003 −0.76 −0.0116 −0.0016

Zhanjiang 0.0001 1.13 −0.0074 −0.0021

Hangzhou −0.0001 2.76 −0.0051 −0.0015

Zhongshan −0.0012 1.35 −0.0097 −0.0002

Binzhou 0.0000 1.55 −0.0062 −0.0004

Huizhou −0.0010 2.32 −0.0103 −0.0005

Dongguan −0.0031 3.96 −0.0075 −0.0067

Fuzhou 0.0002 1.81 −0.0077 0.0011

Weihai 0.0000 0.19 −0.0114 −0.0021

Dalian 0.0005 0.68 −0.0022 −0.0011
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Table A3. The annual mean change rate of adaptability index in 15 coastal cities from 1990 to 2020.

City
B1

(Million
CNY/Year)

B2
(Million

CNY/Year)

B3
(CNY/Year)

B4
(CNY/Year)

B5
(Million

CNY/Year)

B6
(1000

Persons/Year)
B7

Shanghai 278.51 1415.67 2674.91 1228.53 294.58 2.70 −46

Guangzhou 97.61 823.32 2185.17 990.90 250.68 5.54 107

Shenzhen 138.62 917.81 2025.02 791.23 264.15 4.11 163

Tianjin 66.97 459.45 1534.00 820.73 522.92 1.55 81

Weifang 26.15 190.93 1384.50 696.23 156.95 1.87 238

Yancheng 32.22 195.02 1297.17 758.30 142.34 1.06 82

Zhanjiang 17.74 100.15 1022.59 597.84 54.37 1.31 99

Hangzhou 68.59 530.93 2222.70 1250.97 257.12 0.67 131

Zhongshan 12.44 103.60 1711.34 1181.16 43.86 0.91 30

Binzhou 14.89 82.21 1234.00 600.00 49.96 0.68 30

Huizhou 21.10 139.10 1429.08 793.14 80.95 1.33 99

Dongguan 27.94 319.52 1851.46 1242.83 79.95 2.19 102

Fuzhou 31.44 330.59 1579.73 726.83 178.55 1.48 125

Weihai 11.56 98.37 1628.07 745.17 91.81 0.63 72

Dalian 32.75 228.39 1519.02 685.13 54.13 1.42 99

Table A4. The results of vulnerability and the change rate of each stage in 15 coastal cities from 1990
to 2020.

City 1990
1990–
1995
(%)

1995
1995–
2000
(%)

2000
2000–
2005
(%)

2005
2005–
2010
(%)

2010
2010–
2015
(%)

2015
2015–
2020
(%)

2020

Shanghai 0.80 −2.70 0.67 −1.45 0.59 −1.42 0.52 −1.78 0.43 −2.44 0.31 −3.46 0.14
Guangzhou 0.75 0.16 0.76 −1.70 0.67 −1.69 0.59 −2.32 0.47 −2.40 0.35 −2.90 0.20
Shenzhen 0.84 −5.80 0.56 −1.02 0.50 −2.32 0.39 −0.15 0.38 −2.78 0.24 −1.00 0.19

Tianjin 0.70 0.10 0.71 −1.47 0.63 −0.99 0.58 −2.62 0.45 −3.95 0.25 0.46 0.28
Weifang 0.77 −0.09 0.77 −1.11 0.71 −3.15 0.56 −2.06 0.45 −3.93 0.26 −0.67 0.22

Yancheng 0.71 1.88 0.80 0.19 0.81 −3.46 0.64 −3.60 0.46 −4.32 0.24 −1.92 0.14
Zhanjiang 0.76 −0.60 0.73 −0.71 0.70 −1.21 0.64 −1.48 0.56 −6.15 0.26 −1.18 0.20
Hangzhou 0.74 −2.16 0.63 −0.75 0.59 −1.12 0.54 −1.03 0.48 −2.23 0.37 −2.69 0.24
Zhongshan 0.78 −1.97 0.69 −1.66 0.60 −1.76 0.51 −2.00 0.41 −2.87 0.27 −1.73 0.18

Binzhou 0.64 0.39 0.66 0.90 0.71 −1.73 0.62 −3.17 0.46 −1.42 0.39 −1.10 0.33
Huizhou 0.79 −2.29 0.67 −0.70 0.64 −1.38 0.57 −2.69 0.43 −2.44 0.31 −1.89 0.22

Dongguan 0.85 −3.12 0.69 −2.36 0.57 −2.62 0.44 −2.15 0.33 −0.84 0.29 −2.67 0.16
Fuzhou 0.78 −2.15 0.67 −0.22 0.66 −1.05 0.61 −2.05 0.51 −3.43 0.33 −2.51 0.21
Weihai 0.75 −1.28 0.68 −1.31 0.62 −2.09 0.51 −2.66 0.38 −2.06 0.28 −1.24 0.21
Dalian 0.73 −1.04 0.68 −0.58 0.65 −1.88 0.56 −3.57 0.38 −0.90 0.33 −0.12 0.33

Table A5. The weight values and vulnerability correlation values of the adaptability index of 15
coastal cities.

City Name
CWM Weight Value Pearson’s Correlation Coefficient

B1 B2 B3 B4 B5 B6 B7 B1 B2 B3 B4 B5 B6 B7

Shanghai 0.08 0.08 0.08 0.07 0.07 0.04 0.05 0.96 ** 0.97 ** 0.97 ** 0.96 ** 0.99 ** 0.61 −0.16
Guangzhou 0.08 0.08 0.07 0.07 0.08 0.06 0.05 0.97 ** 0.99 ** 0.99 ** 0.98 ** 0.99 ** 0.95 ** 0.88 **
Shenzhen 0.07 0.06 0.05 0.05 0.06 0.05 0.05 0.81 * 0.82 * 0.90 ** 0.93 ** 0.76 * 0.81 * 0.85 *

Tianjin 0.08 0.09 0.07 0.07 0.09 0.04 0.05 0.96 ** 0.99 ** 0.96 ** 0.95 ** 0.97 ** 0.80 * 0.78 *
Weifang 0.09 0.08 0.07 0.07 0.10 0.07 0.09 0.96 ** 0.99 ** 0.97 ** 0.97 ** 0.99 ** 0.97 ** 0.90 **
Fuzhou 0.10 0.08 0.07 0.07 0.10 0.05 0.06 0.97 ** 0.97 ** 0.99 ** 0.99 ** 0.97 ** 0.96 ** 0.84 *

Hangzhou 0.08 0.08 0.07 0.07 0.08 0.04 0.05 0.95 ** 0.97 ** 0.98 ** 0.97 ** 0.96 ** 0.65 0.94 **
Zhongshan 0.09 0.09 0.06 0.06 0.08 0.06 0.06 0.94 ** 0.97 ** 0.97 ** 0.94 ** 0.98 ** 0.96 ** 0.93 **

Binzhou 0.07 0.07 0.06 0.07 0.07 0.05 0.07 0.96 ** 0.97 ** 0.95 ** 0.94 ** 0.69 0.97 ** 0.92 **
Huizhou 0.08 0.07 0.06 0.07 0.08 0.06 0.08 0.94 ** 0.97 ** 0.98 ** 0.95 ** 0.96 ** 0.93 ** 0.97 **

Dongguan 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.88 ** 0.91 ** 0.97 ** 0.95 ** 0.92 ** 0.90 ** 0.93 **
Weihai 0.09 0.08 0.06 0.06 0.08 0.05 0.09 0.96 ** 0.99 ** 0.96 ** 0.96 ** 0.96 ** 0.98 ** 0.90 **
Dalian 0.10 0.09 0.08 0.08 0.10 0.05 0.05 0.97 ** 0.98 ** 0.93 ** 0.96 ** 0.85 * 0.82* 0.87*

Zhanjiang 0.09 0.08 0.07 0.07 0.09 0.06 0.09 0.99 ** 0.99 ** 0.97 ** 0.98 ** 0.99 ** 0.98 * 0.98**
Yancheng 0.09 0.08 0.07 0.07 0.09 0.05 0.09 0.97 ** 0.97 ** 0.97 ** 0.96 ** 0.99 ** 0.93 ** 0.96 **

*, ** mean the result at 10% and 5% significance level respectively.
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